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Abstract 

This paper presents a new approach that can be used 
to speed up SystemC simulations by automatically 
optimizing the model for simulation. The work addresses 
the inefficiency of the standard SystemC scheduler that 
may lead in some situations to unnecessary wake-up calls, 
as well as unnecessary code execution. The method 
presented analyzes the SystemC code to automatically 
extract signal dependencies based on a set of rules. This 
information is then used to split large processes into 
smaller ones. Process splitting is performed by a tool – 
SplitPro- which generates an optimized code that can be 
run on any standard SystemC engine. SplitPro was used to 
analyze the description of an Alpha super scalar processor 
and optimize some of its modules. A speed gain of up to 
23% in simulation time was achieved over a number of 
split processes. 

 

I. INTRODUCTION 

Simulation of digital systems is usually performed in 
two phases. The first phase is the translation of the given 
system to some internal data structure understandable by 
the simulation kernel; the second phase is the scheduling 
of the processes describing the behavior of the system [6]. 
The translation phase uses efficient techniques and data 
structures to describe the system to be simulated. This 
phase may also transform the given system to a simpler 
system behaving identically like the original one. The 
scheduling phase uses the previously created data structure 
to evaluate signal values at different nodes in the system. 
When an input to a system changes, the scheduler is 
responsible for determining how the internal and external 
nodes of the system will change with time. In some cases, 
a change in a system input will not result in any changes in 
the system output. In such cases, an efficient scheduler will 
not go through all the unnecessary calculations of 
reevaluating the node values [6]. A scheduler may skip 
unnecessary process calls or code execution by analyzing 
the system to be simulated and figure out the dependency 
relations between signals of a given module. Using this 
approach a scheduler will be able to decide if it is 
necessary to evaluate some outputs or not. This 
optimization can be unnecessary if the code of the system 
to be simulated is written very efficiently. 

One technique that is used in the translation phase 
converts the behavior of the system to be simulated to a 
compiled form, i.e. the system behavior is translated to 
code that can be executed to evaluate the outputs of a 
system when the inputs change. The scheduler should 
ensure that each portion of code is executed when its 
inputs change. The code will reevaluate the outputs 
according to the new inputs. This class of simulators is 
called compiled simulators which differ from ordinary 
interpreted simulators that use an engine that acts on data 
structures. SystemC falls in the category of compiled 
simulators. 

 
In this work, we address two problems that result in 

slowing down the simulation speed of SystemC:  
1-The unnecessary wake-up calls for SystemC processes. 

This includes any call for a process that does not change 
the final state of the system in a given simulation clock 
cycle. 

2-The unnecessary evaluation of outputs whose inputs 
did not change. This includes executing portions of code in 
a process that do not change the final state of the system at 
the end of the simulation clock cycle.  

The first problem has been addressed before in [1]. The 
solution presented needs to explicitly specify dependency 
information for module I/Os. The user has to manually 
trace signal dependencies (i.e. which process outputs 
depend on which process inputs), and introduce new lines 
of code in the given process to communicate the 
dependency information to the scheduler. Since the 
standard SystemC definition does not understand this new 
syntax, the authors in [1] introduced a new SystemC 
implementation (called FastSysC) with non-standard 
definition. 

In this paper we present a new approach for handling 
unnecessary wake-up calls, while at the same time solving 
the problem of unnecessary evaluation of outputs. The 
proposed approach uses process splitting to solve the 
above mentioned problems. In Section II, we present an 
overview of simulation in SystemC 2.1 and outline the 
inefficiency in the scheduling algorithm. Section III 
describes the solution presented in [1]. Section IV presents 
the idea of process splitting as a remedy for the 
inefficiency in the SystemC 2.1 scheduler. Section V 
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introduces a new tool called SplitPro, and describes the 
rules used in the tool to construct signal dependency trees. 
Experimental results and comparisons of performance 
between original SystemC engine and FastSysC with and 
without process splitting are shown in section VI. Section 
VII ends with the conclusion. 

 

II. SIMULATION IN SYSTEMC 

The scheduler in the SystemC engine is responsible for 
executing the functionality part associated with each 
module. The functionality of each module is wrapped in 
processes which are sensitive to a given set of signals. 
When the value of a signal is changed, an event is 
triggered; this event will resume the execution of all the 
processes which are sensitive to this signal [2]. The 
SystemC 2.1 language reference manual [3] proposes a 
scheduling scheme that can be used to implement the 
SystemC scheduler. This scheduling scheme can be 
changed as long as the changes are transparent for any 
given system running on the engine or on the SystemC 2.1 
reference simulator.  

A process in a module can be registered with the 
scheduler as being sensitive to a set of signals. Whenever a 
signal is changed, a request to update the value of this 
signal is added to the set of update requests. After the 
signal is updated all the processes sensitive to this signal 
are moved to a set called the set of runnable processes. 
This set represents all the processes that should be 
executed simultaneously by the SystemC engine. The 
order in which processes are run is undefined [3]. 
Moreover, the scheduler does not try to find any optimal 
order to run the processes. When a process updates a signal 
it will add a request to the set of update requests, which in 
turn may add a new process to the set of runnable 
processes and so on. This is called a delta cycle. A delta 
cycle can be thought of as a very small step of time within 
the simulation, which does not increase the user-visible 
time. Multiple delta cycles can occur at a given time point. 
When a signal update occurs, other processes do not see 
the newly updated value until the next delta cycle. 

The inefficiency in SystemC Scheduler 
Because processes are run directly from the set of 

runnable processes, in some cases unnecessary execution 
of processes from the set of runnable processes may take 
place. For a system as the one shown in Figure 1, process 
W writes to the signal Wout. Processes X and Y are 
sensitive to this signal so they are added to the set of 
runnable processes when Wout changes. A cycle appears 
between the two processes X and Y: X writes to Xout1 to 
which Y is sensitive, and Y writes to Yout to which X is 
sensitive. 

It may appear that X will keep on waking-up process Y 
through Xout1 and then process Y will wake-up X through 
Yout and so on. However, this should not happen as it is an 

unacceptable behavior for most systems. What will happen 
is that after some cycles Xout1 and Yout will reach a stable 
state and will not be changed any further. In this case X 
and Y will be removed from the set of runnable processes 
and simulation will continue. 

 
TABLE I 

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 1  

Delta 
Cycle 

No 

Set of runnable 
processes Set of update requests 

1 X,Y Xout1(final), Xout2(transit), Yout 
(transit) 

2 X,Y Xout1(final), Xout2(transit), Yout 
(final) 

3 X Xout1(final), Xout2(final) 

 
Let us assume that Xout1 is a function of Wout, Xout2 is 

a function of Yout, and Yout is a function of Xout1 and 
Wout. When W updates the signal Wout, both processes X 
and Y are added to the set of runnable processes. 
According to our assumptions on signal dependencies, the 
execution of processes will follow the following sequence: 
− When X is executed in the first delta cycle, it will write 

the final value of Xout1 and a transit value in Xout2. Y 
is executed in the same delta cycle, however it will not 
see the updated value of Xout1 until the following delta 
cycle. Therefore, Y will write a transit value to Yout 
causing X to be called again in the second delta cycle. 

− In the second delta cycle Y will write the final value for 
Yout, and X will run again writing a final value in 
Xout1 and a transit value in Xout2. 

− In the third delta cycle, X will write the final value in 
Xout2. 

 
It can be noticed from Table I that there was no need to 

execute Y in the first delta cycle or X in the second delta 
cycle. This is the problem of unnecessary wake-up calls. 
Moreover, there is no need to update Xout2 and Yout in 
first delta cycle or Xout1 in the third delta cycle. This is the 
problem of unnecessary evaluation of process outputs 
(when X is executed, both Xout1 and Xout2 are evaluated 
each time which is not needed). 

X Y 

W 

Xout2 

Xout1 

Yout1 

Wout1 

Figure 1. A system with two codependent processes



III. FASTSYSC ENGINE 

The problem mentioned in section II was outlined before 
in [1]. The authors presented the FastSysC engine that 
overcomes the problem of unnecessary wake-ups of 
processes. The FastSysC engine also contains a number of 
other refinements that help in speeding up simulation.  

A developer describing a system for the FastSysC 
engine must provide signal dependency information. This 
dependency information must be written inside the 
SystemC code of the described system. When the 
scheduler runs, it knows which processes depend on which 
from the signal dependency information and unnecessary 
processes executions are skipped. 

FastSysC works well in avoiding unnecessary wake-up 
calls. It suffers however from the following drawbacks: 

1. The user must manually trace and extract signal 
dependencies, 

2. The user must update the original code with the 
dependency information, 

3. The augmented code is in non-standard SystemC 
notation and therefore will only run using a special 
SystemC implementation (FastSysC). 

Although the FastSysC engine showed faster 
simulations than the SystemC 2.1 reference simulator, it 
still suffers from the problem of unnecessary code 
evaluations as can be seen from Table II. 

 
TABLE II 

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 1  
RUNNING ON FASTSYSC ENGINE  

Delta 
Cycle No 

Set of runnable 
processes Set of update requests 

1 X Xout1(final), Xout2(transit),  
2 Y Yout (final) 
3 X Xout1(final), Xout2(final) 

 
 

IV. PROCESS SPLITTING 

In this work, we propose a solution to the problems of 
unnecessary wake-up calls as well as unnecessary 

evaluation of processes outputs. The proposed solution is 
based on process splitting. In order to split a process, the 
I/Os should allow for the splitting of the process into two 
or more processes which, together, will behave exactly like 
the same original one. 

 
Assume process P has a set of inputs I to which it is 

sensitive and a set of outputs O. Process P can be split if 
and only if there exists an element Oj in O which is 
function of a subset Ik of I. For the splitting to break a 
cycle or to introduce an improvement, Ik should not be 
equal to I, otherwise the splitting will result in adding the 
overhead of scheduling a new process. 

In order to split process P, first the set of inputs I to this 
process and the set of outputs O are identified. A 
dependency tree is built for each element in the output set 
O. The inputs I are then searched one by one in this 
dependency tree to find the subset of inputs which affects 
the evaluation of the output. 

When an output Oj of a process P is found to be function 
in a subset IK of the input set I, a new process P_Oj is 
created with an input set IK and an output P_Oj. The 
process P_Oj will only contain code that evaluates the 
output Oj.  

These steps are repeated for each output so that any 
given process is broken into the largest possible number of 
smaller processes, each new process containing only code 
that evaluates its own output. If we apply the above on the 
simple system in Figure 1 with the dependency relation 
mentioned in Section II, the output system will look like 
the one in Figure 2. Note how the cycle disappeared from 
the system which can now be run on any SystemC engine. 

 
TABLE III 

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 2 RUNNING ON 
 THE SYSTEMC 2.1 REFERENCE SIMULATOR  

Delta 
Cycle No 

Set of runnable 
processes Set of update requests 

1 X_out1,Y Xout1(final),Yout (transit) 
2 X_out2,Y Xout2(transit), Yout (final) 
3 X_out2 Xout2(final) 

 
If this system is run on a SystemC engine with a 

scheduling scheme as the one proposed in the SystemC 2.1 
language reference, the execution of processes will 
produce the update requests shown in table III. The 
unnecessary output evaluations have been removed but 
unnecessary calls to processes still exist. It is however 
easy now to determine the order of process execution 
based on the connectivity of the modules. The SystemC 
engine can examine the connectivity of modules and 
figure out the optimum order of process execution. The 
processes are ranked according to their place in the 
dependency graph. Whenever a process that depends on 

Figure 2. The system of Figure 1 after applying  
process splitting 
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another process is being scheduled in the same delta cycle 
the process with higher rank will not be called. 

Figure 3 shows the dependency graph of the system we 
are using as our example. At the beginning of each delta 
cycle, dependency check is applied. The scheduler will 
find in the first delta cycle that processes Y and X_out1 are 
scheduled in the same delta cycle. Y has a higher rank than 
X_out1, so process Y will not be called. The same scenario 
will take place in the second delta cycle where X_out2 will 
not be called. Table VI demonstrates the execution of delta 
cycles for the system of Figure 2 when run on a SystemC 
engine aware of the dependency between processes. 

 
TABLE IV 

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 2 RUNNING ON 
 A SYSTEMC DEPENDENCY AWARE SIMULATOR  

Delta 
Cycle 

No 
Set of runnable processes Set of update requests 

1 X_out1, Xout1(final) 

2 Y Yout (final) 

3 X_out2 Xout2(final) 

 
Figuring the process dependency graph as well as 

signals dependency graph is not always straight forward. 
In some cases extracting dependencies may fail. In such 
scenarios processes are not split and no process calls are 
skipped. Moreover, it is not necessary to generate one 
process dependency tree for the whole system. 
Dependency trees can be built in an incremental way 
where the start is a group of disconnected trees and, 
whenever possible, the trees are connected together and 
ranked. The concept of process dependency presented here 
is very close to the concept presented in [1]. 

 

V. SPLITPRO TOOL 

The concept of process splitting presented in section IV 
has been implemented in a tool called SplitPro, which 

parses a SystemC module and generates another SystemC 
module with the same inputs, outputs and internal signals. 
The SplitPro tool may split a process to a number of 
smaller processes if this will result in faster simulation. To 
do this, the tool needs to construct a dependency tree for 
all the outputs of the system. The dependency tree is 
generated by parsing the SystemC module according to the 
rules described next. 

 

1-Direct Dependency: 

Direct dependency is the simplest form of signal 
dependency. It appears in a simple assignment statement: 

1. X is said to be dependant on each and every 
variable appearing in expr1: 

 
X=expr1; 
 
 

2- First Level of Indirect Dependency: 

The 1st level of indirect dependency appears in 
execution control statements as follows: 

1. If statements: X is said to be dependant on each and 
every variable appearing in expr1, expr2 & expr3: 

 
if(expr1) 

X=expr2; 
   else 

X=expr3; 
 

 
2. For loops: X is said to be dependant on each and 

every variable appearing in expr1, expr2, expr3 & 
expr4: 

 
for(expr1;expr2;exrp3) 
  X=expr4; 
 

 
3. While loops: X is said to be dependant on each and 

every variable appearing in expr1 and expr2: 
 
While(expr1) 

    X=expr2; 
 

 
4. Do-While loops: X is said to be dependant on each 

and every variable appearing in expr1 and expr2: 
 
do 

    X=expr2; 
   While(expr1) 
 

 
5. Switch-Case statements: X is said to be dependant 

on each and every variable appearing in expr1, 
constant-expr2 & expr3: 
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Figure 3. The dependency graph of processes

Rank 4

Rank 3

Rank 2

Rank 1

Xout2 



switch ( expr1 ) 
case constant-expr2 : 

 X=expr3; 
 
 

3- Second Level of Indirect Dependency: 

The 2nd level of indirect dependency appears in 
jump statements which are controlled by an execution 
control statement. In such cases, X is said to be dependant 
on each variable appearing in the execution control 
statement and the execution control statement controlling 
jump statement. i.e. X depends on every variable in expr1, 
expr2, … to expr5: 

 
For(expr1; expr2; expr3){ 
 X=expr4; 
 If(expr5) 
  Break or continue or 
return or goto; 
} 
 

 
The SplitPro tool analyzes a given SystemC module to 

determine the inputs, outputs and processes of that module. 
It also determines which processes write to which output 
ports. The tool then determines which outputs are 
functions of which inputs. If a process can be split 
according to the rules mentioned in section IV, the tool 
generates a new module with large processes split to 
smaller ones. For example, assume a module with two 
inputs Z and AbortProcess and two outputs X and Y. 
Process Pxy updates the values of both X and Y whenever 
Z or AbortProcess changes. A snippet of the Pxy process is 
shown in Listing 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Listing 1. Process Pxy which evaluates both X and Y 
 

SplitPro starts with the output signals as roots for 
dependency trees. Nodes are added to the tree according to 
the rules listed above. New nodes are added to the tree 
through a number of iterations over the system code until 
no more nodes can be added. Figure 4 shows the 
dependency tree that is generated for X. During the first 
iteration on the code (see Listing 1), the tool will find that 
X appears in a direct dependency statement. A, B & C are 
therefore added as children nodes to X. The tool will then 

act on A, B & C to find other dependencies in the same 
way as with X and so on. The resulting dependency tree 
shows that X depends on the signals Z and AbortProcess. 
However a similar dependency tree for Y will show that Y 
depends only on Z. This means that there is no need to 
reevaluate Y when AbortProcess is triggered. Pxy can 
therefore be split into two processes: Pxy_x which 
evaluates X and is sensitive to Z and AbortProcess, and 
Pxy_y which evaluates Y and is sensitive to Z only.  
Listing 2 shows process Pxy after splitting. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 2. Process Pxy split to processes Pxy_x which 
evaluates X and Pxy_y which evaluates Y. 

 
The SplitPro tool has the following advantages: 
1- SplitPro is capable of extracting the dependency 

information automatically 
2- The generated code is in standard SystemC. It can 

be compiled using the SystemC 2.1 reference 
simulator or the FastSysC engine. 

3- The tool is capable of inserting the dependency 
information to the system description in case this 
feature of the FastSysC engine will be used. 

4- Process splitting opens the door to parallel 
simulation of SystemC modules on multiprocessor 
systems [4]. 

VI. EXPERIMENTAL RESULTS 

We used the same test bench used by the FastSysC team 
to test their engine, which is an Alpha super scalar 
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X 
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Z AbortProcess 

Figure 4. Dependency tree of X 

SC_METHOD(Pxy){ 
    For(i=0;i<BusSize;i++) 
       Y=Z[i] * Z [i]; 
    X=A+B *C; 
    while(i<BusSize){ 

  A+=Z[i++]; 
          if(AbortProcess) 
         break; 
     } 
} 

SC_METHOD(Pxy_x){ 
    X=A+B *C; 
    while(i<BusSize){ 

  A+=Z[i++]; 
          if(AbortProcess) 
         break; 
     } 

} 
 

SC_METHOD(Pxy_y){ 
    For(i=0;i<BusSize;i++) 
       Y=Z[i] * Z [i]; 

} 
 



processor. This processor is able to execute Tru64 Alpha 
binaries. We randomly selected five alpha binaries to 
calculate their simulation time and took the average. 

The Alpha processor contains 9 processes. Out of these, 
only 5 processes could be split using the SplitPro tool. A 
limitation in the SplitPro tool is that it cannot track signal 
dependences across more than one function or across more 
than one process. Of the five processes that were 
successfully split, four showed significant reduction in 
execution time. The fifth process actually increased in 
simulation time after splitting. This process is sensitive to 
four inputs and writes to four outputs. It was split into four 
processes, each one sensitive to two inputs and writes to a 
single output. A particular signal is a common input to all 
four outputs. Whenever this input changes, all four 
processes are scheduled to run which is not as efficient as 
evaluating the outputs in the original process.  This shows 
that, in some cases, process splitting actually increases 
simulation time instead of decreasing it. 

Figure 5 shows the relative gain in execution time 
achieved by the processes that were successfully split 
while boosting performance. Four different simulations 
were performed and compared: two on a SystemC 2.1 
reference simulator (with and without process splitting), 
and two on the FastSysC engine (again with and without 
splitting). 
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Figure 5. Simulating on SystemC 2.1 reference simulator and FastSysC 

Simulator with and without process splitting 
 

Process splitting achieved a speed gain factor of 15% 
when run on the reference simulator engine and a speed 
gain factor of 23% when run on the FastSysC engine. 

 

VII. CONCLUSION 

In this work we have proposed a novel solution to the 
problem of unnecessary wake-up calls in SystemC that can 
manifest themselves in some situations because of the 
presence of I/O loops. Splitting a process into 2 or more 
processes can potentially break these loops and improve 
simulation speed. Furthermore, process splitting also 

addressed the issue of unnecessary code evaluation leading 
to further speed improvements. Signal dependencies are 
needed to properly split a process. The SplitPro tool 
automatically traces signal dependencies and generates the 
split processes. The generated code is in standard SystemC 
notation, and does not therefore require a special engine to 
run. When applied on a SystemC description of an Alpha 
super scalar processor, process splitting achieved up to 
23% speed improvement on the split processes. 
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