
Speeding Up SystemC Simulation through Process Splitting
Youssef N. Naguib and Rafik S. Guindi

Electronics and Communication Engineering, Cairo University, Giza, Egypt
ynaguib@ieee.org, rguindi@ieee.org

Abstract

This paper presents a new approach that can be used
to speed up SystemC simulations by automatically
optimizing the model for simulation. The work addresses
the inefficiency of the standard SystemC scheduler that
may lead in some situations to unnecessary wake-up calls,
as well as unnecessary code execution. The method
presented analyzes the SystemC code to automatically
extract signal dependencies based on a set of rules. This
information is then used to split large processes into
smaller ones. Process splitting is performed by a tool –
SplitPro- which generates an optimized code that can be
run on any standard SystemC engine. SplitPro was used to
analyze the description of an Alpha super scalar processor
and optimize some of its modules. A speed gain of up to
23% in simulation time was achieved over a number of
split processes.

I. INTRODUCTION

Simulation of digital systems is usually performed in
two phases. The first phase is the translation of the given
system to some internal data structure understandable by
the simulation kernel; the second phase is the scheduling
of the processes describing the behavior of the system [6].
The translation phase uses efficient techniques and data
structures to describe the system to be simulated. This
phase may also transform the given system to a simpler
system behaving identically like the original one. The
scheduling phase uses the previously created data structure
to evaluate signal values at different nodes in the system.
When an input to a system changes, the scheduler is
responsible for determining how the internal and external
nodes of the system will change with time. In some cases,
a change in a system input will not result in any changes in
the system output. In such cases, an efficient scheduler will
not go through all the unnecessary calculations of
reevaluating the node values [6]. A scheduler may skip
unnecessary process calls or code execution by analyzing
the system to be simulated and figure out the dependency
relations between signals of a given module. Using this
approach a scheduler will be able to decide if it is
necessary to evaluate some outputs or not. This
optimization can be unnecessary if the code of the system
to be simulated is written very efficiently.

One technique that is used in the translation phase
converts the behavior of the system to be simulated to a
compiled form, i.e. the system behavior is translated to
code that can be executed to evaluate the outputs of a
system when the inputs change. The scheduler should
ensure that each portion of code is executed when its
inputs change. The code will reevaluate the outputs
according to the new inputs. This class of simulators is
called compiled simulators which differ from ordinary
interpreted simulators that use an engine that acts on data
structures. SystemC falls in the category of compiled
simulators.

In this work, we address two problems that result in

slowing down the simulation speed of SystemC:
1-The unnecessary wake-up calls for SystemC processes.

This includes any call for a process that does not change
the final state of the system in a given simulation clock
cycle.

2-The unnecessary evaluation of outputs whose inputs
did not change. This includes executing portions of code in
a process that do not change the final state of the system at
the end of the simulation clock cycle.

The first problem has been addressed before in [1]. The
solution presented needs to explicitly specify dependency
information for module I/Os. The user has to manually
trace signal dependencies (i.e. which process outputs
depend on which process inputs), and introduce new lines
of code in the given process to communicate the
dependency information to the scheduler. Since the
standard SystemC definition does not understand this new
syntax, the authors in [1] introduced a new SystemC
implementation (called FastSysC) with non-standard
definition.

In this paper we present a new approach for handling
unnecessary wake-up calls, while at the same time solving
the problem of unnecessary evaluation of outputs. The
proposed approach uses process splitting to solve the
above mentioned problems. In Section II, we present an
overview of simulation in SystemC 2.1 and outline the
inefficiency in the scheduling algorithm. Section III
describes the solution presented in [1]. Section IV presents
the idea of process splitting as a remedy for the
inefficiency in the SystemC 2.1 scheduler. Section V

978-3-9810801-2-4/DATE07 © 2007 EDAA

introduces a new tool called SplitPro, and describes the
rules used in the tool to construct signal dependency trees.
Experimental results and comparisons of performance
between original SystemC engine and FastSysC with and
without process splitting are shown in section VI. Section
VII ends with the conclusion.

II. SIMULATION IN SYSTEMC

The scheduler in the SystemC engine is responsible for
executing the functionality part associated with each
module. The functionality of each module is wrapped in
processes which are sensitive to a given set of signals.
When the value of a signal is changed, an event is
triggered; this event will resume the execution of all the
processes which are sensitive to this signal [2]. The
SystemC 2.1 language reference manual [3] proposes a
scheduling scheme that can be used to implement the
SystemC scheduler. This scheduling scheme can be
changed as long as the changes are transparent for any
given system running on the engine or on the SystemC 2.1
reference simulator.

A process in a module can be registered with the
scheduler as being sensitive to a set of signals. Whenever a
signal is changed, a request to update the value of this
signal is added to the set of update requests. After the
signal is updated all the processes sensitive to this signal
are moved to a set called the set of runnable processes.
This set represents all the processes that should be
executed simultaneously by the SystemC engine. The
order in which processes are run is undefined [3].
Moreover, the scheduler does not try to find any optimal
order to run the processes. When a process updates a signal
it will add a request to the set of update requests, which in
turn may add a new process to the set of runnable
processes and so on. This is called a delta cycle. A delta
cycle can be thought of as a very small step of time within
the simulation, which does not increase the user-visible
time. Multiple delta cycles can occur at a given time point.
When a signal update occurs, other processes do not see
the newly updated value until the next delta cycle.

The inefficiency in SystemC Scheduler
Because processes are run directly from the set of

runnable processes, in some cases unnecessary execution
of processes from the set of runnable processes may take
place. For a system as the one shown in Figure 1, process
W writes to the signal Wout. Processes X and Y are
sensitive to this signal so they are added to the set of
runnable processes when Wout changes. A cycle appears
between the two processes X and Y: X writes to Xout1 to
which Y is sensitive, and Y writes to Yout to which X is
sensitive.

It may appear that X will keep on waking-up process Y
through Xout1 and then process Y will wake-up X through
Yout and so on. However, this should not happen as it is an

unacceptable behavior for most systems. What will happen
is that after some cycles Xout1 and Yout will reach a stable
state and will not be changed any further. In this case X
and Y will be removed from the set of runnable processes
and simulation will continue.

TABLE I

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 1

Delta
Cycle

No

Set of runnable
processes Set of update requests

1 X,Y Xout1(final), Xout2(transit), Yout
(transit)

2 X,Y Xout1(final), Xout2(transit), Yout
(final)

3 X Xout1(final), Xout2(final)

Let us assume that Xout1 is a function of Wout, Xout2 is

a function of Yout, and Yout is a function of Xout1 and
Wout. When W updates the signal Wout, both processes X
and Y are added to the set of runnable processes.
According to our assumptions on signal dependencies, the
execution of processes will follow the following sequence:
− When X is executed in the first delta cycle, it will write

the final value of Xout1 and a transit value in Xout2. Y
is executed in the same delta cycle, however it will not
see the updated value of Xout1 until the following delta
cycle. Therefore, Y will write a transit value to Yout
causing X to be called again in the second delta cycle.

− In the second delta cycle Y will write the final value for
Yout, and X will run again writing a final value in
Xout1 and a transit value in Xout2.

− In the third delta cycle, X will write the final value in
Xout2.

It can be noticed from Table I that there was no need to

execute Y in the first delta cycle or X in the second delta
cycle. This is the problem of unnecessary wake-up calls.
Moreover, there is no need to update Xout2 and Yout in
first delta cycle or Xout1 in the third delta cycle. This is the
problem of unnecessary evaluation of process outputs
(when X is executed, both Xout1 and Xout2 are evaluated
each time which is not needed).

X Y

W

Xout2

Xout1

Yout1

Wout1

Figure 1. A system with two codependent processes

III. FASTSYSC ENGINE

The problem mentioned in section II was outlined before
in [1]. The authors presented the FastSysC engine that
overcomes the problem of unnecessary wake-ups of
processes. The FastSysC engine also contains a number of
other refinements that help in speeding up simulation.

A developer describing a system for the FastSysC
engine must provide signal dependency information. This
dependency information must be written inside the
SystemC code of the described system. When the
scheduler runs, it knows which processes depend on which
from the signal dependency information and unnecessary
processes executions are skipped.

FastSysC works well in avoiding unnecessary wake-up
calls. It suffers however from the following drawbacks:

1. The user must manually trace and extract signal
dependencies,

2. The user must update the original code with the
dependency information,

3. The augmented code is in non-standard SystemC
notation and therefore will only run using a special
SystemC implementation (FastSysC).

Although the FastSysC engine showed faster
simulations than the SystemC 2.1 reference simulator, it
still suffers from the problem of unnecessary code
evaluations as can be seen from Table II.

TABLE II

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 1
RUNNING ON FASTSYSC ENGINE

Delta
Cycle No

Set of runnable
processes Set of update requests

1 X Xout1(final), Xout2(transit),
2 Y Yout (final)
3 X Xout1(final), Xout2(final)

IV. PROCESS SPLITTING

In this work, we propose a solution to the problems of
unnecessary wake-up calls as well as unnecessary

evaluation of processes outputs. The proposed solution is
based on process splitting. In order to split a process, the
I/Os should allow for the splitting of the process into two
or more processes which, together, will behave exactly like
the same original one.

Assume process P has a set of inputs I to which it is

sensitive and a set of outputs O. Process P can be split if
and only if there exists an element Oj in O which is
function of a subset Ik of I. For the splitting to break a
cycle or to introduce an improvement, Ik should not be
equal to I, otherwise the splitting will result in adding the
overhead of scheduling a new process.

In order to split process P, first the set of inputs I to this
process and the set of outputs O are identified. A
dependency tree is built for each element in the output set
O. The inputs I are then searched one by one in this
dependency tree to find the subset of inputs which affects
the evaluation of the output.

When an output Oj of a process P is found to be function
in a subset IK of the input set I, a new process P_Oj is
created with an input set IK and an output P_Oj. The
process P_Oj will only contain code that evaluates the
output Oj.

These steps are repeated for each output so that any
given process is broken into the largest possible number of
smaller processes, each new process containing only code
that evaluates its own output. If we apply the above on the
simple system in Figure 1 with the dependency relation
mentioned in Section II, the output system will look like
the one in Figure 2. Note how the cycle disappeared from
the system which can now be run on any SystemC engine.

TABLE III

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 2 RUNNING ON
 THE SYSTEMC 2.1 REFERENCE SIMULATOR

Delta
Cycle No

Set of runnable
processes Set of update requests

1 X_out1,Y Xout1(final),Yout (transit)
2 X_out2,Y Xout2(transit), Yout (final)
3 X_out2 Xout2(final)

If this system is run on a SystemC engine with a

scheduling scheme as the one proposed in the SystemC 2.1
language reference, the execution of processes will
produce the update requests shown in table III. The
unnecessary output evaluations have been removed but
unnecessary calls to processes still exist. It is however
easy now to determine the order of process execution
based on the connectivity of the modules. The SystemC
engine can examine the connectivity of modules and
figure out the optimum order of process execution. The
processes are ranked according to their place in the
dependency graph. Whenever a process that depends on

Figure 2. The system of Figure 1 after applying
process splitting

X_out2

Y

W

Xout2

Xout1

Yout1

Wout1
X_Xout1

another process is being scheduled in the same delta cycle
the process with higher rank will not be called.

Figure 3 shows the dependency graph of the system we
are using as our example. At the beginning of each delta
cycle, dependency check is applied. The scheduler will
find in the first delta cycle that processes Y and X_out1 are
scheduled in the same delta cycle. Y has a higher rank than
X_out1, so process Y will not be called. The same scenario
will take place in the second delta cycle where X_out2 will
not be called. Table VI demonstrates the execution of delta
cycles for the system of Figure 2 when run on a SystemC
engine aware of the dependency between processes.

TABLE IV

DELTA CYCLES DETAILS OF THE SYSTEM IN FIGURE 2 RUNNING ON
 A SYSTEMC DEPENDENCY AWARE SIMULATOR

Delta
Cycle

No
Set of runnable processes Set of update requests

1 X_out1, Xout1(final)

2 Y Yout (final)

3 X_out2 Xout2(final)

Figuring the process dependency graph as well as

signals dependency graph is not always straight forward.
In some cases extracting dependencies may fail. In such
scenarios processes are not split and no process calls are
skipped. Moreover, it is not necessary to generate one
process dependency tree for the whole system.
Dependency trees can be built in an incremental way
where the start is a group of disconnected trees and,
whenever possible, the trees are connected together and
ranked. The concept of process dependency presented here
is very close to the concept presented in [1].

V. SPLITPRO TOOL

The concept of process splitting presented in section IV
has been implemented in a tool called SplitPro, which

parses a SystemC module and generates another SystemC
module with the same inputs, outputs and internal signals.
The SplitPro tool may split a process to a number of
smaller processes if this will result in faster simulation. To
do this, the tool needs to construct a dependency tree for
all the outputs of the system. The dependency tree is
generated by parsing the SystemC module according to the
rules described next.

1-Direct Dependency:

Direct dependency is the simplest form of signal
dependency. It appears in a simple assignment statement:

1. X is said to be dependant on each and every
variable appearing in expr1:

X=expr1;

2- First Level of Indirect Dependency:

The 1st level of indirect dependency appears in
execution control statements as follows:

1. If statements: X is said to be dependant on each and
every variable appearing in expr1, expr2 & expr3:

if(expr1)

X=expr2;
 else

X=expr3;

2. For loops: X is said to be dependant on each and

every variable appearing in expr1, expr2, expr3 &
expr4:

for(expr1;expr2;exrp3)
 X=expr4;

3. While loops: X is said to be dependant on each and

every variable appearing in expr1 and expr2:

While(expr1)

 X=expr2;

4. Do-While loops: X is said to be dependant on each

and every variable appearing in expr1 and expr2:

do

 X=expr2;
 While(expr1)

5. Switch-Case statements: X is said to be dependant

on each and every variable appearing in expr1,
constant-expr2 & expr3:

X_out1

Y

W

Xout1

Wout

X_out2

Yout

Figure 3. The dependency graph of processes

Rank 4

Rank 3

Rank 2

Rank 1

Xout2

switch (expr1)
case constant-expr2 :

 X=expr3;

3- Second Level of Indirect Dependency:

The 2nd level of indirect dependency appears in
jump statements which are controlled by an execution
control statement. In such cases, X is said to be dependant
on each variable appearing in the execution control
statement and the execution control statement controlling
jump statement. i.e. X depends on every variable in expr1,
expr2, … to expr5:

For(expr1; expr2; expr3){
 X=expr4;
 If(expr5)
 Break or continue or
return or goto;
}

The SplitPro tool analyzes a given SystemC module to

determine the inputs, outputs and processes of that module.
It also determines which processes write to which output
ports. The tool then determines which outputs are
functions of which inputs. If a process can be split
according to the rules mentioned in section IV, the tool
generates a new module with large processes split to
smaller ones. For example, assume a module with two
inputs Z and AbortProcess and two outputs X and Y.
Process Pxy updates the values of both X and Y whenever
Z or AbortProcess changes. A snippet of the Pxy process is
shown in Listing 1.

Listing 1. Process Pxy which evaluates both X and Y

SplitPro starts with the output signals as roots for
dependency trees. Nodes are added to the tree according to
the rules listed above. New nodes are added to the tree
through a number of iterations over the system code until
no more nodes can be added. Figure 4 shows the
dependency tree that is generated for X. During the first
iteration on the code (see Listing 1), the tool will find that
X appears in a direct dependency statement. A, B & C are
therefore added as children nodes to X. The tool will then

act on A, B & C to find other dependencies in the same
way as with X and so on. The resulting dependency tree
shows that X depends on the signals Z and AbortProcess.
However a similar dependency tree for Y will show that Y
depends only on Z. This means that there is no need to
reevaluate Y when AbortProcess is triggered. Pxy can
therefore be split into two processes: Pxy_x which
evaluates X and is sensitive to Z and AbortProcess, and
Pxy_y which evaluates Y and is sensitive to Z only.
Listing 2 shows process Pxy after splitting.

Listing 2. Process Pxy split to processes Pxy_x which
evaluates X and Pxy_y which evaluates Y.

The SplitPro tool has the following advantages:
1- SplitPro is capable of extracting the dependency

information automatically
2- The generated code is in standard SystemC. It can

be compiled using the SystemC 2.1 reference
simulator or the FastSysC engine.

3- The tool is capable of inserting the dependency
information to the system description in case this
feature of the FastSysC engine will be used.

4- Process splitting opens the door to parallel
simulation of SystemC modules on multiprocessor
systems [4].

VI. EXPERIMENTAL RESULTS

We used the same test bench used by the FastSysC team
to test their engine, which is an Alpha super scalar

A
B

C

X

i
Bus
Size

Z AbortProcess

Figure 4. Dependency tree of X

SC_METHOD(Pxy){
 For(i=0;i<BusSize;i++)
 Y=Z[i] * Z [i];
 X=A+B *C;
 while(i<BusSize){

 A+=Z[i++];
 if(AbortProcess)
 break;
 }
}

SC_METHOD(Pxy_x){
 X=A+B *C;
 while(i<BusSize){

 A+=Z[i++];
 if(AbortProcess)
 break;
 }

}

SC_METHOD(Pxy_y){
 For(i=0;i<BusSize;i++)
 Y=Z[i] * Z [i];

}

processor. This processor is able to execute Tru64 Alpha
binaries. We randomly selected five alpha binaries to
calculate their simulation time and took the average.

The Alpha processor contains 9 processes. Out of these,
only 5 processes could be split using the SplitPro tool. A
limitation in the SplitPro tool is that it cannot track signal
dependences across more than one function or across more
than one process. Of the five processes that were
successfully split, four showed significant reduction in
execution time. The fifth process actually increased in
simulation time after splitting. This process is sensitive to
four inputs and writes to four outputs. It was split into four
processes, each one sensitive to two inputs and writes to a
single output. A particular signal is a common input to all
four outputs. Whenever this input changes, all four
processes are scheduled to run which is not as efficient as
evaluating the outputs in the original process. This shows
that, in some cases, process splitting actually increases
simulation time instead of decreasing it.

Figure 5 shows the relative gain in execution time
achieved by the processes that were successfully split
while boosting performance. Four different simulations
were performed and compared: two on a SystemC 2.1
reference simulator (with and without process splitting),
and two on the FastSysC engine (again with and without
splitting).

0

0.2

0.4

0.6

0.8

1

1.2

Reference Reference Split FastSysC FastSysC Split

Engine

No
rm

al
iz

ed
 T

im
e

Figure 5. Simulating on SystemC 2.1 reference simulator and FastSysC

Simulator with and without process splitting

Process splitting achieved a speed gain factor of 15%
when run on the reference simulator engine and a speed
gain factor of 23% when run on the FastSysC engine.

VII. CONCLUSION

In this work we have proposed a novel solution to the
problem of unnecessary wake-up calls in SystemC that can
manifest themselves in some situations because of the
presence of I/O loops. Splitting a process into 2 or more
processes can potentially break these loops and improve
simulation speed. Furthermore, process splitting also

addressed the issue of unnecessary code evaluation leading
to further speed improvements. Signal dependencies are
needed to properly split a process. The SplitPro tool
automatically traces signal dependencies and generates the
split processes. The generated code is in standard SystemC
notation, and does not therefore require a special engine to
run. When applied on a SystemC description of an Alpha
super scalar processor, process splitting achieved up to
23% speed improvement on the split processes.

REFERENCES
 [1] Pérez, D. G., Mouchard, G., and Temam, O. 2004. A New

Optimized Implementation of the SystemC Engine Using Acyclic
Scheduling. In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1 (February 16 - 20, 2004).
Design, Automation, and Test in Europe. IEEE Computer Society,
Washington, DC, 10552.

[2] SYSTEMC: FROM THE GROUND UP, By David C. Black and
Jack Donovan. Eklectic Ally, Inc.

[3] Draft Standard SystemC Language Reference Manual, April 2005.
[4] Willis, J., Li, Z., and Lin, T. 1995. Use of embedded scheduling to

compile VHDL for effective parallel simulation. In Proceedings of
the Conference on European Design Automation (Brighton,
England, September 18 - 22, 1995). European Design Automation
Conference. IEEE Computer Society Press, Los Alamitos, CA, 400-
405.

[5] Rissa, T., Donlin, A., and Luk, W. 2005. Evaluation of SystemC
Modelling of Reconfigurable Embedded Systems. In Proceedings of
the Conference on Design, Automation and Test in Europe - Volume
3 (March 07 - 11, 2005). Design, Automation, and Test in Europe.
IEEE Computer Society, Washington, DC, 253-258.

[6] Wang, Z.; Maurer, P.M., "LECSIM: a levelized event-driven
compiled logic simulator," Design Automation Conference, 1990.
Proceedings. 27th ACM/IEEE , vol., no.pp.491-496, 24-28 Jun 1990

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

