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Abstract

Separation of HW and SW design flows represents a critical as-
pect in the development of embedded systems. Co-verification be-
comes necessary, thus implying the development of complex co-
simulation strategies. This paper presents a refinement flow that de-
lays as much as possible the separation between HW and SW con-
current entities (threads), allowing their differentiation, but pre-
serving an homogeneous simulation environment. The approach
relies on SystemC as the unique reference language. However, Sys-
temC threads, corresponding to the SW application, are simulated
outside the control of the SystemC simulation kernel to exploit the
typical features of multi-threading real-time operating systems run-
ning on embedded systems. On the contrary HW threads maintain
the original simulation semantics of SystemC. This allows design-
ers to effectively tune the SW application before HW/SW partition-
ing, leaving to an automatic procedure the SW generation, thus
avoiding error-prone and time-consuming manual conversions.

1. Introduction
The always increasing complexity of embedded systems have

induced designers to join HW and SW design phases by defin-
ing efficient methodologies relying on the concept of HW/SW
co-design [1, 2, 3, 4, 5, 6, 7]. They propose techniques for si-
multaneous consideration of HW and SW parts within the de-
sign process. Co-design flows start generally at system level,
where the embedded system is described by a set of untimed func-
tional processes communicating by means of high-level transac-
tions. Then, after functional validation, HW/SW partitioning takes
place and HW/SW co-simulation strategies are adopted to allow
the co-verification of the partitioned system [4, 6, 8, 9, 10]. Early
co-simulation approaches require to set up complex heterogenous
environments where HW and SW parts are executed by using dif-
ferent simulators [8, 9]. This heterogeneous style is sub-optimal
in terms of simulation performance and easiness of integration, but
it was the only possible choice when VHDL or Verilog simulation
was the highest possible level of abstraction for HW simulation.

On the contrary, homogenous environments, like the ones pro-
posed in [1, 2, 11], use a single engine for the simulation of both
HW and SW components, thus simplifying the design modeling.
The Ptolemy [1], Polis [2] and Statemate [11] environments are pi-
oneering works in that direction. However, they are suitable only
in a very initial phase of the design, since they are based on formal
models of computation that do not provide designers with support
for easily moving towards the commercial RTL and gate-level syn-
thesis tools generally adopted in the HW refinement flow.

To overcome such a limitation, more recent approaches use
system level description languages (SLDLs) such as SpecC [12]
or SystemC [13], that can be adopted throughout the refinement
steps from system level to RTL. In particular, the advent of design
flows based on SystemC allowed the definition of efficient semi-
homogeneous approaches [4, 10, 14, 15]. They are homogeneous
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from the language point of view, since both HW and SW are de-
scribed by using C++, but still heterogenous from the simulation
point of view, since HW and SW are generally executed by using
different simulators: the SystemC simulation kernel for the HW
components and an instruction set simulator (ISS), or a more/less
detailed CPU model able to execute SW, for the SW programs. On
the contrary, the adoption of SystemC as the reference language
for modeling both HW and SW components definitely simplifies
the implementation of the initial system-level model as well as
the subsequent HW/SW partitioning. However, although the lat-
est versions of SystemC (SystemC2.x) include some system-level
oriented constructs (e.g., communication channels or process syn-
chronization primitives), SystemC is still based on typical hardware
design requirements like signals, clocks, registers, parallel syn-
chronous and asynchronous processes (i.e., concepts known from
hardware description languages like VHDL and Verilog). Thus,
SystemC offers little support for the embedded system designer,
who wants to include the dynamic real-time behavior, typical of
embedded SW, in the system model. In particular, while HW re-
finement with SystemC is supported by commercial multi-level
design tools [16], SystemC lacks the necessary constructs to pro-
vide SW refinement. Besides, SystemC does not support thread
priority assignment, because its simulator does not offer all the
necessary functions usually found in a real-time operating system
(RTOS), such as preemption or priority scheduling. This represents
a strong limitation for SystemC-based co-design approaches, con-
sidered that embedded software now routinely accounts for 80% of
embedded system development costs [17].

Some works [3, 18, 19, 20, 21] have been proposed to over-
come the previous limitation by integrating RTOS capability in the
C++/SystemC design flow, to improve the support to SW refine-
ment. In [3] the authors present SoCOS, a system-level design
environment for modeling and simulating embedded system. In
particular, a C++ library is proposed that offers the designers with
services analogous to an operating system (OS) in SW design. In
this way, real-time aspects can be gradually introduced and SW can
be functionally tested in combination with HW. However, this ap-
proach requires to use a proprietary simulation engine and it needs
manual refinement to get the SW code. In [18] a method is pro-
posed for automatic generation of application-specific OSs and au-
tomatic targeting of application SW. The OS generation starts from
a very small OS kernel. Then, OS services, which are specific to
the application and deduced from dependencies created by the sys-
tem specification, are added to the kernel to construct the whole
OS. However, no methods for embedded SW code generation are
described. In [19] the authors present a method for systematic
embedded SW generation that reduces the SW generation cost in
a platform-based HW/SW co-design methodology. In particular,
C++ SW code is automatically generated from SystemC processes.
Such an approach relies on the overloading of a subset of SystemC
constructs. However, it imposes code modification when SystemC
construct not supported are used in the original description. Auto-
matic embedded SW generation is addressed also in [20], where a
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Figure 1: Position of the proposed refinement flow in a tradi-
tional SystemC-based HW/SW co-design approach.

method is proposed to refine an SLDL specification into C code,
after HW/SW partitioning.

The previous works provide valuable methods for supporting
SW refinement, but they must be applied after HW/SW partition-
ing has been decided. This prevents an efficient evaluation of dif-
ferent HW/SW configurations. To facilitate HW/SW partitioning,
a different approach is presented in [21]. The authors propose a
SystemC refinement methodology that focuses on using SW ab-
straction levels to enhance high-level embedded SW modeling sup-
port. This is achieved by encapsulating RTOS functionalities in a
SystemC-RTOS interface. Besides, the methodology allows to eas-
ily move threads from HW to SW and vice versa without affecting
intermodule communications. However, the high flexibility of such
an approach is paid in term of simulation time overhead, since the
simulation infrastructure is quite complex. In fact, to allow the
RTOS scheduling of SW threads SystemC-specific function calls
are translated into appropriate RTOS-specific function calls by an
opportune interface and an ISS is encapsulated in SystemC.

In this paper, we propose a simpler SystemC-based co-design
approach. Early system-level evaluation of different HW/SW con-
figurations can be carried out in a homogeneous SystemC envi-
ronment, without the need of introducing complex co-simulation
frameworks relying on different simulators for HW and SW
threads. Besides, it provides designers with support for embed-
ded SW generation and tuning of SW threads by exploiting multi-
threading RTOS features. This is obtained by linking SystemC
modules corresponding to SW threads to a C++ library that over-
rides SystemC constructs to remove the SystemC simulation ker-
nel, and let the SW threads to be handled by the underlying RTOS.
In this way, HW threads maintain the original simulation seman-
tics, while SW threads are simulated outside the control of the Sys-
temC simulation kernel. This allows to refine and validate the SW
threads synchronization without time-consuming and manual con-
version from SystemC to C++ code.

It is worth noting that the proposed approach is not intended for
performance evaluation, which is, indeed, the aim of co-simulation
strategies that operate on detailed RTL HW descriptions and SW
applications running on instruction set simulators or real boards.
On the contrary, our refinement flow is intended to be used at sys-
tem level before co-simulation takes place, and its main goals are:

• simplifying HW/SW partitioning without the need of changing
the code of HW/SW modules;

• simplifying the embedded SW generation and tuning such that
the obtained code could be as close as possible to the one that
will run on the final embedded system.

Figure 1 shows the position of the proposed refinement flow in a
traditional SystemC-based HW/SW co-design approach.

The paper is organized as follows. Section 2 summarizes the
SystemC execution model highlighting why the SystemC simula-

tion kernel is not suited for SW refinement. Section 3 describes the
proposed refinement flow. Section 4 presents how SystemC con-
structs have been overloaded to replace the SystemC simulation
kernel and allow the support of RTOS multi-threading features in
the proposed refinement flow. Section 5 describes how the SystemC
semantics of HW modules have been preserved after the removal
of the SystemC simulation kernel. Section 6 explains how the pro-
posed SystemC-RTOS mapping allows the automatic generation of
embedded SW and its tuning. Section 7 presents experimental re-
sults. Finally, Section 8 is devoted to concluding remarks.

2. SystemC Execution Model
The SystemC library allows us to model the behavior of reactive

systems by defining synchronous and asynchronous processes. A
synchronous process is executed only at specific instances of time
determined by the clock edge to which the process is sensitive.
On the contrary, an asynchronous process is sensitive to generic
events (statically declared in a sensitivity list or dynamically gen-
erated during the simulation) and its execution is resumed each
time one of such events occurs. Independently from these obser-
vations, there are two kinds of processes in SystemC: methods and
threads declared by using, respectively, the keyword SC METHOD

and SC THREAD1.
A method is triggered when the SystemC simulation kernel calls

the function associated with the process instance according to its
sensitivity list. When a method process is triggered, the associated
function executes from beginning to end, then it returns control
to the kernel. A method process cannot be terminated and cannot
include calls to wait() functions for suspending its execution. On
the contrary, a function associated with a thread process is called
only once by the kernel (except when a clocked thread process is
reset, in which case the associated function may be called again).
A thread can call a wait() function for suspending its execution
until the kernel resumes the thread, according to its sensitivity list.

The SystemC simulation kernel relies on a co-routine execution
model, also known as co-operative multitasking2. Process instances
(either methods or threads) execute without interruption, only a sin-
gle process can be running at any one time, and no other process can
execute until the currently executing process has yielded control to
the kernel. Thus, a process cannot pre-empt or interrupt the execu-
tion of another process as an OS might. Because transfer of control
between processes only happens when SC THREAD processes call
wait(), or, equivalently, when SC METHOD processes return con-
trol to the simulator, SystemC models can be written without con-
cern that a process may be pre-empted involuntarily. Specifically,
the code within a method or delimited by two wait() statements
in a thread can safely assume that no other processes have modified
any variables which are also accessible to other threads.

Such a co-routine execution model is suited for the simulation of
concurrent HW modules, but it is not for SW refinement and syn-
chronization. Thus, using SystemC for describing mixed HW/SW
embedded systems is profitable only at system level, when HW and
SW parts are not defined yet. After HW/SW partitioning, SystemC
should not be used for SW functionalities anymore. In fact, the Sys-
temC co-routine execution model prevents, a priori, race conditions
and synchronization problems. On the contrary, these may happen
when the SW processes are directly executed on a multi-threading
RTOS without the SystemC kernel. Moreover, the behavior of the

1SC CTHREADs can also be declared, but the only difference be-
tween them and SC THREADs is that an SC CTHREAD is sensitive
on a clock whereas an SC THREAD process can be sensitive on any
event.
2This is true for both the Quick Threads and the Posix Threads
libraries supported by SystemC.
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Figure 2: Proposed refinement flow for co-designing HW and SW threads.

RTOS priority-based pre-emption cannot be evaluated. Thus, by
using SystemC, designers cannot evaluate neither the correctness
of the synchronization mechanism, that they must introduce in the
SW functionalities, nor the RTOS impact on the whole system. Be-
sides, SystemC simulation cannot takes benefits from running on
a multi-threading RTOS, possibly hosted by a multi-processor sys-
tem, since SystemC processes are executed sequentially on a single
processor. Thus, to use SystemC code for efficiently modeling and
evaluating embedded SW, avoiding the previous drawbacks, SW
threads must be executed out of the control of the SystemC simula-
tion kernel as described in the next sections.

3. HW/SW Refinement Flow
Figure 1 shows a traditional SystemC-based HW/SW co-design

flow. At system level, the system functionality is represented by
a set of concurrent threads managed by the SystemC simulation
kernel without distinction between HW and SW threads. Then,
after the HW/SW partitioning, the SystemC code describing SW
functionalities, is mapped in a pure SW program (e.g., C/C++)
scheduled by the selected RTOS which runs on an ISS of the tar-
get processor. In fact, as reported in the previous section, SW re-
finement and synchronization evaluation cannot be profitable per-
formed under the control of the co-routine execution model of the
SystemC kernel. On the contrary, SystemC modules represent-
ing HW components are refined in synthesizable RTL descriptions
and keep to be simulated by exploiting the SystemC kernel, thus
proceeding along the traditional HW design flow. However, af-
ter partitioning, the SW and the HW flows cannot be totally dis-
joint, since embedded systems are target-specific systems where the
HW/SW synergy is extremely strong. Thus, a co-simulation frame-
work is generally used to allows a profitable cooperation between
SW engineers and HW designers during the subsequent refinement
steps and performance analysis. However, the introduction of co-
simulation makes difficult changing the HW/SW partitioning if it
results to be inadequate. In fact, moving threads from SW to HW
may require heavy code modifications of the HW/SW interface, and
manual conversion from C++ processes, that possibly call RTOS
functions, to SystemC threads, or vice versa.

Thus, we propose the co-design approach shown in Figure 2 to
provide designers with a smooth HW/SW refinement flow that aids
an efficient exploration of different HW/SW configurations and al-
lows to tune the SW synchronization mechanism exploiting the
multi-threading feature of the underlying OS. The starting point
is represented by a set of SystemC concurrent threads representing
the system-level description of the design. The first step of the re-
finement flow is completely automatic. It consists of replacing the
SystemC library (systemc.h) with a C++ library (systemc2os.h)
that we have developed to override the SystemC constructs and ex-
clude the SystemC kernel from the simulation environment. The
systemc2os.h library exploits only C standard functions and sys-
tem calls for synchronization provided by multi-threading RTOS.
In this way, the SystemC code modeling the unpartitioned system-

level design is unchanged, but SystemC processes become threads
of the underlying OS. The simulation is driven by a simple thread
manager that preserves the behavior of threads according to the
SystemC semantics.

The first benefit deriving from substituting systemc.h with
systemc2os.h is that the co-routine execution model of the Sys-
temC simulation kernel is removed. Thus, threads can be concur-
rently executed, possibly on a multi-processor system. Concurrent
execution is a mandatory condition for addressing SW refinement
issues like mutual exclusion, deadlock avoidance, priority assign-
ment for thread scheduling, etc. Moreover, it is worth noting that
the removal of the co-routine execution model may reflect into a
simulation speed-up, with respect to the original SystemC simula-
tion. This is particularly evident when threads execute CPU-bound
computations (e.g., for modeling multimedia systems that require
complex signal processing). In fact, in this case, the OS sched-
uler can distribute the load on different CPUs, and the preemption
mechanism guarantees that ready threads do not have to wait the
resume of stopped threads (that happens in sequential execution).
However, the simulation of systems composed of many I/O bound
threads with little computation can be slowed down. This is due
to the presence of the thread manger which exploits OS system
calls causing many time-consuming switches between user and ker-
nel execution modes. Thus, the overhead introduced by the thread
manager is predominant with respect to the little computation load
of running threads. Such considerations will be further examined
in the experimental result section.

At step 2, HW/SW partitioning takes place. Different HW/SW
configurations can be effortlessly evaluated. In fact, moving a
thread from HW to SW (or vice versa) requires only to discon-
nect (connect) the thread from (to) the thread manager. Such an
operation consists of modifying just one line of code in the thread
declaration. Thus, HW threads keep to be controlled by the thread
manager according to the SystemC semantics, while SW threads
are handled by the underlying multi-threading OS. Thus, SystemC
code corresponding to SW threads is pure C++ code, indeed. Then,
time-consuming and error-prone manual conversions from Sys-
temC module to C++ classes are completely avoided. At this point,
the majority of SW refinement steps can be efficiently performed
without the need of complex co-simulation strategies. In particular
the synchronization mechanism can be tuned and evaluated, since
SW threads are not executed in co-routine mode.

Once HW/SW partitioning is satisfactory, co-simulation can be
introduced at step 3. Thus, HW threads keep to be simulated under
the control of the thread manager, while SW threads can be mapped
on the target ISS+RTOS environment. This allows SW engineers
to complete SW refinement and tune the RTOS-dependent features.
Moreover, drivers, implementing an ad-hoc HW/SW interface, can
be introduced. After step 3, HW threads can be refined in an RTL
description for the subsequent synthesis steps, while SW can be
optimized according to traditional SW engineering flows.
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SC_MODULE(transmit){
sc_in<sc_int<32> > in_port;
sc_out<sc_int<32> > out port;
void run();
SC_CTOR(transmit){
SC_THREAD(run);
sensitive << in_port;

}
}

Figure 4: A simple SC MODULE.

4. SystemC to OS Mapping
The mapping of SystemC constructs into C++ OS-dependent

constructs has required to find a way for converting both syntax
(SystemC keywords), and semantic aspects (process execution, sig-
nal updating, synchronization, communication, etc.). The syntax
conversion has been performed by using the preprocessor direc-
tive #define, while the semantic issues have been addressed by
defining new functions generally relying on primitives provided by
multi-threading OSs. The resulting systemc2os.h library is inde-
pendent from the underlying OS, since it uses symbolic name for
defining generic functions that can be specialized by opportunely
mapping them on OS-dependent functions through the preproces-
sor directive #define. The library includes:

• a set of preprocessor directive to re-define the SystemC key-
words (e.g., SC MODULE, sc signal, etc.);

• a set of functions used by the thread manager to implement a
synchronization and scheduling mechanism that preserves the
SystemC semantics of HW threads and provides synchroniza-
tion functions for the SW threads.

Figure 3 shows how the main SystemC constructs have been re-
placed in the systemc2os.h library.

4.1 Modules
The SystemC construct SC MODULE (Figure 4) is used to de-

fine the interface of a module and the behavior of its processes.
It declares input and output ports, internal signals, and methods.
Moreover, it includes the declaration of the constructor (SC CTOR)
that defines which methods behave as processes (SC METHOD or
SC THREAD) and the corresponding sensitivity lists. The SystemC
keyword SC MODULE is straightforward substituted by the C++ key-
word struct. On the contrary, the replacement of the construc-
tor is not simply syntactical, but it has required the definition of
three objects, sensitive, sensitive pos and sensitive neg

to manage the three kinds of sensitivity list that can be declared in
SystemC. They implement the operator <<, typically used to define
the sensitivity list of a process, as described in Section 4.5.

4.2 Processes
Processes, that in SystemC are executed sequentially, have been

mapped into threads of the OS. Thus, they can be concurrently
executed. The macro implemented to redefine SC THREADs and
SC METHODSs performs the following operations:

/*The function waits for a broadcast signal from the thread manager to start
the simulation by using a conditional variable. Then the body of the method
is called inside the loop, and it is suspended each time the wait() function
is reached to respect the SystemC semantics.*/
template<class M>
void *sc_method(void *p){

thread_info<M> *my_info;
my_info = (thread_info<M> *)p;
pthread_mutex_lock(&mutex_sched)
pthread_cond_wait(&cond_sched, &mutex_sched);
pthread_mutex_unlock(&mutex_sched);
while(true){
((my_info->i_addr)->*(my_info->i_offset))();
wait();

}
return 0;

}

Figure 5: Startup routine for the redefinition of the SC METHOD

semantics.

• creation of an OS-dependent thread where the process body will
be executed;

• addition of the thread handler to the list used by the thread man-
ager to implement the desired synchronization;

• instantiation of a semaphore associated to the thread for stop-
ping and restarting its execution, respectively, when a wait()

is executed inside the process, and when a signal included in the
sensitivity list of the process changes its value;

• initialization of a structure for the management of the sensitivity
list of the process.

The startup routine of the created thread waits for a broadcast
signal from the thread manager before starting the execution of the
process body. In this way, the execution of processes start concur-
rently when all the corresponding threads have been instantiated.
Moreover, to replace an SC METHOD respecting its semantics, the
startup routine executes the body of the method inside an always-
true loop as shown in Figure 5. Note that, the wait() function has
been redefined as reported in Section 4.6.

4.3 Clocks
Each clock defined in the SystemC module is replaced by an

OS thread. Its startup routine generates the clock waveform and
it accordingly wakes up processes sensitive to the corresponding
clock. Clocks are preserved by step 1 of the proposed refinement
flow. However, at step 2, clocks are used only for HW threads while
they are ignored by SW threads, since they are meaningless for SW
application.

4.4 Ports, Signals and Data Types
Ports and signals have been re-implemented by means of an ob-

ject that instantiates an area on the shared memory to memorize the
port/signal value, and a mutex for preventing race conditions due to
concurrent accesses. Moreover, the redefined version of input ports
(sc in) and signals (sc signal) memorizes the list of threads cor-
responding to processes sensitive to the port/signal itself. Such a
list is used by the thread manager to wake up sensitive processes
when the port/signal value changes. Methods for reading, writing
and binding ports and signals have been also redefined, as well as
a buffering strategy that allows to delay the updating of signal val-
ues to the next clock cycle, as required by the SystemC semantics.
On the contrary, SystemC data types do not exploit functionality
defined in the simulation kernel, thus they have been completely
reused inside systemc2os.h.

4.5 The Sensitivity List
SystemC processes are generally sensitive to ports and sig-

nals. When a port/signal changes its value, the sensitive processes
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/*The function finds the semaphore related to the process to be stopped and
it calls a wait on it.*/
void wait(){

activation_list *is_me;
is_me = find_thread(THREAD_SELF());
SEM_WAIT(is_me->semaphore);

}

Figure 6: Redefinition of the wait() function.

are waked up and they restart the execution from the beginning
of their body (SC METHOD) or from the instruction subsequent to
the wait() that stopped their previous execution (SC THREAD).
Sensitivity lists are declared in the SC MODULE constructor by
means of the SystemC keywords sensitive, sensitive pos or
sensitive neg that have been re-defined in the systemc2os.h

library. By using our library, when a sensitivity declaration is en-
countered in the SC CTOR, every signal and port declared in the sen-
sitivity list adds the corresponding process to the list of processes
that must be waked up when the signal/port value changes.

4.6 Process Suspension
In SystemC, process synchronization is mainly obtained by

means of the function wait(). It must be explicitly called inside
the body of SC THREADs each time a synchronization point is de-
sired. When a wait() is reached, the calling SC THREAD suspends
itself until an event occur. Thus, the wait() function has been re-
defined to call the wait() primitive (SEM WAIT() in Figure 6) of
the semaphore associated to the thread. On the contrary, wait()
functions cannot be used inside SC METHODs. They stop themselves
once the last instruction of their body has been executed. Thus, to
stop the SC METHOD execution, respecting the SystemC semantics,
we explicitly call the wait() function redefined in systemc2os.h

inside the loop implemented in the redefinition of the SC METHOD

keyword (Figure 5).

4.7 TLM Constructs
The SystemC transaction-level modeling (TLM) library is com-

posed of a set of interfaces describing how models can communi-
cate at transaction level. However, the implementation of such in-
terfaces must be defined by the designers, thus they are independent
from the SystemC simulation kernel. For this reason, the mapping
of the TLM constructs is straightforward.

TLM is composed of three abstraction layers. At the highest
layer (level 3 or message layer), the system is described by means
of a set of function calls, as it was pure SW, without using SystemC
active entities (i.e., threads). The communication is obtained by
calling read() and write() functions whose implementation is a
designer task. At level 2 (or transaction layer), the system is com-
posed of a set of SC THREADs communicating through hierarchical
channels. The interface of these channels allows threads to com-
municate by calling blocking or non-blocking get() and put()

functions. The redefinition of such functions inside systemc2os.h
has been enough to allow the removal of the SystemC simulation
kernel without affecting the simulation semantics. Finally, level 1
(or transfer layer) is very similar to RTL. Level 1 descriptions are
clocked cycle-accurate models where the traditional RTL pin inter-
face is abstracted away. Thus, level 1 models are handled by the
thread manager without effort with respect to RTL models.

4.8 The Main Routine
The SystemC simulation starts by calling the sc start() func-

tion inside the sc main() routine. While sc main() has been
simply redefined as the traditional main() function of C pro-
grams, sc start() has been completely rewritten. The new ver-
sion starts, manages and stops the execution of OS threads corre-
sponding to SystemC processes. In particular, sc start() con-

Are simulation cycles
< simulation time?

3) Management of clocks;
waking up of processes
sensitive to clocks

1) Thread yield to allow
thread execution

Are all threads
suspended in

a wait()?

2) Updating of signals;
waking up of processes
sensitive to signals;
simulation cycles++ STOP

Y

N Y

N

Figure 7: Thread manager execution.

nects threads related to HW components to the thread manager,
while it simply starts the execution of threads corresponding to SW
functionality.

5. HW Threads Simulation
After step 1 of the proposed refinement flow, the SystemC simu-

lation kernel is removed, and all threads are connected to the thread
manager. The same happens for HW threads after step 2. Such a
manager preserves the standard SystemC behavior for connected
threads, but it exploits a thread library to concurrently execute
them, instead of using the co-routine execution mode of SystemC.

At the beginning of the simulation, all the threads are suspended
on a conditional variable waiting for a broadcast notification from
the thread manager. When the notification arrives, the threads are
unlocked, and they concurrently compete for being assigned to the
CPU(s). Once the simulation has started, the manager handles the
connected threads as shown in Figure 7. Since the manager is a
thread too, it yields the CPU, by means of the THREAD YIELD()

function, to allow the execution of other threads. Then, when the
CPU is reassigned to the manager, it checks if all the threads related
to SystemC processes have been executed and are suspended on the
corresponding semaphore inside a wait() function. When such a
condition is reached, the manager updates the values of signals and
it wakes up processes sensitive to signals whose value has been
changed. This is obtained by unlocking the semaphores associated
to the thread. Then, the simulation time is advanced and a new
clock edge is generated for each clock defined in the design. This
wakes up processes sensitive to clocks starting a new simulation
cycle. The simulation stops when the simulation time expires.

It is worth noting that during its execution, a thread can be pre-
empted by the OS before it reaches a wait() function, while this
cannot happen for a traditional SystemC process. However, this is
not a problem, since if the thread manager is resumed, it continu-
ously yields the CPU until all threads are suspended in a wait().
Thus, the SystemC semantics is preserved.

6. SW Threads Simulation
The thread manager is used to control only threads related to

HW components. On the contrary, SW threads are simulated by
exploiting the synchronization primitives provided by the underly-
ing OS ignoring the semantics imposed for HW components by the
thread manager. Thus, SystemC code related to SW functionalities
execute like it was a pure C++ program.

The scheduling of SW threads is totally handled by the hosting
OS. These threads ignore clocks and they instantaneously update
signal values that are immediately available for other threads. Thus,
SW threads that were sensitive to the clock are never suspended
and they continuously run. Besides, asynchronous processes, wait-
ing for generic events on a wait(), resume their execution im-
mediately after the event happens without respecting the SystemC
semantics. In this way, the behavior of a SystemC module rep-
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Design SystemC (s.) Step1 (s.) Step2 (s.) Step3 (s.)

switch 120 4140 3900 5721
voip 320 116 109 10256
fr+bus 327 178 174 12658

Table 1: Simulation time.

resenting a SW functionality may be different when systemc.h

is replaced by systemc2os.h. In particular, different behaviors
are observed if designers rely on the SystemC synchronization se-
mantics when they design the system. On the contrary, this does
not happen if designers explicitly add synchronization mechanisms
(e.g., semaphores, monitors, mutexes, conditional regions, etc.)
inside the SystemC code. Thus, designers can easily refine SW
threads and evaluate the effectiveness of the adopted synchroniza-
tion mechanism.

7. Experimental Results
The proposed refinement flow has been evaluated, on an Intel

Xeon Server equipped with four 3MHz CPUs and 4GB RAM run-
ning RedHat Linux 9.0, by using three different systems: an ex-
tended version of the Multicast Helix Packet Switch example dis-
tributed with SystemC (switch), a multimedia embedded system
for transmitting voice over IP composed of a signal generator, an
adaptive differential pulse code modulation coder and some filter-
ing modules (voip), and, finally, two modules of a face recogni-
tion system connected by an AMBA bus (fc+bus). These examples
have been selected since they have different characteristics: switch
is an I/O-bound system with minimal computational effort, voip
is a CPU-bound system with few communication exchanges, and
fc+bus is a CPU-bound system with a medium communication rate
with respect to switch and voip.

Table 1 shows the simulation time computed by adopting the
proposed refinement flow. Column SystemC reports the simulation
time corresponding to the initial SystemC descriptions before step1
takes place. Columns Step1 and Step2 refer to the proposed refine-
ment flow. In particular, they show the simulation time computed,
respectively, after the substitution of the co-routine-based SystemC
kernel with our thread manager, and after the subsequent HW/SW
partitioning. Finally, Column Step3 refers to the simulation time
computed after step3 by using the timing-accurate co-simulation
methodology described in [4].

The comparison between the original SystemC simulation and
the thread manager-based simulation (step1 and step2) shows con-
flicting results for the considered examples. As expected from
the observations reported in Section 3, the overhead introduced
for the thread synchronization by our thread manager is predom-
inant with respect to the little computation time required by the
I/O-bound switch example. Thus, the original SystemC simula-
tion is faster than the multi-threading simulation performed after
step1 and step2, even if the co-routine execution model of SystemC
prevents the concurrent exploitation of the multi-processor hosting
machine. On the contrary, the simulation of the CPU-bound exam-
ples (voip and fc+bus ) takes benefit from the possibility of concur-
rently exploiting the multi-processor hosting machine guaranteed
by our thread manager. Regarding the comparison between the
thread manager-based simulation and the co-simulation proposed
in [4], the simulation time computed after step 1 and step 2 is lower
than the co-simulation time computed after step3 for all the exam-
ples. This emphasizes that exploring different HW/SW configura-
tions according to the proposed refinement flow, before applying
co-simulation, guarantees a sensible time saving, not only from the
point of view of the coding effort, but also for the simulation of the
design under refinement.

8. Concluding Remarks
In this paper, we proposed a smooth refinement flow for HW/SW

co-design that should be applied before co-simulation. Co-
simulation allows an accurate performance evaluation of the whole
design after HW/SW partitioning, but it makes difficult the evalu-
ation of different HW/SW configurations, since moving HW mod-
ules towards SW (or vice versa) generally requires time-consuming
manual modifications. On the contrary, our approach allows de-
signers to model HW/SW embedded systems at system level and
evaluate different HW/SW configurations during partitioning by
using an homogeneous SystemC-based environment. However, the
co-routine execution model of SystemC, which is not suited for SW
refinement, is substituted by a thread manager that respects the Sys-
temC semantics of HW threads, leaving the control of SW threads
to the underlying OS. In this way, SW threads can be refined and
tuned by introducing opportune synchronization mechanisms be-
fore moving towards a co-simulation strategy.
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