
An ILP Formulation for System-Level
Application Mapping on Network Processor Architectures1

Chris Ostler and Karam S. Chatha,
{chrisost, kchatha}@asu.edu

Department of CSE, Arizona State University, Tempe, AZ 85287.

Abstract
Current day network processors incorporate several architec-

tural features including symmetric multi-processing (SMP), block
multi-threading, and multiple memory elements to support the high
performance requirements of networking applications. We present
an automated system-level design technique for application devel-
opment on such architectures. The technique incorporates pro-
cess transformations and block multi-threading aware data map-
ping to maximize the worst case throughput of the application.
We propose integer linear programming formulations for process
allocation and data mapping on SMP and block multi-threading
based network processors. The paper presents experimental re-
sults that evaluate the technique by implementing representative
network processing applications on the Intel IXP 2400 architec-
ture. The results demonstrate that our technique is able to gen-
erate high-quality mappings of realistic applications on the target
architecture within a short time.

1. Introduction
Over the past decade data and voice communication technolo-

gies and the Internet have experienced phenomenal growth. These
developments have been accompanied by an exponential increase
in the bandwidth of traffic flowing through the various networks.
Internet traffic has grown by a factor of four every year since 1997
(doubling every 6 months) [1]. This growth in traffic greatly out-
paces the doubling of processor performance every 18 months as
observed in Moore’s Law. The need for increased performance
in traffic processing, and flexibility for end user customization to
accommodate diverse applications has led to the advent of pro-
grammable network processors (NP) [2]. These processors em-
ploy a variety of architectural techniques to accelerate packet pro-
cessing including symmetric multi-processing (SMP), block multi-
threading, fast context switching, special-purpose hardware copro-
cessors, and multiple memories [2].

Despite the architectural innovations that have been incorpo-
rated in current day NP, very little effort has been devoted towards
making the processors easily programmable. Application devel-
opment on NP requires the designer to manually divide the func-
tionality among threads and processors, and determine the data
mapping on the memory elements. This low-level approach to
programming places a large burden on the developer, requiring
a detailed understanding of the architecture and manual trade-off
analysis between different design alternatives. Consequently, the
current situation leads to increased design time in the best case,
and poor quality designs in the worst case.

The paper addresses application development challenges on
programmable multi-core NP architectures. In particular, we fo-
cus on SMP architectures that support block multi-threading. The
Intel IXP series processors and Applied Micro Circuits Corpora-

1 The research presented in this paper was supported by grants
from the National Science Foundation (Career CCF-0546462 and
CNS-0509540), and the Consortium for Embedded Systems.

Memory Access Time Context
Element Type Capacity (cycles) Switch

Data Mem. Local 2560 B 3 No

Scratchpad Shared 16 KB 60 Yes
SRAM Shared ≤ 256 MB 90 Yes
DRAM Shared ≤ 2 GB 120 Yes

Figure 1. Intel IXP 2400 network processor
tion nP series processors are commercially available examples of
such architectures that together dominate the market place with
over 50% market share [3]. We present an automated, system-level
technique that takes as input an application and NP architecture
specification, and obtains a mapping of the application on the tar-
get architecture such that the worst case throughput is maximized.
We discuss optimization strategies, and present a system-level de-
sign methodology and integer linear programming formulations
incorporating the optimizations. The technique and optimizations
are evaluated by experimenting with representative network pro-
cessing applications, targeting the Intel IXP 2400 NP architecture.

The remainder of this paper is organized as follows: Section 2
gives the necessary background and defines the problem, we present
previous work in Section 3, Section 4 describes the overall design
methodology, Section 5 presents the linear programming based
approach, Section 6 presents the experimental results, and finally
Section 7 concludes the paper.

2. Background
2.1. Intel IXP2400 processor architecture

The Intel IXP 2400 architecture performs packet processing on
eight 32-bit independent block multi-threaded micro-engines op-
erating at 600 MHz, as shown in Figure 1 [4]. The micro-engines
support either 4 or 8 threads. Each thread has its own register
set, program counter, and controller specific local registers. Ev-
ery micro-engine contains 4 KB of instruction store and 640 32-bit
words of local data memory, divided equally among the threads on
the micro-engine. The hardware supports block multi-threading;
fast context switching allows a single thread to do computation
while others wait for an I/O operation.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Figure 2. Optimization by multi-threading
Total Un-amortized Perf.

Design Mapping Accesses Overhead (cc) Overhead (cc) (pkts/
Threads Local Scratch Local Scratch Local Scratch Local S-pad cc)

Single A&B - 70 0 210 0 210 0 1
810

Multiple - A&B 0 70 0 4200 0 0 1
600

Single A&B - 100 0 300 0 300 0 1
900

Multiple - A&B 0 100 0 6000 0 1800 1
825

Multiple A B 25 75 75 4500 75 0 1
675

Table 1. Multi-threading and data mapping
Each micro-engine also has access to three types of external

memory: Scratchpad, SRAM, and DRAM, as shown in Figure 1.
Context switches can be utilized to hide the access time for exter-
nal data memories (but not for local data memories). The DRAM
is used to buffer incoming packets as it has a fast interface (via
DMA) with the media switch fabric that is responsible for receiv-
ing/transmitting the packets from the external environment.

2.2. Application specification
The application is specified as a network of concurrently exe-

cuting processes that are communicating through finite sized (bounded)
and blocking read/blocking write FIFOs, and blocks of abstract
shared memory. The use of this model is not uncommon; as it is
also supported by SystemC.

A block of abstract shared memory is used to store incoming
packets. The packets are added and removed from the shared
memory by the receive and transmit processes, respectively. In
addition to packets, the abstract shared memory blocks can also
include other data items such as arrays or tables that are shared
among processes or are local to a particular process.

The individual FIFOs between two communicating processes
store pointers to respective packet headers in the abstract shared
memory. Each process (other than the source and sink) consumes
one packet pointer, performs its respective computation and out-
puts the packet pointer to the out going FIFO. The overall process
network can be represented as a directed acyclic graph.

2.3. Motivating examples
The worst case throughput of an application is governed by the

throughput of the individual processes when they are mapped to
the target architectures. Specifically, the entire application will be
limited by the process with the lowest throughput. The following
two examples explain the design tradeoffs when mapping an appli-
cation to an architecture, and motivate our optimization strategies
for maximizing the overall throughout of the application.

2.3.1. Multi-threading and data mapping
Let us consider the execution of a single process on a single

processor. In trying to maximize the throughput of this process,
we may either: minimize the time necessary to complete a sin-
gle iteration of the thread; or use multi-threading so that the idle
time caused by memory accesses is hidden by the execution of
other threads. Take for example a process running on the IXP
2400 architecture that executes for 600 cycles to process a packet,
and makes 25 memory accesses to a data structure A that requires
250B of memory, and additional 45 memory accesses to another
data structure B which utilizes 750B of memory.

Figure 3. Process transformations

If we attempt to minimize the time to complete a single itera-
tion, we will assign the data structures to the local memory, as it
has the shortest access time. This introduces an additional 210 cy-
cles (3 cycles for each of the 70 accesses) to the completion time of
the process. As the local data memory accesses cannot be hidden
by a context switch to a different thread, running multiple threads
will not change the throughput of the process. The time between
the output of consecutive packets will be 810 cycles (shown on the
left hand side of Figure 2 and in the first row of Table 1).

Alternatively, we may attempt to maximize the throughput by
utilizing multi-threading. On the IXP 2400 we can launch up to 8
identical threads. However, the local memory of the micro-engine
and the registers are shared equally between the various threads.
The total memory requirements for the 8 threads is 8KB. As the
micro-engine local memory is 2.5 KB, they cannot be mapped to
the local memory, and are mapped to the Scratchpad instead. Such
a mapping introduces additional 4200 clock cycles (60 cycles for
each of the 70 accesses) latency to each thread. This latency can
be amortized by the execution of the 7 co-active threads, as shown
in the right hand side of Figure 2 and the second row of Table 1. In
this manner, a thread completes every 600 cycles, and thus, multi-
threading leads to a 35% performance improvement.

The objective of multi-threading optimization is to hide the
memory access latencies, which may not always be possible. Con-
sider if data structure B is accessed 75 times. A multi-threaded im-
plementation mapping both items to Scratchpad offers no perfor-
mance advantage over a single threaded implementation, as shown
in rows 3 and 4 of Table 1. However, if the data structure A is
mapped on the local memory and data structure B is assigned to
the Scratchpad, then multi-threading again gives a higher through-
put (as shown in the last row of the table).

The benefit of multi-threading is strongly dependent upon the
data mapping. Our technique successfully performs the design
space exploration to select a data mapping that maximizes the ben-
efit of multi-threading.

2.3.2. Process transformations
Let us now examine the effect of process transformations on

the application throughput. Consider an application consisting of
three processes, with execution time of 500, 1000, and 3000 cy-
cles, which will be mapped to an architecture with three proces-
sors. As shown previously, communication time can be hidden
using multi-threading, so we will not consider it at this point.

A simple mapping will assign each process to a processor. The
overall throughput of the application is given by the slowest pro-
cess and is equal to (1/3000). Alternatively, we can alter the pro-
cess network by merging and replicating processes. The 500 cycle
and 1000 cycle processes can be merged together into a single
1500 cycle process that sequentially performs the computation of
the original processes. This reduces the number of processes to
two. Mapping each of these processes to a single processor again

results in the slowest process completing every 3000 cycles. We
then replicate this process to the free processor, so that two in-
stances execute in parallel. Thus, the slowest process will com-
plete twice every 3000 cycles, a 100% performance improvement.
This is illustrated in Figure 3.

Application of these transformations can lead to higher perfor-
mance solutions. However, certain combinations of processes may
require more code memory than is available, and therefore are not
permissible. Our technique generates solutions which exploit the
parallel processing supported on SMP systems.

2.4. Problem definition

2.4.1. Architecture features
Our methodology assumes a SMP based block multi-threaded

architecture, specified by a tuple A〈P ,M〉. P denotes the set
of processors. Each processor p ∈ P is given by another tuple
p〈κ,C〉 where κ(p) is the set of numbers of threads supported by
the processor (i.e. {4, 8} for the IXP 2400), and C(p) denotes the
size of the code memory of the processor. Without loss of gen-
erality we assume that all processors have identical architectural
features. For clarity, we use “memory” to refer to each of the data
memories, and “code memory” to refer to the code memories of
the processors. M denotes the set of memory elements that are
available to the programmer. Each memory element m ∈ M is
given by a tuple m〈C, τa, L〉 where C(m) is the capacity of the
memory, τa(m) is the time required to access the memory and
L(m) is a boolean that indicates whether the memory is local to
a processor. A context switch can be performed when accessing
non-local memory, but not when accessing local memory.

2.4.2. Application characteristics
The process model based application specification is profiled to

obtain timing characteristics for each process and the access fre-
quency for the various data items (which we discuss in Section 4).
The profiled application specification is then captured in an inter-
mediate format given by a tuple N〈J ,F ,S〉.

F is the set of FIFOs. Each FIFO f ∈ F is represented by
a tuple f〈jp, jc, σ〉 where jp is the producing process, jc is the
consuming process and σ is the size allocated for the FIFO. S is
the set of shared memories. Each shared memory s ∈ S is denoted
by a tuple s〈σ〉 where σ is the size of the shared memory.

J is the set of processes. Each process j ∈ J is given by a
tuple j〈τ, S,Dl,Df ,Ds〉. τ (j) is the actual execution time of the
process per packet (excluding memory accesses). This value has
no dependence on the data mapping nor on the number of threads
executed. S is the total code memory required by the process.

Dl(j), Ds(j), and Df (j) are the sets of data items (local to
the process), shared memories, and FIFOs accessed by the pro-
cess, respectively. Each data item d ∈ Dl(j) is given by a tuple
d〈σ, N〉 where σ(d) is the amount of memory required to store the
item and N(d) is the number of times the data element is accessed
during the processing of a packet. Every data item d ∈ D(j) is
used exclusively by a single thread of a single process. Data items
shared between threads or processes will be captured in the set
Ds(j). Each shared memory d ∈ Ds is given by a tuple s〈s, N〉
where s(d) is a shared memory s ∈ S , to which d is assigned and
N(d) is the number of accesses. Each FIFO d ∈ Df (j) is given
by a tuple d〈f, N〉 where f(d) is a FIFO f ∈ F and N(d) is the
number of accesses made to the FIFO. As the application specifi-
cation dictates that each process consume and produce exactly one
token, N(d) will always be 1 for FIFOs.

Figure 4. System-level design methodology

2.4.3. Objective
Given a characterized network processing application N and a

target architecture A, the objective is to obtain a mapping function
I : N → A such that the worst case throughput is maximized.

3. Previous work
Researchers have conducted design case studies [5–8] and pro-

posed programming models [9–11] for multi-processor and block
multi-threaded network processor architectures. However, they
have not presented generalized methodologies for programming
network processors, much less automated techniques for doing so.
Commercial vendors [12] and academia [13, 14] have developed
simulation based performance evaluators for network processors.
Our automated techniques depend on application characteristics
obtained by utilizing such a simulator to drive the optimizations.

Automated techniques for task allocation (including ILP based
approaches [15, 16]) on multi-processor architectures are well re-
searched [17, 18]. However, such generalized solutions are not
suitable for networking applications and modern network proces-
sor architectures as they fail to consider process transformations
and multi-threading and related data mapping effects, which are
critical factors in determining the quality of the mapping on cur-
rent day NP architectures.

Ramaswamy et al. [19] and Weng et al. [20] presented random-
ization algorithms for task allocation on network processors with
an objective of minimizing latency (not throughput) without con-
sidering multi-threading or process transformations. Ramamurthi
et al. [21] presented heuristic techniques for mapping applications
to block multi-threaded multiprocessor architectures. Their tech-
niques do not guarantee the quality of the solution. Plishker et
al. [22] present an ILP formulation to map applications on to block
multi-threaded multiprocessor architectures. However, they take
into consideration only the code size as the constraint for merging
various tasks. Also, as they do not consider replication of tasks,
the throughput that can be obtained by the approach is severely
limited. Further, the formulation primarily focuses on task alloca-
tion; they do not address data mapping and related optimizations
that impact multi-threading.

4. Design Methodology
The system-level design methodology is shown in Figure 4.

4.1. Performance characterization
An initial mapping of the data items in the application on the

memory elements is generated for profiling the application. For
example on the IXP2400, the FIFOs and abstract shared memories
are mapped to SRAM, and the local data items of each process

Figure 5. A Batched Solution

are mapped to the local memory of the micro-engine. Each of
the processes is then profiled by utilizing simulation environments
provided by the network processor vendors.

4.2. Application mapping
Our solution strategy consists of dividing the problem of map-

ping an application to an architecture into two stages, and solving
each consecutively. The first stage assigns processes to processors,
and the second stage performs multi-threading aware mapping of
data items to memory locations. The second stage also determines
the number of threads of each process that must be executed.

4.2.1. Process to processor assignment
This stage maps the processes to the processing elements with

the objective of maximizing the worst case throughput. This is
done assuming an idealistic memory mapping where all non-scalar
data items are mapped to the fastest non-local memory, ignoring
memory capacities. Each processor is also assumed to run the
maximum number of threads.

The ILP formulation incorporates the merge and replication
transformations by first assigning processes into “batches”, which
are then mapped to processors. This is illustrated in Figure 5. In
this example, processes A and B are assigned to batch 1, and pro-
cess C is assigned to batch 2. Assigning multiple processes to
a batch is equivalent to merging processes; assigning a batch to
multiple processors is equivalent to replicating a process. It can be
proved that the batching strategy does not lead to any degradation
on the theoretical optimal throughput of an application.

4.2.2. Data to memory mapping
This stage maps the data items to memory locations, and ex-

ploits multi-threading to minimize the impact of access latencies.
The objective is to achieve a design with maximum throughput.

4.3. Code generation
The designer utilizes the process and data mapping information

and generates the functional specification for each core by inlin-
ing the application processes, introducing pragmas for specifying
data mapping, and the including shared memory communication
instructions. The focus of this paper is on system-level design
methodology and automated design techniques as specified by the
large box in Figure 4.

5. ILP formulations
5.1. Process to processor assignment

The ILP formulation for the first stage merges processes in to
batches, and then replicates the batches on to the processors.

Base Variables
Let B (|B| = min(|P|, |J |) denote the set of batches.

• Process to batch assignment: Let pj,b, j ∈ J , b ∈ B be
{0,1} variables; this value will be 1 if process j is assigned
to batch b, and 0 otherwise.

• Batch to processor assignment: Let bb,p, b ∈ B, p ∈ P , be
{0,1} variables; this value will be 1 if batch j is assigned to
processor p, and 0 otherwise.

• Batch replication count: Let cb,n, b ∈ B, 1 ≤ n ≤ |P|,
be {0,1} variables; this value will be 1 if batch b is to be
replicated on n processors, and 0 otherwise.

Constraints
• Process to batch assignment: Every process must be as-

signed to a single batch. Thus:

∀j ∈ J :
∑

b∈B
pj,b = 1 (1)

• Processor usage: Every processor must be assigned a single
batch to execute. Therefore:

∀p ∈ P :
∑

b∈B
bb,p = 1 (2)

A batch, however, can be replicated on multiple processors.

• Batch replication: Once a batch is selected to be replicated
certain number of times say n, then exactly n processors
must execute that batch. Thus:

∀b ∈ B :
∑

∀n

n · cb,n =
∑

p∈P
bb,p (3)

• Batch utilization: A batch must be assigned to one or more
processors only if there is at least one process assigned to
the batch. Otherwise, the batch can be ignored. As such:

∀b ∈ B :
∑

p∈P
bb,p · MAX V AL ≥

∑

j∈J
pj,b (4)

where MAX V AL is a very large value (i.e. ≥ |P|).
• Processor code memory: The code size of all the processes

assigned to a batch cannot exceed the size of the available
code memory. Therefore:

∀b ∈ B :
∑

j∈J
pj,b · S(j) ≤ C(p) (5)

Objective
Execution of a batch once implies a single execution of all pro-
cesses assigned to the batch. Thus, the throughput of a process
assigned to a batch is equal to the overall throughput of the batch.
This is given by the ratio of number of replications of the batch
over the summation of the execution times of all processes in the
batch. Thus, maximizing the minimum throughput over all batches
is equivalent to maximizing the worst case application throughput.

• Limiting batch: Let T represent the maximum effective ex-
ecution time over all batches. Thus:

∀b ∈ B : T ≥
∑

∀n

cb,n

n

∑

j∈J
pj,b · τ (j) (6)

Our objective is to maximize the throughput. Thus:
minimize(T) (7)

5.2. Multi-threading aware data mapping
The second stage utilizes the results of the previous stage, and

generates a mapping of data items to memory locations and a
multi-threading configuration.
Constant

• FIFO and shared memory access: If a FIFO (or shared
memory) is accessed by processes in two different batches,
it must be accessible by two different processors. Let φf ,
f ∈ F (φs, s ∈ S) be {0,1} variables; this value will be 1 if
f (s) is accessed by processes mapped to different batches.

Base Variables
• Processor thread assignment: Let tp,k, p ∈ P , k ∈ κ(p) be

{0,1} variables; this value will be 1 if processor p will run
k threads, and 0 otherwise.

• Data to memory mapping: Let ad,m, af,m, as,m, d ∈ D,
f ∈ F , s ∈ S , m ∈ M be {0,1} variables; this value will
be 1 if data item d, FIFO f , or shared memory s is assigned
to memory m, and 0 otherwise.

Constraints
• Thread assignment: Each processor must be assigned a sin-

gle multi-threading configuration. As such:

∀p ∈ P :
∑

k∈κ(p)

tp,k = 1 (8)

• Sharing and locality: The memories local to a processor
cannot be accessed by any other processor. Thus, FIFO and
shared memories cannot be mapped to these memories if
they are accessed by processes assigned to different proces-
sors:

∀f ∈ F ,∀m ∈ M : af,m + φf + L(m) ≤ 2 (9)

∀s ∈ S ,∀m ∈ M : as,m + φs + L(m) ≤ 2 (10)

• Memory capacity: For all memories, the total amount of
storage space required to store all the assigned data items
cannot exceed the capacity of the memory. Therefore:

∀m ∈ M :
∑

p∈P

∑

k∈κ(p)

∑

j∈J

∑

d∈Dl(j)

pj,p · ad,m · tp,k · σ(d)

+
∑

f∈F
af,m · σ(f) +

∑

s∈S
as,m · σ(s) ≤ C(m) (11)

• Data assignment: Every data item must be assigned to a
memory location. Therefore:

∀j ∈ J ,∀d ∈ Dl(j) :
∑

m∈M
ad,m = 1 (12)

∀f ∈ F :
∑

m∈M
af,m = 1 ∀s ∈ S :

∑

m∈M
as,m = 1

Objective
We maximize the overall throughput of an application by mini-
mizing the maximum effective execution time of a batch over all
processors. This is given by the ratio of the effective execution
time of the batch on one processor over the total number of repli-
cations of the batch.

• Effective execution time of a batch on a processor: Multi-
threaded execution leads to two possible situations: i) non-
local memory access latency is not completely amortized by
multi-threaded execution, or ii) non-local memory access la-
tency is completely hidden by the multi-threaded execution.
Let τ (b, p), be the time between completions of batch b ∈ B
assigned to processor p ∈ P .

When the non-local memory access latency is not completely
hidden, we must calculate the total time for a single thread
to complete. During this period, each thread will complete
once. Thus,

∀b ∈ B, ∀p ∈ P : τ1(b, p) =
∑

k∈κ(p)

∑

j∈J

∑

d∈D(j)

∑

m∈M
tp,k

k
[pj,p · τ (j) + pj,p · ad,m · τa(m) · N(d)] (13)

In the above equation, we use D to refer to the set Dl(j)
⋃

Df (j)
⋃Ds(j).

Shared Data
Application Processes FIFOs memories Items

Diffserv, IPV4 8 7 1 3
AH Auth., IPv4 8 8 1 5
AH Auth., Diffserv, IPv4 10 10 1 8

Table 2. Application descriptions

If all memory latency is hidden by multi-threading, we only
need to consider the execution time of the processes, and the
overhead of accessing local data memory. Thus,

∀b ∈ B, ∀p ∈ P : τ2(b, p) =
∑

j∈J

∑

d∈D(j)

∑

m∈M
pj,p · τ (j) + pj,p · ad,m · τa(m) · N(d) · L(m) (14)

The effective execution time of a batch on a processor is
given by the maximum of τ1(b, p) and τ2(b, p). Thus,
∀b ∈ B,∀p ∈ P : τ (b, p) ≥ τ1(b, p), τ (b, p) ≥ τ2(b, p)

(15)
• Limiting Batch: The overall throughput of the application

is limited by the maximum effective execution time of any
batch. Let T represent the effective execution time of the
limiting batch:

∀b ∈ B : T ≥
∑

∀n

cb,n

n
· τ (b, p) (16)

The objective is to maximize the throughput. Thus:
minimize(T) (17)

6. Experimental results
We considered three network processing applications that were

composed of basic operations that are common in traffic process-
ing of Internet Protocol (IP) networks. We examined combinations
of IP Security protocol (IPSec) Authentication Header (AH) ver-
ification, Differentiated services (Diffserv) conditioning, and IP
version 4 (IPv4) forwarding (as shown in Table 2), mapped to the
Intel IXP2400 processor. The applications were profiled using the
Intel IXA SDK simulator to obtain the necessary runtime charac-
teristics, using input streams of 64 byte packets.

Architectural constraints of the IXP2400 on the reception and
transmission of packets dictated that processes for the respective
tasks be distinct and mapped on separate processors. Consequently,
two processors were allocated for these operations, and these pro-
cesses were not considered for further optimizations. Thus, six
processors are available to map the remaining application pro-
cesses. Each FIFO was bounded at 256 bytes, and the abstract
shared memory that stores the complete packets was allocated 1MB.
The IXP2400 provides a fast interface between the DRAM and
media switch fabric, so the abstract shared memory for packets
was mapped to the DRAM. Finally, any necessary packet re-ordering
is performed by the transmit process.

6.1. Impact of Optimizations
In order to identify the effects of the optimizations we apply,

we first generated an optimal solution according to the techniques
in [22] to use as a base case. This results in a solution having min-
imal latency for a single completion of all processes. Data items
were then mapped to memories to minimize the latency of the pro-
cesses. This represents the best possible implementation without
taking advantage of the multi-threading or multi-processing capa-
bilities of the hardware architecture. We then applied the process
assignment and multi-threading optimizations to this base case,
both in isolation and in conjunction. Figure 6 shows the increase

Figure 6. Impact of optimizations
in performance as the optimizations are applied, normalized to the
base case as described.

The multi-threading aware data mapping and process assign-
ment optimizations each offer performance improvements, giving
on average 2.0× and 1.2× throughput, respectively, when applied
in isolation. This improvement is not uniform, however. The
Diffserv and IPv4 application is limited in the base case by mem-
ory accesses, and thus sees a greater performance increase due to
multi-threading aware data mapping. In contrast, the two applica-
tions which perform AH authentication are limited by computation
time, and thus see greater performance increase due to process as-
signment optimizations.

Most notable is the substantial performance increase when ap-
plying both optimizations. At first glance, the two optimizations
appear somewhat independent. It would be expected that their ef-
fects would be multiplicative, for an expected average speedup of
2.4× when applying both. The actual average speedup was 6.0×,
as the two optimizations aid each other.

Multi-threading aware data mapping minimizes the effect of
memory accesses, while process transformations parallelize com-
putation. Merging processes results in a fewer number of pro-
cesses. As merging two processes combines the memory accesses
that each makes, these processes will make more memory accesses.
This enhances the optimization possible through multi-threading
aware data mapping. Conversely, multi-threading aware data map-
ping minimizes the effect of memory latency, so that parallelizing
the remaining computation has a greater effect. Thus, in order to
achieve maximum throughput, process transformation and multi-
threading aware data mapping must both be utilized.

6.2. Application Results
We utilized our techniques to map each application to the IXP

2400 architecture, utilizing the full code memory and also con-
straining the code memory to 400 words. Further, in order to show
the accuracy of the throughput estimation, we utilized the IXA
simulator to determine the actual throughput of the solutions for
the full code memory scenarios. A summary of the run times of
the techniques and application throughput is shown in Table 3.

For the most part, each stage was solved very quickly; run-
times were a second or less, with the exception of a few cases
of process mapping. Additionally, the results proved to be quite
accurate when compared to the simulated implementation. The
maximum variance between the expected and actual throughput is
just over 10%. In the case of the Diffserv and IPv4 Forwarding ap-
plication, the bandwidth of the switch fabric was saturated before
the full expected bandwidth of the application could be reached.

7. Conclusion
Mapping an application onto a complex multi-processor, multi-

threaded network processor is a difficult task. In this paper we

Code Stage 1 Stage 2 Expected Simulation
Application Memory Runtime Runtime Throughput Throughput

Diff., IPv4 Full 126 sec. < 1 sec. 2440.4 Mbps Saturated
Diff., IPv4 400 inst. 246 sec. < 1 sec. 2297.9 Mbps -
AH Auth., IPv4 Full < 1 sec. < 1 sec. 188.2 Mbps 167.2 Mbps
AH Auth., IPv4 400 inst. < 1 sec. 1 sec. 165.2 Mbps -
AH, Diff., IPv4 Full < 1 sec. < 1 sec. 181.8 Mbps 164.8 Mbps
AH, Diff., IPv4 400 inst. 16 sec. 1 sec. 163.2 Mbps -

Table 3. Application Mapping Results

presented a two stage ILP formulation for addressing the problem.
Experimental results demonstrate that the technique is effectively
able to exploit the parallel processing and multi-threading capa-
bilities of the target architecture to achieve high-quality solutions.

8. References
[1] L. G. Roberts. Beyond Moore’s Law: Internet growth trends. IEEE Computer,

pages 117–119, 2000.
[2] N. Shah and K. Keutzer. Network Processors: Origin of Species. In

Proceedings of ISCIS XVII, The Seventeenth International Symposium on
Computer and Information Sciences, Oct. 2002.

[3] B. Wheeler, J. Bolaria, and S. Iyer. NPU Market Sees Broad-Based Expansion.
http://www.linleygroup.com/npu/Newsletter/wire050420.html, Apr. 2005.

[4] E. Johnson and A. Kunze. IXP2400/2800 Programming: The Complete
Microengine Coding Guide. Intel Press, Hillsboro, OR, USA, 2003.

[5] C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer. Programming Challenges in
Network Processor Deployment. In Int. Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), Oct. 2003.

[6] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, and J. Kaur. Multiprocessor
Scheduling in Processor-based Router Platforms: Issues and Ideas. Workshop
on Network Processors at the International Symposium on High Performance
Computer Architecture, 2003.

[7] Z. Tan, C. Lin, H. Yin, and B. Li. Optimization and Benchmark of
Cryptographic Algorithms on Network Processors. IEEE Micro, 24(5), 2004.

[8] R. Haas et. al. Creating Advanced Functions on Network Processors:
Experience and Perspectives. Research Report RZ–3460, IBM, Nov. 2002.

[9] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Programming Model for
the Intel IXP1200. In Workshop on Network Processors at the International
Symposium on High Performance Computer Architecture, Feb. 2003.

[10] K. Lee, G. Coulson, G. Blair, A. Joolia, and J. Ueyama. Towards a Generic
Programming Model for Network Processors. In Proc. IEEE International
Conference on Networks (ICON.04), Nov. 2004.

[11] Teja Coproration. ”Teja NP Software Platform for the Intel IXP2XXX
Network Processor Family”. http://www.teja.com/products/intel ixp2xxx.html,
June 2006.

[12] Intel Inc. Intel IXA SDK.
[13] R. Ramaswamy and T. Wolf. PacketBench: A tool for workload

characterization of network processing. In Proceedings of IEEE 6th Annual
Workshop on Workload Characterization (WWC-6), October 2003.

[14] L. Thiele et. al. Design Space Exploration of Network Processor Architectures.
In First Workshop on Network Processors at the 8th International Symposium
on High Performance Computer Architecture, Feb. 2002.

[15] C-T. Hwang, J-H. Lee, and Y-C. Hsu. A Formal Approach to Scheduling
Problem in High Level Synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 10:464–475, April 1991.

[16] A. Bender. MILP Based Task Mapping for Heterogeneous Multiprocessor
Systems. In Proceedings of the conference on European design automation,
pages 190–197. IEEE Computer Society Press, 1996.

[17] B. Shirazi, K. Kavi, and A. Hurson, editors. Scheduling and Load Balancing in
Parallel and Distributed Systems. IEEE Computer Society Press, 1995.

[18] G. Micheli, R. Ernst, and W. Wolf, editors. Readings in Hardware/Software
Co-design. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[19] R. Ramaswamy, N. Weng, and T. Wolf. Application Analysis and Resource
Mapping for Heterogeneous Network Processor Architectures. In M. Franklin,
P. Crowley, H. Hadimioglu, and P. Onufryk, editors, Network Processor
Design: Issues and Practices. Morgan Kaufmann, Feb. 2005.

[20] N. Weng and T. Wolf. Profiling and Mapping of Parallel Workloads on
Network Processors. In Proc. of The 20th Annual ACM Symposium on Applied
Computing (SAC), pages 890–896, Mar. 2005.

[21] V. Ramamurthi, J. McCollum, C. Ostler, and K. Chatha. System Level
Methodology for Programming CMP Based Multi-Threaded Network
Processor Architectures. In International Symposium on VLSI, 2005.

[22] W. Plishker, K. Ravindran, N. Shah, and K. Keutzer. Automated Task
Allocation on Single Chip, Hardware Multithreaded, Multiprocessor Systems.
In Workshop on Embedded Parallel Architectures (WEPA-1), Feb. 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

