
Synthesis of Task and Message Activation Models in Real-Time Distributed
Automotive Systems ∗

Wei Zheng1 Marco Di Natale1,2 Claudio Pinello2 † Paolo Giusto2 Alberto Sangiovanni Vincentelli1

University of California at Berkeley1 General Motors Research2

zhengwei/dinatale/alberto@eecs.berkeley.edu paolo.giusto@gm.com, pinello@cadence.com

Abstract

Modern automotive architectures support the execution
of distributed safety- and time-critical functions on a com-
plex networked system with several buses and tens of ECUs.
Schedulability theory allows the analysis of the worst case
end-to-end latencies and the evaluation of the possible ar-
chitecture configurations options with respect to timing con-
straints. We present an optimization framework, based on
an ILP formulation of the problem, to select the communica-
tion and synchronization model that leverages the trade-offs
between the purely periodic and the precedence constrained
data-driven activation models to meet the latency and jitter
requirements of the application. We demonstrate its effec-
tiveness by optimizing a complex automotive architecture.

1. Introduction

Past work in electronics/controls/software-based (ECS)
vehicle architectures and function development has been
component-focused, each function being usually deployed
to a single control module. Recent architectures feature
networking of control modules within application domains
(e.g. power train) as well as across domains (e.g. power
train and chassis). The implications are an increased num-
ber of distributed time-critical functions and multiple tasks
in execution on each ECU. Distributed architectures sup-
porting the execution of (hard) real-time applications are
also common in avionics, factory and plant control sys-
tems. For building these systems with a design-time guaran-
tee that the timing constraints are met, different design and
scheduling methodologies are used. Avionics controls, for
example, are often built based on static, time-driven sched-
ules. Because of resource efficiency, many automotive con-
trols are designed based on run-time priority-based schedul-
ing of tasks and messages. Examples of standards support-
ing this scheduling model are the OSEK operating system
standard [7] and the CAN [2] bus arbitration model. At the

∗This work has been supported by GSRC and NSF ITR Chess.
†Claudio Pinello is now with Cadence Berkeley Labs.

interface between any two resource domains, and very often
also at the interface between two abstraction layers (such as,
for example, the application and the middleware), differ-
ent interaction models may be implemented. The simplest
consists of the purely periodic activation model, where all
tasks are activated periodically and communicate by means
of asynchronous buffers based on a freshest value (non
time-deterministic) semantics. Similarly, message trans-
mission is triggered periodically and each message contains
the latest values of the signals that are mapped into it. An-
other possible activation model is the data-driven activa-
tion, where task executions and message transmissions are
triggered, respectively, by the arrival of the input data and
by the availability of the signal data. The periodic activa-
tion model has the advantage of higher possible schedula-
bility on all resources, but suffers from possibly very high
worst-case latencies on the end-to-end computations. The
data-driven activation model, on the other hand, provides
for much shorter end-to-end delays and time determinism in
the communication, but it may result in time intervals with
bursty activations of tasks and messages, hence high instan-
taneous load on some resources and possibly very high la-
tencies for low priority end-to-end computations.

The two competing models of periodic activation with
asynchronous communication and data-driven activation
are reconciled by a new conceptual framework for the anal-
ysis of distributed chains of computations, based on net-
work calculus [3] and its application for evaluating the prop-
agation of event models [4]. In [5] this model is used for
distributed schedulability analysis, where the system can be
described as an arbitrary mix of data-driven and periodic
asynchronous interaction models. Other papers, such as [9],
focused on providing lock-free and wait-free communica-
tion mechanisms that ensure deterministic delays in the im-
plementation of models integrating both event and time trig-
gered subsystems. Later, the mechanism has been extended
to EDF scheduling, and the authors also provided optimal
(tight) bounds for buffer allocation in the implementation
of buffers for many-to-one communication channels [10].
Optimization of buffer implementation is also the objective
of [1]. Finally, the trade offs between a purely periodic ac-

1

978-3-9810801-2-4/DATE07 © 2007 EDAA

tivation model and an event-driven activation semantics are
explored in [6] with respect to the composability of sub-
systems scheduled according to the two models. However,
even if these papers provide analysis procedures with in-
creasing quality, the synthesis problem is scantly analyzed:
the only approach is provided by [8], where the use of ge-
netic algorithms is proposed for optimizing priority and pe-
riod assignments with respect to a number of constraints,
including end-to-end deadlines and jitter.

Our work is performed in the context of the design of
distributed software architectures for next-generation auto-
motive controls, where the application performance require-
ments impose constraints on end-to-end latencies in the exe-
cution of the control functions. We propose a novel synthe-
sis procedure, based on approximate timing analysis to opti-
mize the definition of the activation model in the functional
network with respect to the latency constraints. We demon-
strate its effectiveness in the tuning of a complex real-world
automotive architecture.

2. Definitions, Notation and Assumptions

Our model is a dataflow of tasks, represented with a
Directed Acyclic Graph. The model is a tuple {V , E ,R},
where V is the set of vertices, E the set of edges, and
R = {R1, . . . , Rz} is the set of shared resources support-
ing the execution of the tasks (CPUs) and the transmission
of the messages (bus).

V = {o1, . . . , on} is the set of objects implementing the
computation and communication functions of the system.
oi can be a task or a message and is characterized by a max-
imum time requirement Ci and a resource Roi that it needs
to execute or for its transmission. All objects are scheduled
according to their priority πi and indexes are assigned by
decreasing priority levels; ri is the worst case response time
of oi, from the activation of the object to its completion in
case it is a task, or its arrival at the destination node in case
it is a message. wi is defined as the worst case time spent
from the instant the job is released with maximum jitter Ji

to its completion or arrival. An object oi has conceptually
one or more input ports and one or more output ports that
are used to exchange data and optionally activation signals
or events. Each object runs at a base period Ti. It reads
its inputs at the time it starts executing, if it is a task, or
it samples the incoming signal values and it is enqueued at
the activation time in case it is a message. At the end of
its execution or transmission, it delivers its results (task) or
its data content (message) and, where required, activation
signals on its output ports.

E = {l1, . . . , lm} is the set of links. A link li = (oh, ok)
connects the output port of object oh (the source) to the in-
put port of object ok (the sink). Alternatively, a link may be
labeled with the indexes of the source and destination task
as in lh,k = (oh, ok). A link li may carry the activation
signal produced when the source object completes its exe-
cution or transmission and instantaneously received on the

input port of the sink. However, a different communication
and synchronization model is possible, where the sink is ac-
tivated by a periodic timer and, when it executes, reads the
latest value that was transmitted over the link (and stored
into a buffer). The source and the sink of link li are also
denoted by src(li) and snk(li), respectively.

When an object is activated by the completion of a pre-
decessor we define an event-driven activation model. If an
object is activated by a single completion event, then the
only condition is that its period must be an integer mul-
tiple of the predecessor object period. In this case, the
activation semantics is of one every k signals. We de-
fine a less restrictive activation semantics by allowing an
object to be activated by multiple completion events. In
this case, the activation is of type AND. The only allowed
case for multiple activation events from multiple incom-
ing links is when the links are connected to predecessor
objects having periods that are integer dividers of the tar-
get object period, have a unique common predecessor, and
are scheduled on the same resource. In this case, we de-
fine a set of link groups G = {lg1, . . . , lgk} where each
link group lgi = {li0 , . . . liki

} has the following properties,
snk(lij) = snk(lil

) and R(src(lij)) = R(src(lil
)) for any

link pair lij , lil
∈ lgi. If τj1 = src(lij) and τj2 = snk(lij)

then kTj1 = Tj2 for some integer k. Finally, ∀lgi, ∃!op

such that ∀lj,k ∈ lgi there exists a link lp,j ∈ E . and there
is no other incoming link to oj . If all the links in a group
carry an activation signal, then the source objects must be
activated at the same time or they must all be activated by
a completion event. These last conditions do not apply to
singleton groups. G(ok) is the set of link groups that are
incoming to ok. For example, in Figure 1, l1, l2, l3 belong
to group lg1, l4, l5 to lg2 and l6 to lg3 consisting of only one
link. Hence, an object can be activated by a periodic trigger,
by a signal coming from a single predecessor object or by
the AND composition of signals coming from a single link
group. In this last case, the object is actually activated by
the completion of the lowest priority object or in the group
lgi, which is called group representative or = rep(lgi).

2

1
l3

l2

l1

l4

l5

l6 lg
3

lg
2

o
k

G(o) = {lg , lg , lg }k 1 2 3

R 1

R

lg

Figure 1. Example of link groups.
An external event results from the execution of a virtual

object oi with no input links, representing the environment.
External events can be periodic with period Ti and jitter Ji,
or sporadic with a minimum interarrival time, equally de-

2

noted by Ti. An output object oj represents data consump-
tion by the environment, e.g. actuator updates.

A functional chain or Path from oi to oj , or Pi,j , is an
ordered sequence P = [l1, . . . , ln] of links that, starting
from oi = src(l1), reach oj = snk(ln) crossing a unique
sequence of n + 1 objects such that snk(lk) = src(lk+1).
oi is the chain’s source and oj its sink.

When task and messages are activated periodically and
communicate on a freshest value semantics, several defi-
nitions of end-to-end latency (and the associated deadline)
are possible. In our work, the end-to-end latency Li,j asso-
ciated to a path Pi,j is defined as the largest possible time
interval that is required for the change of the input at one
end of the chain to be propagated to the last task at the other
end of the chain, whatever is the state of the tasks in the path
and regardless of the fact that some intermediate result may
be overwritten before it is read.

We assume in this paper that the application can tolerate
the semantic variation when changing from one synchro-
nization model to the other. In many control applications,
the nondeterminism in time introduced by the periodic ac-
tivation model and the jitter introduced by the event-driven
activation can both be tolerated within acceptable ranges.

2.1. Periodic activation model

In the periodic activation model (Figure 2), the release
jitter is zero and the worst case end-to-end latency is com-
puted for each path by adding the worst case response times
and the periods of all the objects in the path (rk = wk).

L(i,j) =
∑

k:ok∈P (i,j)

(Tk + rk)

1

o1

o7o5
o4 R4

o6o2

o2

ro 3

ro 4

ro 2

R3

2,4

R R2

l 1

o3

o4

o3

T2

T3

T4L

Figure 2. Periodic activation model.
Due to unsynchronized timers, in the worst case (Figure

2) the external event arrives right after the completion of the
first instance of task o2 with minimum (negligible) response
time. The event data will be read by the task on its next
instance and the result will be produced after its worst case
response time, that is, T2 + r2 time units after the arrival
of the external event. The same reasoning applies to the
execution of the following objects.

2.2. Data driven activation model

In the data driven activation model (an example in Fig-
ure 3), if we assume the same activation period for all the
nodes that are activated in a computation chain, then for all
the intermediate neighboring nodes oi → oj it is clearly

ri = Jj . The worst case end-to-end latency can be com-
puted for each path by adding the worst case queuing and
execution/transmission times of all the objects in the path.

L(i,j) =
∑

k:ok∈P (i,j)

wk

4

o1

o7o5
o4R2 R4

o6

R3

R1

o3

o2

o4

w
4

w
3

w
2

L2,4

l 1

o2
o3

J3

J

Figure 3. Data driven activation model.
In this case, the worst case jitter of the activation events

grows larger as the computations propagate along the chain.
The latency is typically lower if compared with the previous
case, but the large jitter in the activation of the intermediate
tasks and messages means that they may be activated ac-
cording to bursty patterns of events. These bursts of high
priority tasks and messages increase the response time of
the lower priority objects that share resources with them.

2.3. Processor scheduling

The worst case response time for a periodic task τi, ac-
tivated with maximum jitter Ji in a generic preemptive and
priority based scheduled system is given by:

wi(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
wi(q) + Jj

Tj

⌉
Cj

wi = maxq{wi(q) − qTi}
ri = Ji + wi

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti

(1)

where j ∈ hp(i) means all the object indexes such that
πj ≥ πi and Roi = Roj . The need of evaluating the first
q instances inside the busy period is caused by the uncer-
tainty about the instance which causes the worst case re-
sponse time. However, a lower bound on the worst case
response time can be obtained by restricting the computa-
tion to the first instance. This bound is tight in case ri ≤ Ti.

wi = Ci +
∑

j∈hp(i)

⌈
wi + Jj

Tj

⌉
Cj

ri = Ji + wi

(2)

Linear upper and lower bounds for the solution to the pre-
vious fixed point equation can be obtained from

w↑
i = Ci +

∑
j∈hp(i)

(
w↑

i + Jj

Tj
+ 1)Cj (3)

w↓
i = Ci +

∑
j∈hp(i)

(
w↓

i + Jj

Tj
)Cj (4)

3

19

4 5

ECU2

4 4

4

4

48 4

40 ms

15 ms

30 ms
8 4 6 9

ECU1 ECU3

12 6

τ 1

78 6

9 1311 12

2m

m

m

m

m

τ

τ

τ

τ

τ

τ

τ10

16

15

17

14

o

o

o

o

o

o

CAN

18

3

Figure 4. Example graph.

2.4. Bus scheduling
In this paper we assume that message objects are trans-

mitted over CAN buses. The evaluation of the worst-case
latencies for the messages follows the same rules for the
worst-case response time of the tasks, with the exception
that an additional blocking term Bi must be included in
the formula in order to account for the non preemptability
of CAN frames and the transmission time of the message
cannot be preempted. The blocking term Bi for a generic
message oi can be computed as the largest worst-case trans-
mission time of any frame having a priority lower than πi

and sharing the same bus resource (wqi > 0 is the queuing
delay part of wi, without the transmission time).

wqi(q) = Bi + qCi +
∑

j∈hp(i)

⌈
wqi(q) + Jj

Tj

⌉
Cj

wi = maxq{Ci + wqi(q) − qTi}
ri = wi + Ji

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti.

(5)

A lower bound on wi and ri can be computed by only
considering the first instance (q = 0) and, similar to pro-
cessor scheduling, the response times of messages can be
approximated by linear functions of the jitter variables.

3. An example
Figure 4 represents a sample system consisting of 3

ECUs, 1 CAN bus, 8 tasks and 5 messages (priorities, pe-
riods and worst-case execution times as in the following ta-
ble.) Three computation paths are defined, ending respec-
tively in objects o15, o17 and o19.

periodic event − driven

Object πi Ti Ci ri Li Ji wi ri

τ1 13 15 4 4 4 0 4 4
m2 12 15 4 8 27 4 8 12
τ3 11 15 8 8 50 12 8 20
m4 10 15 4 12 77 20 12 32
τ5 9 15 4 4 96 32 4 36
τ6 8 40 6 14 14 0 30 30
m7 7 40 4 16 70 30 28 58
τ8 6 40 12 20 130 58 20 78
τ9 5 30 8 28 28 0 60 60

m10 4 30 4 28 86 60 44 104
τ11 3 30 6 28 144 104 58 162
m12 2 30 4 28 202 162 88 250
τ13 1 30 9 13 245 250 25 275

The last four columns explain the tradeoffs in the analysis.
In the case all objects are activated periodically and com-
municate by means of asynchronous buffers, the latencies
for the three paths, assuming no sampling delay on the first
task are shown in the fourth to last column. If, however,
the activation of the objects is always driven by the comple-
tion of their predecessor, then the latencies are much better
for the highest priority paths, but are significantly larger for
the lowest priority path ending in o19. Although the jitter
analysis is characterized by pessimism (relative offset in-
formation and best case response times are not considered
in the analysis), the results show the tradeoff between the
two models and the opportunity for design optimization.

If the deadlines are defined as d14,15 = 80, d16,17 =
120 and d18,19 = 260, then in neither of the two cases,
the deadlines can be guaranteed. However, if the activation
model is defined in such a way that messages m2, m4 and
m7 are activated periodically, then the worst-case latencies
are L14,15 = 66, L16,17 = 98 and L18,19 = 173, with all
the deadline constraints satisfied.

Calculating the worst-case response time of tasks and
messages means solving a least fixed-point equation. In
some cases, the problem may be approached by using linear
upper and lower bounds for the response time of the first ob-
ject instance in the critical instant hypothesis (which is itself
a lower bound of the real value) as in (3), (4). The question
is to determine the amount of pessimism (and optimism)
introduced by the linear approximations. The data of the
example show that the linear approximations become pro-
gressively less accurate when the priority of the objects in
the chain is lowered. For example, for the event-driven ac-
tivation model, the upper and lower bound latencies for the
three paths are, respectively, {40.36, 108.96, 491.90} and
{34.90, 69.22, 231.61}. However, a linear combination of
the linear upper and lower bounds can be sufficiently ac-
curate to be used as an estimator of the actual end-to-end
latencies. We will demonstrate the effectiveness of the lin-
ear approximation in the following real design case of an
automotive system architecture.

4. MILP Solution

A mixed integer linear programming formulation can be
used to find a solution with respect to the deadline con-
straints on the paths. In addition to ri, Ji, wi, Ls,t we define
yh,k as

yh,k =
{

1, if the activation of ok is event-driven by oh

0, otherwise

4.1. Feasibility Constraints

The feasibility constraints are modeled according to the
rules for computing the jitter, the response times and the
latencies at all nodes in the graph.

4

The jitter inheritance rule is encoded as follows. Con-
sider a scheduled object ok with multiple incoming link
groups. We are only interested in those groups (links) that
can possibly carry an activation signal (for all the other links
lj,k it is clearly yj,k = 0).

We enforce the condition that all the links in one group
assume the same activation model. This means that

yr,k = ys,k (6)

for all the pairs lr,k, ls,k belonging to the same group lgh.
The equivalence must be extended to all the incoming links
to the source objects of the group links, in case periodic
objects cannot be activated at the same time.

If ok has more than one incoming link group, only one of
the group representatives can provide its activation signal.
For each object ok it must be

∑
lgh∈G(ok)

yr,k ≤ 1 where or = rep(lgh).

If all group links have a periodic activation (all yr,k = 0)
then ok is activated periodically and Jk = 0. Otherwise,
Jk will be equal to the response time of the representative
object in the group from which it gets the activation signal.
The two alternative ways of computing Jk can be encoded
in a pair of constraint sets leveraging a typical formulation
in use in integer linear programming.

A very large constant value M is used to nullify one or
more constraints by making them always true depending on
the value of a set of binary variables (yr,k in our case).

Jk ≤
∑

lgh∈G(ok)

yr,k × M where or = rep(lgh) (7)

0 ≤ Jk (8)

If all yr,k = 0, then (7) and (8) constrain the value of Jk

to 0. If yr,k = 1 for one of the incoming link groups, then
the first inequality is redundant and the following two set of
constraints (a pair for each lgh ∈ G(ok)) make Jk equal to
the worst-case response time rr of the predecessor object or

that is the representative of the activating group.

Jk ≤ rr + (1 − yr,k) × M where or = rep(lgh) (9)

rr − (1 − yr,k) × M ≤ Jk where or = rep(lgh) (10)

If ok has only one incoming link from object oh that can
possibly provide an activation signal, then a simpler set of
constraints replaces (7), (9), and (10)

rh + (yh,k − 1) × M ≤ Jk (11)

Jk ≤ rh (12)

Jk ≤ yh,k × M (13)

The worst-case response time rh for object oh can be com-
puted as

rh = wh + Jh

Because of the non-linearity and even non convexity of
the fixed point formula that provides the exact value of wh,
a linear combination with coefficient α ∈ [0, 1] of the linear
upper (3) and lower bounds (4) is used.

wh = Ch +
∑

ok∈hp(h)

(
wh + Jk

Tk
+ α)Ck (14)

where α is chosen as to minimize the following mean square
fit function, computed for all y = 0 and assuming α does
not depend significantly on the value of the y variables.

∑
Pr∈P

(α ∗ L↑
Pr

+ (1 − α) ∗ L↓
Pr

− LPr)
2 (15)

where L↑
Pr

and L↓
Pr

are the latencies computed on the path
Pr using the upper and the lower linear bound respectively.
A similar formulation is used for message latencies.

Finally, for computing the end-to-end latencies, a vari-
able zi,j is defined for each link li,j to express the link con-
tribution to the end-to-end latencies of all the paths contain-
ing it. The variable zi,j is equal to wj if the link li,j carries
an activation event (first two of the following constraints.)
Otherwise, zi,j will be equal to wj + Jj + Tj , considering
the fact that oj may be activated by some other signal with
release jitter Jj . Hence, the contribution to the latency de-
pends on the value of yi,j and the usual formulation is used
to express the alternative.

wj ≤ zi,j (16)

zi,j ≤ wj + (1 − yi,j) × M (17)

zi,j ≤ wj + Jj + Tj (18)

wj + Jj + Tj − yi,j × M ≤ zi,j (19)

The end-to-end latency Ls,t associated with path Ps,t is
computed as

Ls,t =
∑

lu,v∈Ps,t

zu,v

and should not exceed its deadline.

Ls,t ≤ ds,t.

4.2. Objective Functions

Based on the above constraints, in addition to get a so-
lution which satisfies the deadline constraints, we have can
optimize it with respect to different cost functions. The min-
imization of the number of event buffers is expressed by

maximize
∑

lgh∈G
yj,k, where oj = rep(lgh)

Other interesting cost functions are the sum of the end-
to-end latencies, or the sum of the positive differences be-
tween the end-to-end latency of each path and the corre-
sponding deadline over all the paths in the system. In the

5

second objective function we may assign a penalty for the
violation of a specific path deadline through a weight γpr .∑

pr∈P Lpr

∑
pr∈P γpr ∗ Max(Lpr − dpr , 0)

For the example in Figure 4, we used the objective func-
tions defined in the previous section. The results are shown
in the following table where P1 = o14 → o15, P2 = o16 →
o17, P3 = o18 → o19 and the objective functions are F1 =
minimization of the number of event buffers, F2 = mini-
mization of the sum of the path latencies, F3 = minimiza-
tion of the sum of weighted lateness for all the paths ex-
ceeding the deadline and F4 = minimization of the lowest
priority path latency.

Objective P1 P2 P3 periodic objects event objects
F1 51 58 233 m3 remainings
F2 66 58 191 τ3, m4, τ10 remainings
F3 51 110 209 m2, m7 remainings
F4 66 98 157 τ3, m4, τ8 remainings

5. Case study and Conclusions

The paper presented a novel synthesis framework pro-
cedure, based on approximate timing analysis to optimize
the definition of the activation model in the functional net-
work with respect to the latency constraints. The proposed
approach has been applied to the architecture configuration
of an experimental vehicle. The architecture consists of 38
nodes connected by 6 CAN buses. A total number of 100
tasks are executed on the ECU nodes, supporting from 1
to 22 tasks each, and 322 messages are exchanged over the
six buses, with a minimum and maximum number of mes-
sages of, respectively, 32 and 145 for each group. Task and
message periods are between 10 and 5000 ms. The num-
ber of links in the dataflow graph is 507. Bus utilizations
are between 30% and 50% and CPU utilizations are esti-
mated between 5% and 60%. Ten pairs of endpoints have
been identified in the graph as sources and destinations of
computation paths with deadlines. An analysis of the graph
found 184 paths between these 10 pairs of nodes and dead-
lines ranging from 100 ms to 300 ms have been defined for
them.

If all tasks and messages are activated periodically, the
end-to-end latencies largely exceed (in the worst case) the
deadlines. For example, a worst-case latency of 577ms was
found for paths with deadline 300, 255.5 for paths with
deadline 200, and 145.38 for paths with deadline 100. Of
the 507 links, 313 are subject to optimization, including link
groups. The problem encoding results in 1673 variables,
313 of which are binary, and 3989 linear constraints. When
the sum of the end-to-end latencies is used as the metric
function, the time required to solve the problem is always
close to 0.25 seconds (1.4 GHz on a Pentium-class PC).

After the first optimization round, the end-to-end laten-
cies are much closer to the desired deadlines, but still not

feasible for 12 of the 148 paths. It is necessary to change
the period of one more task (from 12.5 to 10) and one more
message (from 100 to 80), making it shorter so that an event
driven activation could be defined on the corresponding
incoming and outgoing links. After another optimization
round, all the latencies become lower than the deadlines,
with the largest value of 242 for paths with deadline 300,
145.5 for paths with deadline 200 and 95.4 for paths with
deadline 100. The final result of the optimization is the def-
inition of 116 links and 3 groups (141 total links) to carry an
event-driven activation signal. The value of α changes from
0.465, at the start, when all y = 0, to 0.459 for the final
solution. When repeating the optimization procedure with
the new value of α, the same result is obtained, therefore
supporting the validity of our linear approximation assump-
tion.

Besides the assignment of priorities to tasks and mes-
sages, or the definition of task and message periods, another
possible objective for the synthesis of the software architec-
ture is finding the optimal placement of the tasks on the
ECUs. However, these optimization variables are not con-
sidered in this paper and will be the subject of future work.

References

[1] M. Baleani, A. Ferrari, L. Mangeruca, and A. S. Vincentelli.
Efficient embedded software design with synchronous mod-
els. In Proceedings of the 5th ACM EMSOFT conference,
2005.

[2] R. Bosch. Can specification, version 2.0. Stuttgart, 1991.

[3] J.-Y. L. Boudec and P. Thiran. Network calculus - a theory
of deterministic queuing systems for the internet. In LNCS
2050, Springer, 2001.

[4] S. Chakraborty and L. Thiele. A new task model for stream-
ing applications and its schedulability analysis. In IEEE
DATE, Munich, Germany, March 2005.

[5] A. Hamann, R. Henia, M. Jerzak, R. Racu, K. Richter, and
R. Ernst. SymTA/S symbolic timing analysis for systems.
available at http://www.symta.org, 2004.

[6] S. Matic and T. Henzinger. Trading end-to-end latency for
composability. In Proceedings of the 26th IEEE RTSS, 2005.

[7] OSEK. Osek os version 2.2.3 specification. available at
http://www.osek-vdx.org, 2006.

[8] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity
analysis in real-time distributed systems. In Proceedings of
the 11th IEEE RTAS, pages 160–169, San Francisco (CA),
U.S.A., Mar. 2005.

[9] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. In 6th Euromicro ECRTS, July 2004.

[10] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi. Semantics-
preserving and memory-efficient implementation of inter-
task communication on static-priority or edf schedulers.
Proceedings of the 5th ACM EMSOFT conference, 2005.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

