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Abstract

An hierarchical synthesis methodology for analog and
mixed-signal systems is presented that fully in a novel way in-
tegrates topology selection at all levels. A hierarchical system
optimizer takes multiple topologies for all the building blocks
at each hierarchical abstraction level, and generates opti-
mal topology combinations using multi-objective evolution-
ary optimization techniques. With the presented methodology,
system-level performance trade-offs can be generated where
each design point contains valuable information on how the
systems performances are influenced by different combina-
tions of lower-level building block topologies. The generated
system designs can contain all kinds of topology combinations
as long as critical inter-block constraints are met. Different
topologies can be assigned to building blocks with the same
functional behavior, leading to more optimal hybrid designs
than typically obtained in manual designs. In the experimen-
tal results, three different integrator topologies are used to
generate an optimal system-level exploration trade-off for a
complex high-speed ∆Σ A/D modulator.

1. Introduction

The paper describes a novel analog synthesis methodology
for mixed-signal systems that fully integrates topology selec-
tion at all abstraction levels. It grants the analog designer
access to the relation between the system-level performance
behavior and the different building block topologies that can
be used, for complex mixed-signal systems.

To categorize the existing analog synthesis tools, first two
tasks in the synthesis process have to be distinguished; the
selection of a topology and the sizing of that selected topol-
ogy. For those two tasks we can also distinguish between tools
that are designed for circuit-level synthesis and tools that are
designed for system-level synthesis. For example, tools like
IDAC, OPASYN, OASYS, ANACONDA, AMGIE,. . . (see
[8]) are circuit sizing tools where the topology is selected au-
tomatically or interactively, and is sized according to given

performance specifications. With tools like SEAS and DAR-
WIN (see [8]) and the work of Koza [6], topologies can be
generated or adapted during the sizing optimization process.
However, these tools are targeted for circuits with a limited
amount of design variables at the cell level e.g. integrators,
comparators.

For the design of mixed-signal systems at higher abstrac-
tion levels e.g. data converters, the same distinction can
be made between tools that select from a set of topologies
(e.g. DAISY [4]), and recent methodologies that generate new
system architectures using optimization techniques [7, 10].
These synthesis tools use a HDL language to describe the sys-
tem and to generate new higher-level architectures.

The hierarchical system exploration methodology de-
scribed in this paper introduces an efficient way to explore
different analog system architectures down to the transis-
tor level where topology selection at all hierarchical abstrac-
tion levels is fully integrated. With the methodology a set
of optimal system-level performance samples are generated,
where all the design points in this set contain information
on the transistor-level topology combinations that are used to
achieve the corresponding performance specifications. It is
important to stress that the methodology explores the entire
search space of design variables and circuit topologies at all
levels. The methodology has the following novel features:

• The designer’s insight in the relation between the system
performance behavior and the selection of building block
topologies at all levels is greatly improved.

• Using evolutionary optimization techniques, hybrid com-
binations of functionally the same building blocks can be
generated, leading to more optimal designs than typically
obtained in manual designs where often the same block is
reused for reasons of convenience and time pressure.

• Critical connection constraints from higher abstraction lev-
els are efficiently taken into account during the lower-level
topology selection process. This makes the methodology
practically applicable as opposed to methodologies where
sub-blocks are optimized separately and future inter-block
constraints are difficult to satisfy.
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Figure 1. Hierarchical decomposition of the high–speed Delta–Sigma A/D converter (top left). Three integrator topologies can be

selected at the lowest abstraction level (cascode, miller, symmetric), as well as two DAC topologies.

• The generated system-level performance trade-off sam-
ples also determine all the design variables of all building
blocks at all abstraction levels in the hierarchically decom-
posed system. This is the result of the bottom-up way of
generating the performance samples as proposed in [3].

This paper is organized as follows. In Section 2, a gen-
eral description of the presented methodology is given. A
∆Σ modulator (top left in Figure 1) is used as illustrative ex-
ample. Section 3 describes how a hierarchically decomposed
electronic system is mapped onto the data structure of evo-
lutionary algorithms (EA’s), and explains how the described
features are implemented in the algorithm. Section 4 explains
how the experiments were setup, and section 5 presents the
results and illustrates the major contributions of the method-
ology. Section 6 gives some conclusions.

2. Methodology Outline

In this section the general idea of the methodology is de-
scribed and illustrated in Figure 1 for a single-bit third-order
continuous-time ∆Σ modulator (top left architecture).

In order for a synthesis methodology to handle complex
mixed-signal systems, first a hierarchical decomposition into
smaller, less complex sub-blocks is performed. For our mod-
ulator example, this results in a 7-block decomposition (lower

shaded blocks): a filter which contains three integrators, a
comparator, and three D/A converters belonging to the three
integrators respectively.

The proposed methodology is an important extension
to the MOBU optimization methodology described in [3].
MOBU provides an efficient way to generate Pareto-optimal
performance trade-offs at system level; first the Pareto-
optimal performance trade-offs of the systems lower-level
building blocks are generated using evolutionary optimization
techniques, and then this performance information is propa-
gated bottom-up through the hierarchical tree to generate the
optimal trade-off at the system-level. The hierarchical decom-
position and the building block topologies are chosen manu-
ally in the MOBU methodology, and only one topology per
building block could be handle because MOBU can not han-
dle the simultaneous search in multiple design spaces.

With the extension presented here, building blocks at
all levels of abstraction can be implemented with differ-
ent topologies. In his search for optimal system-level per-
formance points, the evolutionary optimizer combines dif-
ferent lower-level designed topologies (selected from pre-
generated Pareto fronts). Therefore, the lower-level design
spaces change dynamically, as well as the higher-level be-
havioral models (if different architectures at intermediate lev-
els are selected), and the dedicated simulators corresponding
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with them. An extra engine was designed to cope with the,
at run-time, changing topology combinations and changing
inter-block constraints (section 3.4). The bottom row in Fig-
ure 1 shows the topology set for each lowest-level building
block for our example. At this level, circuit simulators (e.g.
Spice, Eldo, Spectre) can be used to generate optimal design
information in design and performance spaces. At higher ab-
straction levels, dedicated behavioral simulators can be used.
As illustrated in Figure 1, after the determination of a (hybrid)
combination of topologies for the integrators, a filter model
has to be selected which complies with the resulting architec-
tural filter structure.

At ADC level again a behavioral model and a dedicated
simulator have to be selected, according to the lower-level
structural combination of topologies. The resulting designs
in the SNDR-POWER space in the example of Figure 1 de-
pict only non-hybrid forms to show the topology comparison
strength of the methodology. In Section 5, Figure 5, the opti-
mal intermediate hybrid designs are shown and discussed.

The system-level designs are generated in a bottom-up way
using transistor-level Pareto-optimal design samples. So, next
to the gain in designer’s insight, this methodology also imme-
diately provides access to all design variable values at all lev-
els, as opposed to methodologies where approximate building
block performance models are used [2].

3. Automatic Topology Selection

In this section, critical implementation features are dis-
cussed: how a hierarchically decomposed system is mapped
onto the data type of evolutionary algorithms, a novel multi-
dimensional sorting engine is described, how the search to-
wards optimal hybrid topology combinations is improved
through a clustering mechanism, and finally how the dynami-
cally changing inter-block constraints are handled.

3.1. Data Type Mapping

An efficient data type mapping is chosen to make the topol-
ogy selection possible. Each individual of the EA represents a
possible design solution. An individual contains a set of chro-
mosomes where one chromosome contains all design vari-
ables of the observed top-level abstraction layer, and the other
chromosomes contain information on the chosen lower-level
sub-block configurations. For example for the ADC from Fig-
ure 1, one chromosome contains system-level design variables
like signal input amplitude and frequency (VIN , fIN), and over-
sampling ratio (OSR). The other chromosomes contain infor-
mation on the selected sub-block configurations. At the low-
est abstraction level, there are no sub-blocks, so only the chro-
mosome containing the design variables is present in the in-
dividual. As a result of this data type mapping, the evolution-
ary cross-over operator (i.e. interchanging chromosomes be-
tween individuals) means switching complete designed block
topologies between system configurations. Applying the mu-
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Figure 2. Sorting mechanism: A) sample points, B) X-Tree,

C) Y-Tree, D) order with respect to point 1 and 2.

tation operator on the configuration chromosomes, means
stochastically shifting the current sub-block configuration to a
nearby configuration in the performance space. Thus, the op-
timizer needs to have the knowledge about sub-block design
points in the neighborhood of the current design. Therefore a
sorting algorithm is added to the optimizer.

3.2. Sorting of the building block designs

The design space of a system at higher abstraction level
is built from the design variables and the set of already de-
signed solutions for each lower-level building block [3]. Dur-
ing optimization, for each individual, a lower-level design is
selected for each building block, and during mutation a jump
to a nearby design point is made. To make the optimizer
aware of what the nearby points are for a certain point a sort-
ing algorithm was developed, based on techniques for nearest
neighbor search in high dimensions [5, 1].

Figure 2 illustrates for a 2D performance space (X ,Y ).
During initialization of the hierarchical system, for each
building block, the Pareto-optimal designs are put into sorted
trees, one for each dimension (B, C in Figure 2). Each Pareto-
optimal design point is then aware of its predecessor and suc-
cessor for each dimension. During optimization, these single-
dimensional orderings are used for the euclidean sorting of
points. As opposed to a normal euclidean sorting where the
performance coordinates of the points are used, these dimen-
sional mappings induce two important benefits:

• Designs that only differ from the current design in one per-
formance dimension are favored for the nearest neighbor
search compared to designs that differ in multiple perfor-
mances. Observe Figure 2.D, the ordering with respect to
point 1: points 5 and 8 are considered ’closer’ than point 3,
because they differ less from point 1 if separate dimensions
are considered.

• During optimization a bias can be induced towards certain
building block performance regions, using the knowledge
of the separate performance orderings. This benefit can be
used to steer the optimizer and speed up the optimization.
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chance of new far away individuals.

3.3. Clustering

As can be seen in Figure 1 (top right), there is a clear sep-
aration between performance spaces of non-hybrid topology
combinations (one integrator topology present). To improve
the search capability of the optimizer towards hybrid combi-
nations which give intermediate performance results (Figure
5), clustering is included in the optimizer [11]. When the EA
selects individuals for recombination from an unclustered set
of individuals (left plot in Figure 3), the chance for select-
ing from a region where already a lot of points are generated
is bigger then selecting points far from each other. This de-
grades the exploration capabilities. Clustering solves this by
representing clusters of individuals by one central point (right
plot in Figure 3). The cluster radius is determined by dividing
the maximum distance found between two points in the pop-
ulation, by the largest distance between 2 consecutive points.

3.4. Sub-block interconnect constraints

A very important aspect of system design that has to be
tackled is the handling of inter-block constraints between con-
nected sub-blocks on a higher hierarchical level. As described
in [3], inter-block constraints have to be taken into account
when a system-level design tool, using transistor-level per-
formance information, is developed. In [3], a set of inter-
block constraints could be defined beforehand, and during op-
timization lower-level designs are selected keeping in mind
these constraints. But when the architectures are selected dur-
ing optimization, the set of inter-block constraints changes
accordingly. Also, the repercussion of the inter-block con-
straints is different for each topology. A third extension to
the MOBU methodology is the implementation of an extra
engine that works on an intermediate level, invisible for the
optimizer. During initialization all the inter-block constraints
at each abstraction level are defined to this engine. These con-
straints are defined for the black box representation of the
sub-blocks and are independent of the architecture that was
implemented. During optimization, the engine will function
as a guard: if the optimizer asks for a design point during se-
lection or mutation, the engine will look at the selected topol-
ogy and translates the inter-block constraints to constraints on
the topology. The engine will then select a design point ac-

cording to what the optimizer asks, but keeping in mind the
constraints. The engine can be seen as a kind of top-down
feasibility-bounds translator during the bottom-up traversal of
Pareto-optimal performance information.

4. Experimental Setup

This section describes the setup of the experiment that we
performed to validate our methodology. The next section
presents the results. In the experiment, performance trade-offs
are generated for the system topology of Figure 1: a single-
bit third-order continuous-time ∆Σ modulator for 802.11a/b/g
WLAN in a 0.18 µm standard CMOS technology. The exper-
iment is twofold:

• First the optimizer is used to generate system designs
where the topologies of all integrators are chosen to be
the same. The optimizer can still select from the set of
integrator topologies, but it has to be the same for all in-
tegrators. The results prove the exploration capabilities of
the method.

• For the second part the optimizer can make all kinds of
topology combinations. The result shows a Pareto-optimal
trade-off which contains hybrid architectural combinations
that represent intermediate Pareto-optimal design points.

For the higher-level optimization, behavioral models are de-
veloped for the different topologies of all sub-blocks. At this
level, the topology selection of the sub-blocks is driven by the
power and accuracy constraints of the overall system.

Three well-known integrator topologies are considered: a
folded-cascode opamp with internal source degeneration, a
two-stage Miller amplifier and a symmetrical OTA. These
circuits are implemented using pmos differential input pairs
to lower the DC offset voltages. Furthermore, a single-bit
comparator is considered that consists of two preamplifiers,
a current stage and a regenerative latch [9]. Finally, current-
steering D/A converters are implemented as both nmos and
pmos topologies.

4.1. Low-level description of the building-blocks

One of the necessities for a proper setup of the experiment
is the knowledge of the Pareto-optimal performance trade-offs
of the transistor-level sub-blocks. The generation of these
trade-offs does not belong to the contribution of this work,
but they are needed to prove the proposed methodology. This
section shortly describes the setup for the Eldo simulations of
the different topologies of each block.

The design variables of the topologies of each sub-
block include the gate-overdrive voltages, lengths and finger
widths of all transistors. Also the biasing currents, common-
mode voltages (Vcm), resistances and capacitances are defined.
There are constraints on the operation mode of most transis-
tors to keep them in saturation. The performance variables
for the integrators are the same for each topology and are
extracted during circuit simulations in Eldo.The variables for
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the integrators are DC gain (Gain), gain-bandwidth (GBW ),
phase margin (PM), signal-to-noise-ratio (SNR), signal-to-
distortion-ratio (ST HD) and power consumption (Power).
For the comparator, the offset voltage of the input transistors
(Vo f f set), the regeneration speed (Speed) of the latch and the
power consumption are extracted. Finally, the non-dominant
poles ( fnd1 & fnd2) and DC value of the output impedance
define the performance of the D/A converters.

4.2. System-level description of the ∆Σ modulator

Corresponding with the data type mapping described in
subsection 3.1, at system level, a distinction is made between
design variables belonging to this level, and the configuration
selection variables indicating which sub-block configuration
is selected.
Design Variables. Constant values are given for the system-
level design variables according to the 802.11 communication
standard. The design variables are: the oversampling ratio
(OSR = 32), the amplitude of the input signal (Ain = 300mV ),
and the sampling frequency ( fs = 640MHz). The number of
integrators in the modulator topology is constant and set to 3.
Sub-block Configuration Variables. The design variables
are extended by the configuration variables belonging to each
sub-block, indicating which sized topology is chosen from
the lower-level trade-off. For the system-level simulations,
a behavioral model for the filter is selected and filled in in
the model of the system architecture (upper white blocks in
Figure 1). A second-order behavioral model is generated
for each topology. The parameters are substituted by the
transistor-level simulation results corresponding with the se-
lected lower-level design point. As an example, the model of
the Miller integrator is shown in Figure 4. Similar models are
developed for the other blocks. As a consequence, multiple
design spaces are defined at this abstraction level. An ex-
tra engine was developed in this methodology that efficiently
manages these heterogeneous design spaces (section 3.4).
Top-down feasibility bounds. Resulting from the modu-
lator architecture and the 802.11 communication standard
for which it has to be designed, the system-level perfor-
mance constraints can be translated into requirements on
SNR, ST HD, Gain, PM and GBW of the integrators and on
the Speed and Vo f f set of the comparator and D/A converters.

Next to these block constraints, the extra engine we in-
cluded (subsection 3.4) will handle the inter-block constraints
between the variables of the different sub-blocks. Among
these constraints (Table 1), uniformity between the common-
mode voltages of the connected blocks is included. Therefore,
mainly D/A converters employing a pmos implementation are

Table 1. Inter-block constraints.

Integrator Comparator D/A converter

Vcm,int =Vcm,DAC
iint = iDAC

Rout,int = Rout,DAC
Integrator Vcm,inti=Vcm,int j Vcm,int =Vcm,comp

fnd1,2 > 5∗GBWint

selected because of a better tuning with the Vcm of the integra-
tors. For stability issues the non-dominant poles of the D/A
converters are required to be 5 times higher than the GBW of
the connected integrators [9]. Some of these constraints can
be used during a pre-selection (section 5.1), the others will be
watched at run-time by the extra engine.

Note that these constraints sometimes depend on the topol-
ogy of the selected sub-blocks. For example, the current to be
fed back to the folded-cascode circuit is defined by the gm of
its input pair, while for the Miller opamp this current is re-
lated to the input voltage as gm1*gout1/gm2. In total, there are
20 block constraints and 14 inter-block constraints.

5. Experimental results

In the first experiment, all the integrators have the same
topology. The second experiment demonstrates the increased
optimized performance due to hybrid topology combinations
at lower hierarchical levels.

5.1. Equal Integrator Topologies

Before the system optimization can start, first the Pareto-
optimal trade-offs of the integrators, comparator and D/A
were generated. For each of the 5 sub-block, a different com-
puter processor was used. It took about 30 hours in total to
generate the 5 trade-offs, using more processors in parallel
would of course decrease that time. As mentioned in the pre-
vious section, with the constant block constraints resulting
from the systems specs an initial selection of design points
can be made for each sub-block: 347 candidates were selected
for the first integrator, 75 for the second integrator and 41 for
the third integrator are selected. For the comparator and D/A
converters, 1598 and 2541 candidates were found. Taking the
connection constraints between the sub-blocks into account,
these numbers are lowered to 65, 17 and 7 for the three in-
tegrators. For the comparator and three D/A converters 632,
80, 28 and 11 selectable circuits are left. Table 2 shows the
amount of circuit designs that are selected for each integra-
tor topology. Note that different numbers of D/A convert-
ers are selected for each integrator because of the topology-
dependent inter-block constraints. Clearly, the symmetrical
OTA provides the most candidates (see Figure 1) because it
combines an intrinsic high bandwidth with sufficient Gain for
low Power. On the other hand, the Miller OTA seems to be a
bad choice for implementation in a ∆Σ modulator for WLAN
applications. This is due to the large small-signal currents in
this block, requiring equivalent compensating currents in the
D/A converter. Therefore, the transistors of the latter are en-
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Table 2. Number of times each circuit is selected as topol-

ogy in the final trade-off results.

Symmetrical Folded-cascode Miller

Int1 52 9 4

DAC1 69 6 5

Int2 14 3 1

DAC2 21 4 3

Int3 4 2 1

DAC3 6 3 2

larged, which lowers the non-dominant pole frequencies of
the output impedance. As a result, most of these integrators
do not fulfill the appropriate inter-block constraint. In total,
169 designs were found that meet the specified WLAN accu-
racy of 9 bits. The power-accuracy trade-off of the generated
modulators indicates that the folded-cascode topology is the
best choice for a resolution of 9 to 10 bits. When more than 10
bits is required, the symmetrical OTA is preferred. It is clear
that the Miller opamp does not meet the design specifications,
illustrating the relevance of the inter-block constraints.

5.2. Hybrid Integrator Topologies

Allowing the optimizer to combine different integrator
topologies results in new system-level Pareto-optimal archi-
tectures as opposed to the solutions of the previous section.
Figure 5 shows system-level Pareto-optimal designs employ-
ing equal and hybrid integrator topology combinations. The
flat parts of the curve prove that the overall accuracy is mainly
determined by the performance of the first integrator. Vary-
ing the other integrators only slightly improves the SNDR.
Only when the folded-cascode integrator is replaced by a sym-
metrical topology, the SNDR performance increases signifi-
cantly. For this configuration, several Pareto-optimal architec-
tures are found where the accuracy is defined by the first-stage
symmetrical integrator, while the overall power consumption
is reduced by the subsequent folded-cascode or symmetrical
integrators. In total, the combination of different integrator
topologies resulted in 12 additional Pareto-optimal designs,
compared to 6 Pareto-optimal designs when only similar inte-
grators are considered. This shows the huge impact of a hier-
archical synthesis methodology that includes fully integrated
building block topology selection.

6. Conclusions

In this paper a hierarchical synthesis methodology was pre-
sented that efficiently integrates building block topology se-
lection at all levels. The methodology provides a system-
level Pareto-optimal performance trade-off in which the sam-
ples contain information on the used lower-level topologies
for the building blocks. The methodology was applied to
a high-speed Delta-Sigma A/D converter designed for the
802.11a/b/g WLAN standard. From the trade-off results it
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Figure 5. Pareto-optimal trade-off with topology selection.
is easy to examine the impact of different lower-level topolo-
gies on the systems performance behavior. The methodol-
ogy allows hybrid combinations of topologies for the build-
ing blocks with similar functionality. It is shown that more
optimal designs can be generated this way. As a result of the
bottom-up hierarchical generation of the designs, a complete
trade-off set of system designs is offered to the designer which
all depict completely sized system architectures.
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