
Trade-Off Design of Analog Circuits using Goal Attainment and 
“Wave Front” Sequential Quadratic Programming 

 
 

Daniel Mueller, Helmut Graeb, Ulf Schlichtmann 
Institute for Electronic Design Automation, TU Muenchen 

 
 

 
Abstract 

One of the main tasks in analog design is the sizing of 
the circuit parameters, such as transistor lengths and 
widths, in order to obtain optimal circuit performances, 
such as high gain or low power consumption. In most 
cases one performance can only be optimized at cost of 
others, therefore a sizing must aim at an optimal trade-off 
between the important circuit performances. 

In this paper we present a new deterministic method to 
calculate the complete range of performance trade-offs, 
the so-called Pareto-optimal front, of a given circuit 
topology. Known deterministic methods solve a set of 
constrained multi-objective optimization problems 
independently of each other. The presented method 
minimizes a set of Goal Attainment (GA) optimization 
problems simultaneously. In a parallel algorithm, the 
individual GA optimization processes compare and 
exchange their iterative solutions. This leads to a 
significant improvement in the efficiency and quality of 
analog trade-off design. 

 
 

1. Introduction 
 
Analog components play an important role for 

integrated circuits (ICs). Interfaces to the analog world 
and important functions like clock generation and power 
management include analog circuit blocks. Often they are 
realized together with digital components on a single 
system on a chip (SoC). In EDA Café Weekly of 21 
March 2005 it is approximated that in 2006 75% of all 
ICs include analog components. The design of analog 
systems is usually done hierarchically through system 
partitioning into circuit blocks and top-down specification 
propagation [1,2,11]. 

Time-to-market requirements often allow only the 
generation of a single analog topology and sizing, which 
represents a single trade-off of a complete range of 
possible trade-offs of the circuit performances. However, 
knowledge of the complete range of performance 

capabilities is required for modern hierarchical analog 
design processes. 

 Various approaches have been presented for the 
systematic generation of the complete range of trade-offs 
of the main circuit performances, the so called Pareto-
optimal front. Most current Pareto-optimal front 
generators are based on finding a set of Pareto-optimal 
performance vectors, which are evenly spread across the 
front. The complete Pareto-optimal front is approximated 
by interpolation of these performance vectors. 

In [7,10,13,19] stochastic methods are applied to 
generate the Pareto-optimal front. These algorithms 
commonly require a large amount of simulations, which 
can be processed in parallel on multiple processors. The 
proposed genetic and evolutionary algorithms (GEAs) 
work with a complete set of parameter vectors, called 
population. By adding or changing members of the 
population, GEAs try to improve the complete range of 
possible performance trade-offs simultaneously. 
Mechanisms are required for these algorithms to assure 
that the final population produces solutions along the 
complete Pareto-optimal front. 

In [4] the Normal–Boundary-Intersection (NBI) 
approach was introduced as a deterministic method to 
generate the Pareto-optimal front of an analog block. It 
formulates a set of optimization problems whose solutions 
spread almost evenly along the Pareto-optimal front. A 
Sequential Quadratic Programming (SQP) algorithm is 
used to minimize each of these optimization problems 
independently. SQP is one of the most efficient algorithms 
for constrained nonlinear optimization in terms of fast 
convergence.  

In this paper a new method for the generation of the 
Pareto-optimal front is proposed. It minimizes a set of 
Goal Attainment (GA) optimization problems. The GA 
approach achieves the same almost even spread of the 
solutions across the front. Instead of solving each GA 
optimization problem independently with a SQP 
algorithm, all optimization problems are solved 
simultaneously with a new “Wave Front” SQP algorithm. 
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The idea behind the Wave Front optimization is the 
following: All GA optimization problems aim at ‘similar’ 
goals. Each looks for improvement of the performances, 
aiming at different final trade-offs. Improvement in one 
optimization problem might improve the other 
optimization problems as well, especially in an early 
phase of the optimization, when the solutions are still far 
away from the front. Additionally SQP is a local 
optimization method, which converges into local minima. 
For the Wave Front optimization, global convergence is 
improved, because an optimization problem that 
terminates prematurely in a local minimum is still 
provided with parameter vectors from the other 
optimization problems. These could be nearer to the 
global optimum, helping the stuck optimization to jump 
out of the local minimum. 

Instead of iterating independently, the simultaneous 
GA optimization problems share the generated parameter 
vectors in a set with each other. New parameter vectors 
are added to the set by running a single SQP step from the 
respective best parameter vector in the set for each GA 
optimization problem. This set of parameter vectors of 
Wave Front optimization corresponds to the population in 
GEAs. 

The Pareto-optimal front can be estimated in each 
iteration step by selecting the best vectors for each 
optimization problem of the set of accepted parameter 
vectors. The performance vectors build a wave front in 
the performance space, which is improved iteratively until 
it coincides with the Pareto-optimal front. 

The algorithm requires the determination of the best 
parameter vector for each individual optimization 
problem in each iteration step. It will be shown that 
determining the best parameter vector from a set of 
possible candidates can be implemented easier for the GA 
approach through an equivalent Minmax formulation than 
for the NBI approach. 

The presented approach shows advantages compared 
to an NBI approach with a standard SQP algorithm. First 
the GA approach is numerically easier to minimize. The 
simultaneous optimization of all optimization problems 
improves the convergence speed: Slowly improving 
optimization problems are supplied with better solutions 
from the other optimization problems. Global 
convergence is improved, as additional parameters are 
provided. Additionally the algorithm collects the new 
parameter vectors generated by the optimization problem. 
The performances are simulated in parallel for all new 
parameter vectors, reducing the computational time. 

The rest of the paper is structured as follows: In 
Section 2 analog circuit sizing and Pareto optimization 
are reviewed. In Section 3 the NBI and GA approaches 
are discussed. In Section 4 the new wave front 
optimization algorithm is presented. In Section 5 we give 
experimental results, and Section 6 concludes. 

2. Circuit Sizing and Pareto Optimization 
2.1. Circuit Sizing and Constraints 

 
By circuit sizing we refer to the process of determining 

the values of a set of design parameters p, such as 
transistor lengths and widths, such that the circuit 
performances f, such as gain or power consumption, are 
optimal [5,8,14]. To evaluate the performances f for a 
given set of parameters p, the circuit is simulated with an 
analog simulator like Spice. 

Analog circuits usually include basic building blocks 
as current mirrors or differential pairs. Circuit sizing must 
fulfil technology-specific sizing constraints, so that the 
functionality of these blocks can be assured [9]. 

These sizing constraints can be geometrical, such as 
minimum transistor sizes, or electrical, such as keeping 
the transistor operating point in the saturation region.  

The sizing constraints lead to a set of inequalities 
c(p)≥0 which must be fulfilled, so that the circuit works 
in a technical meaningful operating region. 

 
2.2. Multi-objective optimization 

 
During circuit sizing a whole set of performances f 

must be minimized1. Therefore circuit sizing can be 
formulated as a multi-objective optimization problem: 
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In most cases a performance cannot be optimized 
independently. The solution of this problem is called the 
Pareto-optimal front. It consists of all performance 
vectors, whose characteristics are that one performance 
vector can only be optimized on cost of another. 

Figure 1 shows the Pareto-optimal front for two 
performances f1 and f2. The front lies at the border of the 
feasible performance space, which includes all feasible 
performance vectors. The individual minima f*1 und f*2 
form the borders of the Pareto-optimal front. 

 
Figure 1: The Pareto-optimal front  

                                                        
1 Maximization is included through max f = -min -f. 
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3. Deterministic Approaches to Pareto 
Optimization 

3.1. Normal Boundary Intersection (NBI) 
 
In [4,20] the Normal–Boundary-Intersection (NBI) 

method was introduced for Pareto optimization. NBI is a 
two-step method. In a first step the individual minima 
(IM) f*i of the performances fi with i=1…N are 
determined by minimizing the following objective 
function oIM,i: 
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The IM vectors are used as columns to build the matrix 
F: 

[ ]N*1* ffF "=    (4) 
The quasi-normal vector n can be calculated with: 

N*1* ffn ++= …    (5) 
Additionally a set of positive weight vectors ws with 

s=1…S is required. (S is equal to the number of Pareto 
points to be calculated between the IM). Then S 
optimization problems of the following form are solved: 
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An additional parameter t is introduced, so r=[pT t]T.  
Figure 2 illustrates the approach for N=2 and S=3: The 

weight vectors are in this case: w1=[0.25 0.75]T, w2=[0.5 
0.5]T und w3=[0.75 0.25]T. The points Fws lie on the 
connecting line of the IM in the 2D case and on the 
convex hull of the individual minima (CHIM) in the 
general case. The additional constraints can be seen as 
search lines in the performance space, dependent on the 
point Fws and the search direction n, which is quasi-
normal to the CHIM. The calculated trade-off points are 
located on the intersection of the search lines and the 
Pareto-optimal front and are evenly spread across the 
front. 
 
3.2 Goal Attainment 

 
The Goal Attainment (GA) approach exchanges the 

equality constraints of the NBI method with inequality 
constraints [14,15,16,20]: 
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The inequality constraints demand that the 
performance vector f(p) must be smaller or equal in each 
element than the point on the search line. Figure 3 
illustrates the GA approach. Highlighted in grey are the 
sectors for different t, for which the inequality constraints 
are fulfilled. As t is decreased the sector of feasible 
performance vectors is reduced until only the optimum is 
included, which is again located at the intersection of the 
search line and the Pareto-optimal front, as this point has 
the smallest associated t value. This allows a Pareto-front 

generation as shown in figure 2 with the same even 
spread as NBI.  

 
Figure 2: Pareto-optimal front obtained by NBI/GA  

 
Figure 3: GA optimization 

 

4. Wave Front Optimization 
 
As was illustrated in Figure 2, each individual 

optimization problem (OP)  to determine one Pareto point 
according to Eq. (6) or (7) is associated with a search line 
in the performance space. The OPs aim at different trade-
offs, but improvement is achieved in a similar direction. A 
simultaneous optimization of all OPs is implemented, 
based on the idea that the OPs converge faster and more 
robust if supplied with the solutions of the other OPs. 
Slow converging OPs are provided with better solutions 
from the other OPs. Additionally, OPs trapped in 
individual minima are supplied with parameter vectors, 
which might aid them to overcome the individual 
minimum, improving global convergence. 

The more Pareto-optimal performance vectors should 
be generated on the front, the closer the search lines lie to 
each other, making the effectiveness of this method 
dependent on the desired number of Pareto-optimal 
performance vectors S. 

The algorithm additionally features an acceptance 
function that avoids the simulation of the performances 
for parameter vectors with too many constraints 
violations. Simulations are processed in parallel to reduce 
the computational time. 
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4.1. Algorithm 
 
We assume that the IM have been obtained by single 

objective optimization of the N optimization problems of 
(3) and that an initial sizing p0 is given. With the IM and 
the number S of trade-off points known, the matrix F, the 
weight vectors ws and the quasi-normal vector n are 
generated. With these vectors the optimization problems 
(OPs) are formulated. Should a better value for an IM be 
encountered during the Wave Front optimization, then the 
IMs and OPs are updated and a new optimization for this 
IM is started from the better solution. 

The algorithm works iteratively and on all OPs 
simultaneously. The stopping criterion is met if all OPs 
are labelled inactive or the maximum number of iterations 
is reached. An iteration step can be divided into four sub-
steps: 
1st step: Finding best parameter vectors 

In the first step the best parameter vector for each OP 
is determined. Candidates are all accepted parameter 
vectors, which have been encountered so far. The best 
parameter vector is compared to the one of the last 
iteration. If improvement was achieved during the last 
iteration step, the OP is kept active, otherwise it is 
labelled inactive. New parameter vectors are only 
produced for active OPs in the 2nd step. An OP can 
become active again, if another OP provides it with a 
better parameter vector, after it has gone inactive. 
2nd step: Generating new parameter vectors 

A line search SQP algorithm is used. A quadratic sub-
problem is minimized in each iteration step for each OP. It 
provides a search direction from the current best 
parameter vector towards improvement. To provide a 
good convergence the algorithm uses two methods to 
improve feasibility in each step, if infeasible solutions are 
encountered: A tilting of the search direction, which 
makes the constraints stricter, so that the tilted search 
direction shows into the feasible space [18] and a second 
order correction step [17,18] for all encountered 
infeasible parameter vectors.  
3rd step: Acceptance function 

An acceptance function is used to evaluate all 
encountered parameter vectors. Only parameter vectors 
are accepted that have an equal or less number of 
violations of sizing constraints c(p)≥0 compared to all 
parameter vectors found so far. As soon as a parameter 
vector is found that has no constraint violation only 
feasible parameter vectors will be further accepted. The 
acceptance function assures that the algorithm works also 
for infeasible start solutions, gradually reducing the 
number of violated constraints until feasibility is reached. 
4th step: Performance simulation 

The performances are simulated only for the accepted 
parameter vectors, reducing simulation cost. As in this 
step all parameter vectors produced by all the OPs have 

been collected, the simulation can be done in parallel, 
decreasing the computational time. The new parameter 
vectors are added to the set of candidates, from which the 
best parameter vector can be chosen in the 1st step. 
 
4.2. Comparison of GA and NBI  

 
The GA approach shows two advantages compared to 

NBI, which makes it the better choice for the optimization 
with the proposed wave front optimization algorithm: 

1. It can easily determine a best parameter vector 
from a set of alternatives.  

2. It is numerically easier to be minimized with 
SQP. 

These two points will be discussed in the following:  
 
1. The presented Wave Front algorithm looks for the 

best parameter vector out of the set of accepted parameter 
vectors. Determining the best start parameter vector for 
the NBI method is difficult  because of the additional 
variable t. Suitable values for t are provided with the 
search direction of the quadratic sub-problem. But they 
are only valid for the OP the sub-problem was solved for. 
The presented algorithm additionally considers parameter 
vectors produced by other OPs. A wrong choice of t leads 
to the selection of a suboptimal parameter vector. This is 
illustrated in Figure 4. The performance vector f(pA) and 
f(pB) of two alternative vectors are given. By inspection it 
can be seen that pB is the better start parameter vector. A 
default initialization value tAB would lead of course to 
identical objective function values. Looking at Figure 4, it 
becomes clear, that the distance from pB to the point on 
the line given by tAB is larger than the distance from pA. 
Therefore any penalty function would assign a smaller 
cost value for pA, favoring the wrong vector to start from.  

In order to make the right decision the optimal 
parameter t must be obtained for all start points by 
minimizing the used penalty function to find an optimal t. 
This can be done analytically, but difficulties like suitable 
choices of the penalty function and penalty factor arise.  

 
Figure 4: Start parameter vectors for NBI 

The GA method offers a far easier way to find the best 
start parameter vector from a set of alternatives. There 
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exists an equivalent Minmax formulation for every GA 
optimization problem. It minimizes the maximum of the 
competing objectives [14,15,16]: 
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The term [Fws]i is the ith element of the vector Fws. 
This objective function is non-smooth, therefore it is not 
suited for a gradient-based optimization algorithm like 
SQP. The equivalence of (7) and (8) will be illustrated 
with a simple example: 

Example: Be N=2, Fws=[0 0]T, n=[1 1]T, and no 
constraints c(p)≥0. The optimization problems (7) and (8) 
in this case are: 
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For GA the objective function can be reduced by reducing 
t, which is a parameter of the optimization problem and 
therefore directly accessible. But t cannot be reduced 
arbitrarily as additional constraints have been added, 
which demand the parameter t to be greater than f1 and f2. 
For any f1 and f2, the value of t for which the objective 
function is minimized and feasibility is kept, is: 
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In order to minimize t, the performances f1(p) and f2(p) 
have to be optimized by finding a parameter vector p, 
such that t=max(f1,f2) becomes minimal. This is the 
optimization problem formulated in the Minmax 
approach, showing the equivalence of the two 
formulations. 

The objective value of the Minmax objective function 
omax(f(p)) is directly based on the performance vector. It 
can be used to identify the best parameter vector.  

 
2. In an SQP-based optimization, convergence 

problems may arise if the accepted step during the 
optimization is infeasible. The linearized feasible region 
of the quadratic sub-problem can be empty. In this case 
the constraints have to be relaxed [17], which can lead to 
poor search directions and a premature termination of the 
optimization run at a suboptimal solution. 

Setting t=omax,s(f(p)) is equivalent to calculating a t, 
such that t is minimal and the additional constraints of the 
GA method are fulfilled. The algorithm automatically sets 
the variable t to omax for all parameter vectors in the 
parameter set. Therefore infeasible solutions can only 
occur for GA, if a sizing constraints c(p) is violated. 

The additional equality constraints of the NBI method 
can never be satisfied during a nonlinear optimization. 
Therefore the accepted steps remain infeasible during the 
complete optimization run, regardless if all sizing 
constraints c(p)≥0 are fulfilled. As the equality constraints 
are also very stringent, empty feasible regions occur much 
more frequently for the NBI approach compared to the 
GA approach. 

5. Experimental results 
 
The method is applied on a five-stage ring voltage 

controlled oscillator (VCO). Figure 5 shows the 
schematic of the VCO. A 180nm process was used. 
Constraints were set on the output frequency range of the 
oscillator: The VCO must be able to generate a controlled 
frequency from 150 MHz up to 500 MHz.  

Figure 6 shows the Pareto-optimal front of the VCO, in 
particular the trade-off between the supply current, the 
output jitter and the Gain of the VCO. To have a good 
estimation of the front 33 Pareto-optimal points were 
generated. The main Trade-Off, as can be seen in figure 6, 
is obviously a high jitter for high gain values. For values 
of VCO Gain above 2 GHz/V the jitter output is 
increasing far above values encountered for a VCO Gain 
below 2GHz/V. The generation of the front took about 8 
hours on eight Pentium IVprocessor machines. 

Additionally, the new method is compared with NBI 
and a standard SQP algorithm using a Miller operational 
amplifier. A 180 nm process was used. Figure 7 shows the 
results. As can be seen the standard SQP algorithm 
converges prematurely, so that important parts of the 
Pareto-optimal front are missing. The Wave Front 
algorithm produces parameter vectors in a more global 
region and converges to a solution that captures a much 
larger set of trade-offs. The optimization run with 
standard SQP required 60 min. The Wave Front 
optimization took 52 min. Both fronts were generated on 
seven Pentium IV machines. While producing Pareto 
fronts of much higher quality, the new Wave Front 
algorithm reduced the CPU time by 10%. 

 

6. Conclusions 
 
In this paper an advanced deterministic method for the 

calculation of the Pareto-optimal front of different 
performances of an analog circuit block has been 
presented. It is based on a Goal Attainment formulation of 
the optimization problem and a new Wave Front 
optimization algorithm. The optimization algorithm 
minimizes simultaneously individual optimization 
processes targeting discrete points of the Pareto front. 
Due to the equivalence of the Minmax Formulation and 
the Goal-Attainment formulation solutions can be 
exchanged easily between the different optimization 
processes. 

 The algorithm supports parallel simulation on multiple 
processors. It shows good global convergence due to the 
information sharing between the optimization processes. 
It shows a better convergence with less computational 
time compared to the state-of-the-art. 
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Figure 5: Schematic of a five-stage ring VCO 
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Figure 6: Pareto-optimal front of the Ring-VCO  
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Figure 7: Pareto-optimal front of a Miller OpAmp 
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