
Simulation-based reusable posynomial models for MOS transistor parameters

Varun Aggarwal
EvoDesignOpt Group, CSAIL, MIT, USA

varun ag@mit.edu

Una-May O’Reilly
EvoDesignOpt Group, CSAIL, MIT, USA

unamay@csail.mit.edu

Abstract

We present an algorithm to automatically design posyn-
omial models for parameters of the MOS transistors using
simulation data. These models improve the accuracy of the
Geometric Programming flow for automatic circuit sizing.
The models are reusable for multiple circuits on a given Sil-
icon technology and hence don’t adversely affect the scal-
ability of the Geometric Programming approach. The pro-
posed method is a combination of genetic algorithms and
Quadratic Programming. It is the only approach for posyn-
omial modeling with real-valued exponents which is eas-
ily extensible to different error metrics. We compare the
proposed technique with state-of-art posynomial/monomial
modeling techniques and show its superiority.

1. Introduction

Automatic sizing of analog circuits continues to be a re-

search focus for the EDA industry. For SOC (System-On-

Chip) design, digital synthesis is automated to a large ex-

tent. However, the manual sizing of analog blocks become

a bottleneck and governs the time-to-market. The technol-

ogy evolution is guided by digital circuits (lower area and

power) and the behavior of the transistor with respect to

analog circuits is somewhat ignored as technology is scaled.

The analog designer has to live with and learn to design

circuits with new unrelenting transistor models. Automatic

sizing frees the designer to work on new architectures and

study system-level tradeoffs. It aims for better designs and

shorter time to market.

Several techniques for sizing have been proposed and

implemented. In the late 80’s, knowledge based approaches

[10, 8] were proposed. These techniques captured the ex-

pert knowledge of a designer and translated it into a set of

rules which then automatically sized a circuit for a given set

of specifications. These approaches were not very useful,

since for every new circuit topology and technology, a new

set of rules had to be created by manual labor. In the 90’s,

simulation based approaches [20, 19] became very popu-

lar, where SPICE was used inside the loop of optimization.

Stochastic black-box optimization techniques were used in

this approach, which didn’t require the knowledge of struc-

ture of the function being optimized. In parallel, equation-

based sizing [9] was also proposed, which used similar op-

timization algorithms, but invoked symbolic equations de-

rived from the circuit instead of SPICE.

The equation-based approaches have limitations. It is not

possible to conduct the symbolic analysis of very large cir-

cuits and the symbolic expressions are approximate. Also,

symbolic expressions can only be derived for small signal

specifications and not for large signal and transient speci-

fications. On the other hand, simulation-based techniques

though accurate, take an awful lot of time due to compu-

tationally expensive SPICE simulations in the loop of opti-

mization. One of the greatest limitations of both these ap-

proaches is scalability. These techniques provide no guar-

antee that the optima obtained is close to the real optima due

to the high dimensionality of circuit problems. For instance,

NSGA-II used in [3, 21] has been only benchmarked for 10

dimensional problems [6], where it is shown to be able to

find the global optima. However, a simple folded-cascode

opamp has more than 20 parameters to be optimized. It is

well known that these algorithms do not scale well with the

size of the problem. They become extremely slow (specially

for the simulation-based approaches) and sub-optimal.

The approach of using Geometric Programming to size

circuits simultaneously invented by Hershenson, et.al. [12]

and Mandal,et.al. [16] comes as a fresh alternative. In

[12, 13, 4], it is shown that many circuits (e.g. opamps,

PLLs) can be expressed as a geometric program using first-

order transistor models. The circuit DC equations and spec-

ifications are expressed as posynomials, which comprise the

geometric program (GP). A GP is non-convex, but can be

converted in to a convex optimization problem by taking the

logarithm of the input variables, objectives and constraints.

This allows global optimization of the GP, which implies

that given the equations are correct, the algorithm finds the

absolute maxima, that too in a few seconds.

This approach doesn’t suffer from the problem of sub-

optimality or scalability (large size of circuit), since a GP

978-3-9810801-2-4/DATE07 © 2007 EDAA

with 1000 variables and 10000 constraints is solved in less

than a minute on a small desktop computer [2]. The advan-

tage of scalability is an extremely important consideration

not just with regard to the large size of the circuit, but for de-

signing robust designs. Robustness is becoming more and

more important with shrinking technology. It would need

simulation of circuit on several design-corners or (more ac-

curately) by use of statistical models making simulation-

based approaches sub-optimal, slow [21] or infeasible. GP’s

promise will deliver here, since this would just mean a few

additional equations for GP.

This makes GP a nice alternative to simulation-based

or equation-based optimization techniques discussed above.

However, it has similar limitations as equation-based ap-

proach, which is that of inaccuracy of the posynomial equa-

tions and very simple hand-written equations for large sig-

nal transient performance measures.

In this paper, we have taken a first step to decrease the

inaccuracy of the posynomial equations. We show how

posynomial models for MOS parameters can be automat-

ically designed using simulation data. We design an algo-

rithm which uses a genetic algorithm with quadratic pro-

gramming to automatically derive posynomial models. Ear-

lier, GP formulations have used first-order models i.e. the

square-law for MOS parameters [12] and it is well-known

that the transistor doesn’t accurately follow it. Moreover,

with the shrinking technology, transistor behavior has be-

come more unpredictable. The transition from weak in-

version to strong inversion adds another dimension of com-

plexity obviously not captured in the square law. The only

other strategy to derive models for MOS is restricted to

monomial models [2] which have less expressive power

than posynomials and are more inaccurate, as will be ex-

emplified in our results.

Section 2 introduces the basics of GP, while Section 3

discusses the different approaches used for GP formulation

of analog circuits. In Section 4, we discuss the different ap-

proaches for posynomial modeling. Section 5 discusses our

algorithm in detail and Section 6 contains our experiments

and results. Section 7 concludes the paper.

2. Geometric Programming

A geometric program is a non-linear optimization prob-

lem, which can be transformed into a convex form and

solved globally. Let x be a vector of n real positive vari-

ables. A function f is called a posynomial function of x if

it has the following form:

f(x1, . . . , xn) =

t∑

k=1

ckx
α1,k

1 x
α2,k

2 . . . x
αn,k
n , cj > 0, αi,j ∈ �

Note that posynomials exclude the expression of a neg-

ative term but can express a fraction. When t = 1, the

expression is called a monomial. Geometric programming

solves an optimization problem of the following form:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,
xi > 0, i = 1, . . . , n

Here fi and f0 are posynomials while gi are monomials.

A geometric program can be solved for the global optimum

in a few seconds using interior point methods.

3. Expressing circuit as a GP

Two approaches have been proposed for expressing the

circuit as a GP. Hershenson, Mandal [16, 12] formulates

the circuit specifications as a function of MOS parameters.

AC specifications are expressed as posynomial functions of

MOS small signal specifications, while DC specifications

are posynomial functions of large-signal parameters such as

threshold voltage, effective voltage and current. The large

signal transient specifications are simple hand-written equa-

tions. Subsequently, the MOS parameters are expressed

as monomial functions of the width, length and current of

the transistor. Since posynomials are closed under addition

and multiplication, the final equations for specifications and

constraints turn out to be posynomials in term of the circuit

W, L and I. The convex solver solves to give the optimal

value of W, L and I of all devices and other parameters such

as resistor and capacitor values.

The second approach by Daems [5], et.al. follows a dif-

ferent strategy. It simulates the circuit at a set of points cho-

sen using Design-of-Experiments to get the value of circuit

specifications from SPICE. It uses black-box fitting tech-

niques to directly fit the circuit specifications in posynomial

functions of W, L and I. These equations are then optimized

using GP. This approach derives accurate models of tran-

sient specifications, which in the first approach were hand-

written first-order approximations.

However, the second approach suffers from a big disad-

vantage. It sacrifices the scalability of GP, the very reason

for which it is attractive. In this approach, every new circuit

topology or the same topology on a new technology needs

to be re-simulated to collect modeling points. As the size

of the circuit increases, the dimensionality of the problem

will increase. Increase of dimensionality would need ex-

ponentially more number of modeling points for accurate

models due to the ’curse of dimensionality’ [11]. Thus, the

approach is not scalable because it uses exponentially in-

creasing simulations as the circuit size increase. Moreover

the approach calls for design-centering, which will need

even more simulations. This makes the approach similar to

2

simulation-based sizing methods with respect to high com-

putational cost.

Secondly, the modeling approach used in [5] allows only

integer exponents for variables. There is clear intuition that

the circuit specifications depend on non-integer exponents

for width, length and current. Consider, for instance, gain

for a single-stage common source amplifier is the product of

gm (transconductance) and ro (mos output resistance). This

makes the gain proportional to the square-root of width,

length and inverse square root of current in the transistor

(assuming transistor in strong inversion). Integer-valued ex-

ponents completely disregard this observation and this ex-

plains for the inaccurate generalization of posynomial mod-

els in [5].

These issues tip the scale toward the first approach of

formulating a GP as in [12]. The approach provides scala-

bility but remains hindered by the inaccuracy of the MOS

parameter models. The MOS parameter models that require

remediation are either first-order analytical approximations

or trained monomials. Our contribution is to build more

accurate posynomial models for MOS parameters. We use

simulation data yet we do not forfeit scalability because, for

a given technology, the posynomial models have to be de-

signed only once and they could be reused multiple times

for all circuits in the technology.

4. Posynomial Modeling Approaches

There exist other approaches for generating posynomial

models. In [2], the monomial modeling problem is han-

dled by using the logarithmic form of the monomial func-

tion. This reduces the problem to a linear regression prob-

lem which can be solved globally. There is no clean way to

extend this approach for posynomial modeling. In [5, 14],

posynomials are generated using a constructive constrained

linear-regression approach and a projection-based method

respectively, however only integer exponents are allowed.

Clearly, MOS parameters can have fractional exponents, for

instance, consider the case of effective voltage or transcon-

ductance. Using only integers would mean disregard to this

information, which should inform our prior for modeling.

In [7], an approach for generating real-valued exponents

starting from a quadratic posynomial is described, but the

search is local and considered computationally prohibitive

by the authors themselves. The approach in [15] fits a func-

tion into a set of piece-wise monomial functions. Piecewise

monomial functions can be used in a GP instead of a posyn-

omial and hence one could model the MOS parameters in

this form as well. Our algorithm automatically designs

posynomial models with much more expressive real-valued

exponents. It is a general algorithm to fit posynomials, re-

gardless of the type of data. In Section 6, we compare the

accuracy of our algorithm to the methods in [2, 15], which

are the most plausible approaches for transistor parameter

modeling.

5. Algorithm to generate posynomial models

5.1. Modeling Objective

The objective of the modeling algorithm is to create

posynomial models for each of the following 9 MOS pa-

rameters in terms of W (width), L (length) and I (current):

gm, gds, ro, Veff, Vt, Vdsat, Cgs, Cgd, Cgs. The input to

the algorithm are training points, which have been derived

from actual SPICE simulation of the transistors. The al-

gorithm derives a posynomial which minimizes the squared

error between actual simulation data and model results. The

modeling algorithm is rerun for every MOS parameter.

5.2. Genetic Algorithms

Genetic algorithms [18] are a class of algorithms in-

spired by natural evolution. They have been widely used in

analog CAD for real-valued optimization [20, 3, 21]. How-

ever, they are much broader than this and have been used

for solving traveling salesman problem, combinatorial op-

timization and structural synthesis of circuits [1]. Here, we

show how they can be combined with quadratic program-

ming to evolve posynomial models. The basic flow of a ge-

netic algorithm is the following: Each solution is expressed

as a genotype. The algorithm builds an initial population

of possible solutions, i.e. genotypes. It evaluates the per-

formance of each and assigns its a corresponding value re-

ferred as fitness. It then selects the better solutions (e.g.

circuits) from the population, applies variation operators to

them to create a new population for the next generation and

iterates. We now discuss how all these operators were en-

coded for posynomial modeling.

5.3 Posynomial Representation: Geno-
type

Figure 1 shows how the posynomial is expressed as the

genotype. The genotype is a matrix of real numbered val-

ues as shown in Figure 1. Each row represents a term of

the posynomial. The number of rows is fixed. A choice pa-

rameter associated with each row decides whether the row

is actually used or not (1:used, 0:don’t care). This allows

posynomials with varying number of terms in the popula-

tion. The number of rows is equivalent to the maximum

number of possible terms in the posynomial. Each column

is associated with one of the 3 input variables. The value in

a cell encodes the exponent of the variable (represented by

the column) for the term (represented by the row). All cell

3

values are in a specified range [minV al,maxV al]. The

coefficient of each term is not a part of the genotype.

1
0
1

………
333231

232221

131211

choice L W I

+ a1*L
11 * W 12 * I 13

+ a3*L
31 * W 32 * I 33

+ …

Genotype

Phenotype
(Only terms with choice=1 included)

Figure 1. Genotype to Posynomial mapping

5.4 Fitness Evaluation

The GA evolves the exponents of all variables for each

term. To determine the complete posynomial form of the

candidate solution, the coefficient of each term must be

determined. This is done deterministically, given the spe-

cific values of the exponents, with a minimization of mean

square error (MSE) objective. We formulate a Quadratic

Programming (QP) problem from the MSE objective func-

tion (because it is second degree) along with linear con-

straints that all coefficients are positive to ensure posyn-

omial formulation. The coefficients found by QP are the

global optima for the given exponents. The minimum value

of the error (minimum MSE) is a measure of the accuracy

of the posynomial.

Our complete simulation data-set is substantially large

(about 70000 points) and the formulation and solving of QP

becomes computationally expensive for the whole dataset.

Therefore, we only use a small uniformly sampled fraction

of the dataset. Using this smaller fraction requires that the

evolved model does not overfit the sampled points. To en-

sure this, we use 2-fold cross validation [11] on the sampled

data set and use the cross validation MSE as the fitness of

the individual.

To summarize, the candidate solution is derived by evo-

lution of its exponents and QP optimization of its coeffi-

cients. It is evaluated on a fixed randomly sampled small

fraction of the complete data set and the cross-validation

error is used as the candidate’s fitness.

Noteworthy is an effect arising from using QP to find

the coefficients. The QP problem has the constraints that

all coefficients should be more than zero. This formulation

pushes some of the coefficients to exact zero. Thus QP im-

plicitly performs feature selection on the evolved terms by

setting the coefficients of useless terms to zero.

5.5 Variation Operators

The genotype information provides the exponents for a

sum-of-products solution. The first variation operator we

use is called crossover, which combines two genotypes to

form a new set of exponents. We combine two genotypes

by exchanging their monomial terms. Two solutions are

selected from the current population and the new individ-

ual for the next generation is created by choosing each row

from one of the two parents randomly. This is called uni-

form crossover. The second operator we use is the mutation

operator. The mutation operator is used to perturb the real-

numbered values in the cells of the matrix. A normal dis-

tribution centered at zero with a given variance (λ) is added

to the real numbered value. The variance is adaptively de-

creased as the algorithm proceeds.

The choice of the real-value to be mutated is decided in

the following way. A term with a zero coefficient is mutated

by a probability (pzero term), the operation being reinitial-

ization of the term randomly. A term with a non-zero coeffi-

cient is mutated by a different probability (pnon zero term).

Each cell in the chosen row is mutated by a given proba-

bility (pcell). The variation operators are informed by the

building-block hypothesis of genetic algorithms.

6 Experiments

6.1 Simulation Data

We built posynomial models for mosfet technology

TSMC 0.18u and voltage 1.8V . The values of the 9 MOS

parameters from SPICE simulation for an NMOS transistor

were simulated and logged. The range for width and length

is from 0.18u to 20u with grid size of 0.1u. The current

ranged from 0 to 5mA. All points out of saturation were fil-

tered and removed. V ds is an extra degree of freedom not

included in the models as of now. Thus, only points at the

edge of saturation were retained and rest were filtered out.

This left approximately 70, 000 points for modeling.

6.2 Experimental Setup

We used the proposed genetic algorithm to evolve posyn-

omial models for 9 mos model output variables in terms of

its W, L and I. We sampled 2000 points uniformly from

the complete set for fitness evaluation. Each genotype of

generation 0 is initialized using a uniform random distribu-

tion bounded by [−3, 3] for each cell element. The number

of rows in the genome is 5. The choice parameter is ran-

domly initialized to 1 or 0 such that the average number of

terms per individual in the initial generation is 3. We use a

generation based GA with tournament selection [18] . The

4

population size is 50 and tournament size is 6. The genetic

algorithm parameters are given in Table 1.

Parameter Value

Initial λ 1

λ rate Halved every 20 generations

pcrossover 0.5

Mixing Ratio 0.7

pcell 0.5

pzero term 0.7

pnon zero term 0.3

Table 1. GA Parameters

6.3 Results

A comparison of the normalized root mean-square

(RMS) error (in percent) [17] of models created by com-

pared approaches is shown in Table 2.1 The results of our

algorithm are in the 5th column. The sixth column of the

table shows the percentage improvement of our algorithm

over the best of the three compared approaches. We evolved

posynomials for all 9 mos output variables using the pro-

posed genetic algorithm. We ran 2 runs for each output vari-

able for 1000 generations. In each generation, the coeffi-

cients of the best individual and its error were re-determined

according to the complete data set. The posynomial expres-

sion which gave the least error for complete data over all

runs and generations was used as the output of the algo-

rithm.

For comparison, we designed monomials and piecewise

monomials (PWM) using two published methods (reported

in columns 2 and 3 of Table 2 respectively): 1. Log re-

gression [2] was done to find a set of coefficients and expo-

nents. The exponents and coefficients were re-tuned to min-

imize MSE using a gradient-descent method in the second

step; 2. Piecewise monomial modeling approach [15] (code

was received from the author) was used to build a model

for the 2000 sampled points and the error was calculated

on all the 70,000 points. We used an initial partition size

of 2, 5, 10 and 15 and gave 10 trials for each of these set-

ting. The model with the highest accuracy of all these runs

is reported here. In the third approach, we improved upon

the monomials created using log regression [2]. We fix the

exponents of the model, however re-learn the coefficient of

the monomial and an extra constant by a QP formulation

(constrained linear regression). This results in a degenerate

two-term posynomial (referred as 2P) containing a mono-

mial term and a constant.

It can be seen that the posynomial models outperform all

the other modeling approaches for all parameters except in

1Test and train error are not reported. The 70,000 simulation points

cover the whole MOSFET operating range. There is no unseen data here.

the case of Vt, where the piece-wise monomial gives better

accuracy than posynomial models. Between 2-term posyn-

omials and piece-wise monomials, there is no clear better

approach and they outperform each other for different pa-

rameters. Our posynomial modeling approach brings the

normalized RMS error under 3%.

Param Mon. PWM. 2P Posy. Imp

gm 4.62 31.64 3.15 1.82 42

gds 1.92 1.74 1.67 0.31 85

V eff 1.69 6.30 1.69 0.71 58

V t 6.05 2.60 6.03 3.01 –

V dsat 1.56 0.86 1.56 0.81 6

Cgd 0.37 0.27 1.33 0.06 78

Cgs 2.09 45.15 2.07 1.97 5

Cdb 2.81 0.16 2.36 0.14 12

Ro 0.47 0.08 0.24 0.05 37

Table 2. Comparison of Normalized Root MSE
(%) for different models. Right-most column
is improvement of our models.
The above results indicate that the mono-

mial/posynomial models are highly accurate with error

being less than 10% in all cases. However, this isn’t

completely true due to the following reason. The MOS

parameters span several orders of magnitude, for instance

in the given data, gm, Ro and Cgs span 4, 6 and 3

orders of magnitude respectively. This implies that the

mean square error metric may sacrifice the accuracy of

lower-values heavily for better higher values. This can

be remedied by using the mean relative absolute error

(MRAE) formulation for fitting the model. MRAE is

defined as mean(|y − yfitted|/|y|). This error metric sums

the percent error for each point, giving accuracy of lower

and higher-valued point equal weights. We modified our

algorithm by modifying the fitness evaluation to optimize

coefficients for MRAE using a linear program. The

results are compiled in Table 3. It is not clear how other

approaches can be extended to MRAE measure since they

use log transformation before fitting.

Parameter MRAE (%)

gm 13.00
gds 7.21
V eff 66.20
V t 0.35
V dsat 1.09
Cgd 0.28
Cgs 4.32
Cdb 0.18
Ro 9.96

Table 3. MRAE for evolved posynomials

5

The results show that the error for V eff is alarmingly

high. Also, gm, gds and ro have moderately high error.

Other errors are under acceptable range. The algorithm

needs to be further improved to bring all errors in 5% ac-

curacy. An alternative is to limit the range of parameters

to only the known useful areas, however this comes at the

price of optimality.

7 Conclusion and future work

The present work proposes an algorithm for automatic

posynomial modeling of MOSFET parameters for use in

GP. The approach is a generic way for posynomial mod-

eling irrespective of the kind of data. It is the only ap-

proach which can automatically design posynomials with

real-valued exponents and is easily extensible to different

error metrics. We show how the given approach is superior

to other published approaches for monomial or piece-wise

monomial modeling.

This is our first step towards reducing the inaccuracy

in circuit optimization using GP. The models are based on

simulation data and are reusable multiple times for a given

technology. The algorithm can be used for building mod-

els for different devices such as MESFETS, Si-Ge devices,

RF devices, etc. The created models though considerably

accurate and always better in terms of RMS error than any

existing models, need some more innovation in algorithms

to be completely satisfactory. GP, if made accurate, offers

scalability. The power of this scalability is immense should

it prove able to address robustness, which is inefficient in

simulation based approach. Beyond reducing model error

accuracy further, the next larger challenge in GP is to auto-

matically derive accurate models of circuit performance pa-

rameters in terms of MOS parameters. These are currently

hand-written and inaccurate. The final challenge, which

rounds out our GP research agenda is to be able to express

transient specifications through reusable models.

Acknowledgements

We would like to thank Vladimir Stojanovic, Joel Daw-

son and Ranko Sredojevic for their assistance with test data

and helpful discussions.

References

[1] H.-G. Beyer and U.-M. O’Reilly, editors. Genetic and Evo-
lutionary Computation Conference, GECCO 2005, Proceed-
ings, Washington DC, USA, June 25-29, 2005. ACM, 2005.

[2] S. Boyd, S.-J. Kim, L. Vaudenberghe, and A. Hassibi. A

tutorial on geometric programming. In Technical report, EE
Department, Stanford University, 2004.

[3] M. Chu, D. J. Allstot, J. M. Huard, and K. Y. Wong. NSGA-

based parasitic-aware optimization of a 5GHz low-noise

VCO. ASP-DAC, 00:169–173, 2004.
[4] D. M. Colleran, C. Portmann, A. Hassibi, C. Crusius, S. S.

Mohan, S. Boyd, T. H. Lee, and M. Hershenson. Optimiza-

tion of phase-locked loop circuits via geometric program-

ming. In IEEE CICC, pages 377–380, 2003.
[5] W. Daems and G. Gielen. Simulation-based generation of

posynomial performance models for the sizing of analog in-

tegrated circuits. IEEE Trans. CAD of Integrated Circuits
and Systems,, 22(5):517–534, 2003.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast

elitist non-dominated sorting genetic algorithm for multi-

objective optimisation: NSGA-II. In PPSN, pages 849–858,

2000.
[7] T. Eeckelaert, W. Daems, G. Gielen, and W. Sansen. Gen-

eralized posynomial performance modeling. In DATE ’03,

page 10250, 2003.
[8] F. M. El-Turky and E. E. Perry. BLADES: an artificial intel-

ligence approach to analog circuit design. IEEE Trans. on
CAD of Int. Circuits and Systems, 8(6):680–692, 1989.

[9] G. Gielen, K. Swings, and W. Sansen. An intelligent design

system for analogue integrated circuits. In EURO-DAC ’90,

pages 169–173, 1990.
[10] R. Harjani, R. A. Rutenbar, and L. R. Carley. OASYS: a

framework for analog circuit synthesis. IEEE Trans. on CAD
of Integrated Circuits and Systems, 8(12):1247–1266, 1989.

[11] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer, 2001.

[12] M. Hershenson, S. Boyd, and T. Lee. GPCAD: A tool for

CMOS op-amp synthesis. In ICCAD, pages 296–303, 1998.
[13] M. Hershenson, S. S. Mohan, S. P. Boyd, and T. H. Lee. Op-

timization of inductor circuits via geometric programming.

In DAC, pages 994–998, 1999.
[14] X. Li, P. Gopalakrishnan, Y. Xu, and T. Pileggi. Robust ana-

log/rf circuit design with projection-based posynomial mod-

eling. In ICCAD ’04, pages 855–862, 2004.
[15] A. Magnani and S. Boyd. Convex piecewise-linear fitting.

In submission to J. Optimization and Engineering, 2006.
[16] P. Mandal and V. Visvanathan. CMOS op-amp sizing using a

geometric programming formulation. IEEE Trans. on CAD
of Integrated Circuits and Systems, 20(1):22–38, 2001.

[17] T. McConaghy, T. Eeckelaert, and G. Gielen. CAFFEINE:

Template-free symbolic model generation of analog circuits

via canonical form functions and genetic programming. In

Proc. DATE, volume 2, pages 1082–1087, Munich, 2005.
[18] M. Mitchell. An Introduction to Genetic Algorithms. MIT

Press, Cambridge, MA, USA, 1998.
[19] P. Siarry, G. Berthiau, F. Durdin, and J. Haussy. En-

hanced simulated annealing for globally minimizing func-

tions of many-continuous variables. ACM Trans. Math.
Softw., 23(2):209–228, 1997.

[20] B. D. Smedt and G. Gielen. WATSON: Design space bound-

ary exploration and model generation for analog and RF IC

design. IEEE Trans. on CAD of Int. Circuits and Systems,

22(2):213–224, 2003.
[21] S. K. Tiwary, P. K. Tiwary, and R. A. Rutenbar. Generation

of yield-aware pareto surfaces for hierarchical circuit design

space exploration. In DAC, pages 31–36, 2006.

6

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

