
Design Closure Driven Delay Relaxation Based on Convex Cost Network Flow∗

Chuan Lin Aiguo Xie Hai Zhou
EECS Department

Magma Design Automation Calypto Design Systems Northwestern University
Santa Clara, CA 95054 Santa Clara, CA 95054 Evanston, IL 60208
clin@magma-da.com axie@calypto.com haizhou@eecs.northwestern.edu

Abstract

Design closure becomes hard to achieve at physical layout
stage due to the emergence of long global interconnects.
Consequently, interconnect planning needs to be integrated
in high level synthesis. Delay relaxation that assigns ex-
tra clock latencies to functional resources at RTL (Register
Transfer Level) can be leveraged. In this paper we propose
a general formulation for design closure driven delay relax-
ation problem. We show that the general formulation can
be transformed into a convex cost integer dual network flow
problem and solved in polynomial time using the convex
cost-scaling algorithm in [1]. Experimental results validate
the efficiency of the approach.

1 Introduction

Design closure is said to occur when constraints from high
levels are satisfied at the low level. With the advent of
ultra deep sub micron era, achieving design closure is be-
coming harder and harder. Inaccuracy of system level pre-
dictions, unpredictability in circuit behavior, critical design
objectives, high degree of sensitivity among various design
objectives are among a few factors to name.

Delay relaxation is a technique at RTL (Register Trans-
fer Level) that relaxes the timing constraints of functional
resources by assigning extra clock latencies (or clock cycles),
called budgets, to them without violating any of the data
flow or scheduling constraints. The problem of delay re-
laxation with maximum sum of budgets is refereed to as
maximum budget delay relaxation problem. Polynomial al-
gorithms can be found in [12]. In [4], a polynomial optimal
algorithm was proposed using network flow technique. The
same technique was used in [16] for sequential budgeting.
It was shown in [15] that an RTL design with maximum
budget resulted in fewer design iterations and faster design
closure.

However, a design with maximum budget usually has
many critical edges (edges with zero latency slack) since the
budget of none of the resources can be further increased.
These critical edges will have tighter timing constraints in
later stages of placement and routing. On the other hand,
due to aggressive technology scaling and increasing oper-
ating frequencies, the delay of a global interconnect can
be longer than one clock period even with buffer insertion,
which makes the timing constraints on critical edges even
harder to satisfy.

In [17, 3, 13, 9, 10], wire pipelining was applied while
considering placement and availability of pipeline registers.

∗This work was partially done at Northwestern University and sup-
ported by the NSF under CCR-0238484.

In [17, 9, 10] retiming was explored to distribute pipeline
registers to fulfill communication buffering requirements on
global interconnects. Although retiming helps to relieve the
criticality of global interconnects, it cannot change the total
number of registers along a topological cycle. Therefore, we
need to integrate interconnect planning in high level syn-
thesis to reduce the complexity of physical layout stage and
leverage that burden on early stages of design flow.

Recently, researchers in [14] explored delay relaxation
for interconnect budgeting at RTL. They proposed to find
an RTL design with a maximal budget such that the num-
ber of non-critical edges is also maximized. Note that a
maximal budgeting only requires that the budget of none
of the resources can be further increased. In other words, a
maximum budgeting is necessarily a maximal budgeting but
the reverse is not true. They formulated the problem as a
mixed integer linear programming and proposed a heuristic
algorithm to solve it. Compared with an arbitrary maxi-
mal budget solution, design closure was achieved 2.8 times
faster on average using the solution given by their algorithm.
In addition, they found that the trade-off between resource
budgeting and interconnect budgeting can be further lever-
aged to improve circuit performance.

Our contribution in this paper is twofold. Firstly, we
propose a general formulation for design closure driven de-
lay relaxation problem. Unlike [14], our objective is a maxi-
mum budgeting, which is desirable in many applications [4].
We also relate the problem to retiming and propose a con-
vex retiming formulation. Secondly, we show that the gen-
eral formulation can be transformed into a convex cost in-
teger dual network flow problem and solved in polynomial
time by the approach in [1]. The transformed formulation
is also amicable to incorporating the trade-off between re-
source budgeting and interconnect budgeting. Experimental
results confirm the efficiency of the approach.

2 Problem formulation

We model a data flow graph (DFG) as a directed acyclic
graph (DAG) G = (V, E), where V is the set of inputs and
outputs of functional resources and E = E1∪E2 is the union
of two subsets: input-to-output relations E1 and intercon-
nects E2 among resources. Figure 1 illustrates an example
DFG and its corresponding DAG, where dashed edges are
in E1 and solid edges are in E2.

For all e ∈ E, we use d(e) ∈ Z+ (positive integer set) to
denote the original clock latencies (or clock cycles) on that
edge. For example, if e ∈ E1, d(e) could be the minimum
amount of clock cycles determined by the functionality of
that resource. We use b(e) ∈ Z+ to denote the budget we
assign on edge e ∈ E during delay relaxation. Each re-
source edge e ∈ E1 is associated with a concave function

δe such that δe

(
b(e)

)
∈ Z+ represents the benefit we gain

978-3-9810801-2-4/DATE07 © 2007 EDAA

+

+
+

-

*
(a) (b)

Figure 1: (a) A DFG and (b) its corresponding DAG.

by assigning b(e) budget on edge e. More latencies for a
resource means more possible slow-down in its logic compo-
nents, which can be transformed to improvements in area,
power dissipation, or other design quality metrics. Similarly,
each interconnect edge e ∈ E2 is associated with a concave

function λe such that λe

(
b(e)

)
∈ Z+ represents the budget-

ing gain on it. More latencies for an interconnect helps to
further relieve its criticality. Intuitively, concave functions
δe and λe help to distribute budgets evenly over all edges.
Without loss of generality, we assume that all concave func-
tions are linear between successive integers. We use T ∈ Z+

to denote the given latency upper bound at primary outputs
(POs).

We introduce t(v) to represent the arrival time at v ∈ V .
More specifically, t(v) is the maximum latency along any
path from primary inputs (PIs) to v. The validity of a delay
relaxation is defined by the following conditions.

P0(t)
4
=

(
∀v ∈ V : 0 ≤ t(v) ≤ T

)
P1(b)

4
=

(
∀e ∈ E : 0 ≤ b(e) ≤ T − d(e)

)
P2(t, b)

4
=

(
∀(u, v) ∈ E : t(v) ≥ t(u) + d(u, v) + b(u, v)

)
The condition P0 follows from the requirement that the

arrival times at each PO after delay relaxation should be no
larger than the given latency constraint T . For the same
reason, the condition P1 assigns a budget between 0 and
T−d(e) to each edge e ∈ E. The condition P2 computes the
arrival time at each vertex. Based on these conditions, we
can characterize a valid delay relaxation b by P (b), defined
as

P (b)
4
=

(
∃t : P0(t) ∧ P1(b) ∧ P2(t, b)

)
We use ∆(b) and Λ(b) to denote the total gain on E1 and

E2 respectively, i.e.,

∆(b)
4
=

∑
e∈E1

δe

(
b(e)

)
, Λ(b)

4
=

∑
e∈E2

λe

(
b(e)

)
.

The problem we want to solve can be formulated as fol-
lows.

Problem 1
Given a directed acyclic graph G = (V, E1, E2, d, δ, λ, T),
find a valid delay relaxation b with maximum ∆(b) such that
Λ(b) is also maximized.

This formulation is very general. δe and λe can be chosen
independently according to the application’s needs. For ex-
ample, maximum budget delay relaxation is given by choos-
ing δe

(
b(e)

)
= b(e), ∀e ∈ E1. If we set

λe

(
b(e)

)
=

{
0, if b(e) = 0
1, if b(e) > 0

for all e ∈ E2, we actually maximize the number of non-
critical edges. Both δe and λe defined above are concave.
Therefore, the problem of finding a maximum budget delay

relaxation with minimal number of critical edges is a special
case of Problem 1.

3 Transformation to a convex cost integer dual network
flow problem

The formulation of Problem 1 seems to imply a two-step
process, i.e., finding the delay relaxations b that maximize
∆(b) and then choosing among them the one that has the
maximum Λ(b). Intuitively, if these two objectives can be
appropriately combined into one equivalent alternative, then
we may be able to solve it efficiently in one step.

First of all, we define λs as follows.

λs
4
=

∑
e∈E2

(
max

0≤b(e)≤T−d(e)
λe

(
b(e)

)
− min

0≤b(e)≤T−d(e)
λe

(
b(e)

))
Note that λs is a constant under given d, λ and T .

Consider the following problem.

Problem 2

Maximize (λs + 1)∆(b) + Λ(b)

subject to P (b)

It turns out that a solution to the above problem is the
solution we want.

Theorem 1 A solution to Problem 2 is also a solution to
Problem 1.

Proof: Let b′ be a solution to Problem 1 and b∗ be a
solution to Problem 2. We first show that ∆(b∗) = ∆(b′).
Suppose otherwise ∆(b∗) 6= ∆(b′), we have ∆(b∗) < ∆(b′)
since b′ maximizes ∆(b) for all valid b. On the other hand,
since b∗ maximizes (λs + 1)∆(b) + Λ(b) and both b∗ and b′

are valid, we have

(λs + 1)∆(b∗) + Λ(b∗) ≥ (λs + 1)∆(b′) + Λ(b′),

that is, (λs +1)
(
∆(b′)−∆(b∗)

)
≤ Λ(b∗)−Λ(b′). Given that

∆(b′) and ∆(b∗) are in Z+, it follows that ∆(b′)−∆(b∗) ≥ 1.
Thus, Λ(b∗)− Λ(b) ≥ λs + 1. However, the definition of λs

implies that Λ(b∗) − Λ(b) ≤ λs, which is a contradiction.
Therefore, ∆(b∗) = ∆(b′).

We then show that Λ(b∗) = Λ(b′). Otherwise Λ(b∗) <
Λ(b′), thus (λs + 1)∆(b∗) + Λ(b∗) < (λs + 1)∆(b′) + Λ(b′),
which contradicts that b∗ maximizes (λs + 1)∆(b) + Λ(b).
Therefore, the theorem is true.

If we denote k = λs + 1, h = 1, and define

F̄e

(
b(e)

) 4
=

{
−kδ

(
b(e)

)
, if e ∈ E1

−hλ
(
b(e)

)
, if e ∈ E2

then we can rewrite Problem 2 as

Minimize
∑

e∈E
F̄e

(
b(e)

)
subject to P (b)

Note that F̄e is convex on each e ∈ E. This problem is
also known as convex cost integer dual network flow prob-
lem [1]. It is worthy to point out that the trade-off between
resource budgeting ∆(b) and interconnect budgeting Λ(b)
can be handled smoothly by changing ∆ and Λ.

4 Convex retiming formulation

In this section, we relate Problem 2 to retiming [8]. We
propose a convex retiming formulation for Problem 2 and

show that it can be solved by relocating the latencies in
the graph, which is similar to traditional retiming where
registers are relocated for performance/area optimization.

First of all, note that if t(v) > t(u) + d(u, v) + b(u, v) for

some edge (u, v) ∈ E1 in the solution, then δ(u,v)

(
b(u, v)

)
has to be the maximum over the range [0, T − d(u, v)] since
δ(u,v) is convex. We can modify δ(u,v) by assigning δ(u,v)(i) =

δ(u,v)

(
b(u, v)

)
for all b(u, v) ≤ i ≤ T − d(u, v). Similar mod-

ification applies to λe. By doing so, the modified problem
has a solution with all edges being critical, from which a so-
lution to the original problem can be easily generated. We
henceforth assume that there exists a solution to Problem 2
with all edges being critical after the budget assignment.

Such a budget assignment b0 can be obtained by the
following process. First of all, we compute the arrival time
at each vertex with respect to b(e) = 0, ∀e ∈ E, i.e., no
budgeting at all. After that, we assign b0(u, v) = T − t(u)
for each (u, v) with v being a PO, and assign b0(u, v) =
t(v) − t(u) for other edges. We use r : V → Z to represent
the number of latencies that are moved from the outgoing
edges to the incoming edges of each vertex. Denote

br(u, v)
4
= b0(u, v) + r(v)− r(u).

Consider the following problem.

Minimize
∑

e∈E
F̄e

(
br(u, v)

)
subject to br(u, v) ≥ 0, ∀(u, v) ∈ E

r(v) = 0, ∀v ∈ {PI, PO}

We refer to it as convex retiming formulation. The next
theorem shows that a solution to the convex retiming for-
mulation can be used to generate a solution to Problem 2.

Theorem 2 Let r∗ be a solution to the convex retiming
formulation. Then br∗(u, v) = b0(u, v) + r∗(v) − r∗(u),
∀(u, v) ∈ E, is a solution to Problem 2.

Proof: We first show that br∗ is valid, i.e., P (br∗). Let
t∗ be the arrival times with respect to br∗ , thus P2(t∗, br∗)
is true. With r∗(v) = 0, ∀v ∈ {PI, PO}, the number of
latencies along any path from PI to PO cannot be changed
by retiming, and thus are kept as T . Therefore, P0(t∗)
is true, which, together with P2(t∗, br∗), implies br∗(e) ≤
T − d(e), hence P1(br∗) is also satisfied. What remains is

to show that br∗ minimizes
∑

e∈E
F̄e

(
b(u, v)

)
.

Suppose otherwise that b′ is the solution to Problem 2

such that
∑

e∈E
F̄e

(
b′(e)

)
<

∑
e∈E

F̄e

(
br∗(e)

)
. Then, we

can obtain a valid retiming r′ from b′ such that r′(v) −
r′(u) ≥ b′(u, v) − b0(u, v), ∀(u, v) ∈ E. This is possible by
longest path computation on the acyclic graph G as follows.
First of all, let r′(i) = 0, ∀i ∈ {PI}. Consider any (u, v) ∈
E. Let p1 be the longest path to v, p2 be the longest path
to u, and p3 = p2 ∪ {(u, v)}. We use b(p) to denote the
latency of path p. Then r′(v) = b′(p1)− b0(p1) and r′(u) =
b′(p2)− b0(p2). Since b0 has no non-critical edges, any path
to v should have the same latency in b0. This is also true for
b′. Thus, b′(p1) − b0(p1) = b′(p3) − b0(p3). In other words,
r′(v) = r′(u) + b′(u, v) − b0(u, v), ∀(u, v) ∈ E. Consider
any PO j and the longest path p to it from a PI i, we have
r′(j) = r′(i) + b′(p) − b0(p). Since b′(p) = b0(p) = T , it
follows that r′(j) = r′(i) = 0. Therefore, r′ satisfies both
constraints of convex retiming. However,∑
e∈E

F̄e

(
br′(u, v)

)
=

∑
e∈E

F̄e

(
b′(e)

)
<

∑
e∈E

F̄e

(
br∗(u, v)

)
,

which contradicts that r∗ minimizes
∑

e∈E
F̄e

(
br(u, v)

)
. It

concludes the proof.
When both δe and λe are linear, the convex retiming

formulation is reduced to minimum area retiming [8], which
can be solved by a minimum cost flow algorithm. For general
convex functions, Ahuja et al. [1] showed that Problem 2 can
be transformed into a convex primal network flow problem
and solved in polynomial time by cost-scaling approach. We
review his approach in the following.

5 Transformation to a primal network flow problem

5.1 Constraint simplification

First of all, F̄e can be modified to eliminate the bounds on
b(e) as follows.

F ′e
(
b(e)

) 4
=

F̄e(0)−Mb(e), if b(e) < 0
F̄e

(
b(e)

)
, if 0 ≤ b(e) ≤ T − d(e)

F̄e

(
T − d(e)

)
+ M

(
b(e) + d(e)− T

)
, otherwise

where M is a sufficiently large number such that F ′e is still a

convex function and minimizing
∑

e∈E
F ′e

(
b(e)

)
subject to

only P0(t) and P2(t, b) will not have a solution that violates

P1(b). For example, M =
∑

e∈E
max0≤b(e)≤T−d(e) F̄e

(
b(e)

)
will suffice.

Similarly, the bounds on t(v) can also be eliminated by

adding into the objective a convex cost function Bv

(
t(v)

)
defined as follows.

Bv

(
t(v)

) 4
=

{ −Mt(v), if t(v) < 0
0, if 0 ≤ t(v) ≤ T
M

(
t(v)− T

)
, if t(v) > T

Together with the discussion in Section 4 that there ex-
ists a solution for which P2(t, b) is an equality constraint,
Problem 2 can be transformed to

Minimize
∑

e∈E
F ′e

(
b(e)

)
+

∑
v∈V

Bv

(
t(v)

)
subject to t(u)− t(v) = −d(u, v)− b(u, v), ∀(u, v) ∈ E

To further simplify it, let

w(e)
4
= −d(e)− b(e), ∀e ∈ E

Define function Fe

(
w(e)

)
such that Fe

(
w(e)

)
= F ′e

(
b(e)

)
,

which is illustrated in Figure 2.

b(e)
F'e(b(e))

0 T-d(e)-T -d(e)

Fe(w(e))
w(e)

Figure 2: Illustration of F ′e
(
b(e)

)
and Fe

(
w(e)

)
.

Note that Fe

(
w(e)

)
is also convex. Substituting F ′e

(
b(e)

)
by Fe

(
w(e)

)
, Problem 2 becomes

Minimize
∑

e∈E
Fe

(
w(e)

)
+

∑
v∈V

Bv

(
t(v)

)
subject to t(u)− t(v) = w(u, v), ∀(u, v) ∈ E

5.2 Problem transformation by Lagrangian relaxation

In this section we will apply Lagrangian relaxation [11] to
transform Problem 2 to a primal network flow problem. La-
grangian relaxation is a general technique for solving con-
strained optimization problems. In Lagrangian relaxation,
“troublesome” constraints are “relaxed” and incorporated
into the objective after multiplying them by constants called
Lagrangian multipliers, one multiplier for each constraint.
For given multipliers, the relaxed problem is called Lagrangian
subproblem. Finding the optimal multipliers under which
the Lagrangian subproblem attains the best objective value
is called Lagrangian multiplier problem.

The Lagrangian subproblem of Problem 2 is as follows.

L(x) = min
w,t

(∑
e∈E

Fe

(
w(e)

)
+

∑
v∈V

Bv

(
t(v)

)
−

∑
(u,v)∈E

x(u, v)
(
w(u, v) + t(v)− t(u)

))
,

where x(u, v) is the Lagrangian multiplier associated with
the constraint t(u)− t(v) = w(u, v). Note that∑

(u,v)∈E

x(u, v)
(
t(v)− t(u)

)
=

∑
v∈V

t(v)
(∑

(i,v)∈E

x(i, v)−
∑

(v,j)∈E

x(v, j)
)

Define

x(v, 0)
4
=

∑
(i,v)∈E

x(i, v)−
∑

(v,j)∈E

x(v, j), ∀v ∈ V

Substituting it into L(x) yields

L(x) = min
w,t

(∑
e∈E

(
Fe

(
w(e)

)
− x(e)w(e)

)
+

∑
v∈V

(
Bv

(
t(v)

)
− x(v, 0)t(v)

))
To simplify L(x), a vertex 0 is introduced into G as well

as edges (v, 0), ∀v ∈ V . Let G0 = (V 0, E0) be the resultant
DAG. We define

w(v, 0)
4
= t(v), F(v,0)

(
w(v, 0)

) 4
= Bv

(
t(v)

)
Then the Lagrangian subproblem becomes

L(x) = min
w

∑
e∈E0

(
Fe

(
w(e)

)
− x(e)w(e)

)
subject to

∑
(i,v)∈E0

x(i, v) =
∑

(v,j)∈E0

x(v, j), ∀v ∈ V 0

It is important to notice that, for a given x, each term

of
∑

e∈E0 Fe

(
w(e)

)
− x(e)w(e) is a function of w(e). Since

w(e) are independent among all edges e ∈ E0, the objective
is minimized only when each term of it is minimized. In
other words, we can minimize each term separately. Define

He

(
x(e)

) 4
= min

w

(
Fe

(
w(e)

)
− x(e)w(e)

)
, ∀e ∈ E0

Then it becomes L(x) =
∑

e∈E0 He

(
x(e)

)
. The Lagrangian

multiplier problem of Problem 2 can be formulated as fol-

lows.

L(x∗) = max
x

L(x) = max
x

∑
e∈E0

He

(
x(e)

)
subject to

∑
(i,v)∈E0

x(i, v) =
∑

(v,j)∈E0

x(v, j), ∀v ∈ V 0

This is a primal network flow problem. The constraint is
also known as flow conservation, i.e., incoming flow equals
outgoing flow. x is called a flow on G0 if it satisfies flow
conservation. For example, x(e) = 0 for all e ∈ E0 is a flow.

He

(
x(e)

)
is the gain function on e ∈ E0 with respect to

the flow x(e). The Lagrangian multiplier problem asks for
an optimal flow such that the total gain over G0 is maxi-
mized. The following theorem [2] establishes a connection
between Problem 2 and its corresponding Lagrangian mul-
tiplier problem.

Theorem 3 Let x∗ be a solution to the Lagrangian multi-
plier problem of Problem 2. Then L(x∗) equals the optimal
objective value of Problem 2.

6 Convex cost-scaling approach

In the following, we will characterize function He and elab-
orate the algorithm developed in [1] for computing x∗. In
Section 6.3 we describe how to use x∗ to construct a solution
to Problem 2.

6.1 Function He

(
x(e)

)
Consider the case when x(e) > M for some e ∈ E0, where M
is the large number we introduced in Section 5.1 to eliminate
the bounds on b(e). By the definition of Fe, we have

lim
w(e)→∞

(
Fe

(
w(e)

)
− x(e)w(e)

)
= lim

w(e)→∞

(
Mw(e)− x(e)w(e)

)
= −∞

Thus He

(
x(e)

)
= −∞ when x(e) > M . Recall that the

Lagrangian multiplier problem asks for an x∗ that max-

imizes
∑

e∈E0 He

(
x(e)

)
. It implies that we can assume

x∗(e) ≤M . Similarly, it can be shown that He

(
x(e)

)
= −∞

when x(e) < −M , which implies that x∗(e) ≥ −M . There-
fore we consider −M ≤ x(e) ≤ M , ∀e ∈ E0, in the La-
grangian multiplier problem.

Let ⊥(e) = −T and >(e) = −d(e) for e ∈ E, and ⊥(e) =
0 and >(e) = T for e ∈ E0 − E. For each e ∈ E0, we define

fe(θ)
4
= Fe(θ + 1)− Fe(θ), ⊥(e) ≤ θ ≤ >(e)− 1 (1)

Then He

(
x(e)

)
for −M ≤ x(e) ≤ M can be analytically

expressed by a set of linear segments specified in the next
lemma [1].

Lemma 1 He

(
x(e)

)
for −M ≤ x(e) ≤ M is a piecewise

linear concave function of x(e) as follows, where ⊥(e) < i <
>(e),

He

(
x(e)

)
=

Fe

(
⊥(e)

)
−⊥(e)x(e), if −M ≤ x(e) ≤ fe

(
⊥(e)

)
· · · · · ·

Fe(i)− ix(e), if fe(i− 1) ≤ x(e) ≤ fe(i)
· · · · · ·

Fe

(
>(e)

)
−>(e)x(e), if fe

(
>(e)− 1

)
≤ x(e) ≤ M

Figure 3 gives an illustration of He

(
x(e)

)
for Fe

(
w(e)

)
=

−1/w(e), ⊥(e) = −5 and >(e) = −1.

x(e)
-M 0.05

0.083

0.167 0.5 M

He(x(e))

Figure 3: Illustration of He

(
x(e)

)
.

6.2 Algorithm

Define cost function Ce

(
x(e)

)
= −He

(
x(e)

)
. The Lagrangian

multiplier problem can be alternatively restated as

Minimize
∑
e∈E0

Ce

(
x(e)

)
subject to

∑
(i,v)∈E0

x(i, v) =
∑

(v,j)∈E0

x(v, j), ∀v ∈ V 0

−M ≤ x(e) ≤M, ∀e ∈ E0

Notice that if Ce is linear, i.e., Ce

(
x(e)

)
= ρx(e) where ρ

is a constant, then the above problem is a minimum cost flow
problem, which can be solved in polynomial time [2]. For
general convex Ce, since it is piecewise linear, a straight-
forward approach is to represent Ce as a set of segments,
each of which is linear within a small range, and solve it
using any minimum cost flow algorithm. However, since the
number of segments for each e is >(e)−⊥(e) + 1, minimum
cost flow algorithms would not in general run in polynomial
time. Intuitively, if the minimum cost flow algorithm can
be modified to be aware of the change of cost when the flow
is changed, then we can apply it directly to Ce, which may
help to solve the problem more efficiently.

In [1], a polynomial time algorithm was developed for
general convex functions based on cost-scaling algorithm [6].

The cost-scaling algorithm defines pseudoflow x such that
x satisfies −M ≤ x(e) ≤ M for all e ∈ E but may violate
the flow conservation. For any pseudoflow x, the imbal-
ance of vertex v is defined as o(v) =

∑
(i,v)∈E0 x(i, v) −∑

(v,j)∈E0 x(v, j). If o(v) > 0, v is called an excess vertex.

The algorithm proceeds by constructing and manipulating
the residual graph G(x) defined as follows with respect to a
pseudoflow x. For each (u, v) ∈ E0, G(x) may contain two
edges: forward edge (u, v) and backward edge (v, u). For-
ward edge (u, v) has a cost c(u, v) equal to the right slope

of C(u,v)

(
x(u, v)

)
at x(u, v), and a capacity of cap(u, v) =

M − x(u, v). Backward edge (v, u) has a cost c(v, u) equal

to the negative of the left slope of C(u,v)

(
x(u, v)

)
at x(u, v),

and a capacity of cap(v, u) = x(u, v) − (−M). Note that

if C(u,v)

(
x(u, v)

)
= ρx(u, v), then c(u, v) = −c(v, u) = ρ.

The residual graph consists only of edges with positive ca-
pacities. The algorithm also maintains a value π(v) for each
v ∈ V 0, which is refereed to as the vertex potential.

For a given residual graph G(x) and a set of vertex poten-
tials, it defines the reduced cost of edge (u, v) as cπ(u, v) =
c(u, v)+π(v)−π(u). For a given value of ε, an edge (u, v) is
called admissible if −ε ≤ cπ(u, v) < 0. A flow or pseudoflow
x is called ε-optimal for some ε ≥ 0 if for some vertex

potential π, the following ε-optimality condition is satis-
fied: cπ(u, v) ≥ −ε for all (u, v) ∈ G(x). The cost-scaling
algorithm treats ε as a parameter and iteratively obtains
ε-optimal flows for successively smaller values of ε. Ini-
tially, ε is set to be the maximum edge cost (which is T
in our problem), thus any flow is ε-optimal. The algorithm
then performs cost-scaling phases by repeatedly applying
an improve-approximation procedure that transforms an ε-
optimal flow into an ε/2-optimal flow. When ε < 1/|V 0|,
the algorithm terminates with an optimal flow x∗. The
pseudocode of the algorithm is presented in Figure 4.

Algorithm convex cost-scaling

Input: A circuit G = (V 0, E0) and Ce, ∀e ∈ E0

Output: An optimal flow x∗.

π ← 0 and ε← maxe∈E0 >(e);
Let x∗ be any flow;

While (ε ≥ 1/|V 0|) do
improve-approximation(ε, x∗, π);
ε← ε/2;

Return x∗;

Procedure improve-approximation(ε, x, π)
For each admissible edge (u, v) ∈ E0 do

Send q(u, v) flow on (u, v);
Compute flow imbalance on each vertex;
While there is an excess vertex u do

If there is an admissible edge (u, v) then

push min
(
o(u), q(u, v)

)
flow on (u, v);

Else
π(u)← π(u) + ε/2;

Figure 4: Pseudocode of convex cost-scaling algorithm.

The basic operation in the improve-approximation pro-
cedure is to select an excess vertex u with o(u) > 0. When
u has no admissible edges, its potential is increased by ε/2;
otherwise, it performs pushes on admissible edges emanat-

ing from it. If Ce

(
x(e)

)
is linear, the amount of flow pushed

on an admissible edge (u, v) will be the minimum of the ex-

cess and the edge capacity, i.e., min
(
o(u), cap(u, v)

)
. How-

ever, when Ce

(
x(e)

)
is piecewise linear, the cost (slope) will

change with the change of the flow. For this case, [1] showed

that the amount of flow should be min
(
o(u), q(u, v)

)
, where

q(u, v) is defined as follows. If (u, v) is a forward edge, then

q(u, v) =
{

M − x(u, v), if π(u)− π(v) ≥ >(u, v)
f(u,v)(bπ(u)− π(v)c)− x(u, v), otherwise

where f(u,v) is defined in (1) in Section 6.1. If (u, v) is a
backward edge, then

q(u, v) =
{

M + x(v, u), if π(v)− π(u) ≤ ⊥(v, u)
x(v, u)− f(v,u)(bπ(v)− π(u)c), otherwise

Intuitively, we push the flow along the current linear seg-
ment of the piecewise linear function until we hit a joint
point where the cost is about to change. The change of
flow is followed by an update in edge cost (slope) based on
Lemma 1. The procedure terminates when there is no more
excess vertex. Note that the replacement of cap(u, v) by
q(u, v) and the following cost update is the only difference
between a convex cost-scaling algorithm and a linear cost-
scaling algorithm.

The correctness and complexity of the algorithm is given
in the next theorem [1].

Theorem 4 The convex cost-scaling algorithm in Figure 4
solves the Lagrangian multiplier problem of Problem 2 in
O(|V ||E| log(|V |2/|E|) log(|V |T)) time, where the complex-
ity of the improve-approximation procedure is bounded by
O(|V ||E| log(|V |2/|E|)) and O(log(|V |T)) bounds the num-
ber of iterations.

The practical efficiency of the algorithm is confirmed by
our experimental results in Section 7.

6.3 Solution transformation

The convex cost-scaling algorithm upon termination gives an
optimal flow x∗ and the corresponding potentials π. Both x∗

and π may not be integer. However, since each cost function
is piecewise linear, it follows that there always exists an inte-
ger optimal potential π∗. To determine it, we construct the
residual graph G(x∗) with respect to x∗ and solve a short-
est path problem to determine the shortest path distance
d(v) from vertex 0 to every other vertex v ∈ V in terms
of costs. Since all edge costs in G(x∗) are integer, d is also
integer. Then π∗(v) = −d(v), ∀v ∈ V , gives an integer po-
tential for the Lagrangian multiplier problem. The solution
(t∗, w∗, b∗) to Problem 2 is obtained by assigning t∗ = π∗,
w∗(u, v) = t∗(u)− t∗(v), and b∗(u, v) = −d(u, v)−w∗(u, v),
∀(u, v) ∈ E.

7 Experimental results

We used the linear cost-scaling algorithm by Goldberg in [5]
and adapted it to convex cost case. We set δe and λe as
in Section 2 so that we focus on the problem of finding a
maximum budget delay relaxation with minimal number of
critical edges. We used the test files extracted from Medi-
aBench [7]. In addition, since the test files are relatively
small, we included ISCAS-85 benchmark suite. Note, how-
ever, that we treated each gate as a resource. This is re-
flected by adding DFG as a postfix to the test names in Ta-
ble 1. Without loss of generality, the original clock latency
was set to 1 for each resource and 0 for each interconnect.
The latency constraint T was set to the maximum number
of resources in a PI-to-PO data flow path. All tests were
conducted in a PC with a 2.4 GHz Xeon CPU, 512 KB
2nd level cache memory and 1GB RAM. The results are re-
ported in Table 1, where column “|E∗2 |” lists the number of
non-critical interconnects in the obtained optimal budget-
ing solution, column “

∑
b∗” lists the sum of budgets, which

is the maximum for the test, and column “t(sec)” lists the
running time in seconds.

Table 1: Experimental Results
name |V | |E1| |E2| T |E∗2 |

∑
b∗ t(sec)

inv1 400 200 197 9 2 2 0.01
inv2 430 215 211 16 17 32 0.01
inv3 702 351 355 15 14 14 0.02
jpg1 234 117 127 16 9 15 0.01
jpg2 530 265 262 13 5 5 0.01
mat1 218 109 112 10 0 0 0.00
mat2 192 96 104 14 0 0 0.00
rot1 160 80 73 6 3 3 0.00
c1908DFG 1760 880 1420 39 236 1414 0.12
c2670DFG 2386 1193 1850 31 334 1381 0.19
c3540DFG 3338 1669 2633 46 404 1298 0.53
c5315DFG 4614 2307 3878 48 712 8109 0.91
c6288DFG 4832 2416 4288 123 1182 1702 1.57
c7552DFG 7024 3512 5836 42 1187 6674 1.57

It can be seen that the algorithm is very efficient. All
MediaBench test can be finished in 0.02 second. The running
times appear to scale well with problem size in ISCAS-85.

Once an optimal budgeting solution is found, the corre-
sponding data flow graph can be implemented, for example,
using the synthesis flow proposed in [14], which includes the
usage of Synplicity Synplify Pro 7.7.1 followed by Xilinx 6.3
Place And Route tool. They are omitted here to avoid rep-
etition.

8 Conclusion

A general problem formulation is proposed for design closure
driven delay relaxation. We show that it can be transformed
to a convex cost integer dual network flow problem. It can
also be viewed as a convex retiming problem. When cost
functions are linear, it is reduced to minimum area retim-
ing. The proposed formulation is amicable to incorporating
the trade-off between resource budgeting and interconnect
budgeting. Using Lagrangian relaxation technique, the dual
network flow problem is further transformed to a primal net-
work flow problem, which can be solved in polynomial time
by the convex cost-scaling algorithm in [1].

References

[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the
convex cost integer dual network flow problem. Management
Science, 49(7):950–964, July 2003.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
Flows: Theory, Algorithms, and Application. Prentice Hall,
1993.

[3] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang. Architec-
tural synthesis integrated with global placement for multi-
cycle communications. In ICCAD, pages 536–543, 2003.

[4] S. Ghiasi, E. Bozorgzadeh, S. Choudhary, and M. Sar-
rafzadeh. Unified theory of timing budget management. In
ICCAD, pages 653–659, 2004.

[5] A. V. Goldberg. An efficient implementation of a scaling
minimum-cost flow algorithm. Journal of Algorithms, 22:1–
29, 1997.

[6] A. V. Goldberg and R. E. Tarjan. Solving minimum cost
flow problem by successive approximation. In ACM Sympos.
Theory Comput., pages 7–18, 1987.

[7] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communications systems. In International Symposium
on Microarchitecture, pages 330–335, 1997.

[8] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing
synchronous circuitry by retiming. In Advanced Research
in VLSI: Proc. of the Third Caltech Conf., pages 86–116,
Rockville, MD, 1983. Computer Science Press.

[9] C. Lin and H. Zhou. Wire retiming as fixpoint computation.
IEEE TVLSI, 13(12):1340–1348, December 2005.

[10] C. Lin and H. Zhou. Optimal wire retiming without binary
search. IEEE TCAD, 25(9):1577–1588, September 2006.

[11] D. G. Luenberger. Linear and nonlinear programming.
Addison-Wesley, Reading, Massachusetts, 1984.

[12] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa. Gener-
ation of Performance Constraints for Layout. IEEE TCAD,
8(8):860–874, August 1989.

[13] V. Nookala and S. S. Sapatnekar. A method for correcting
the functionality of a wire-pipelined circuit. In DAC, pages
570–575, 2004.

[14] L. Singhal and E. Bozorgzadeh. Fast timing closure by inter-
connect criticality driven delay relaxation. In ICCAD, pages
792–797, 2005.

[15] A. Srivastava, S. O. Memik, B.-K. Choi, and M. Sarrafzadeh.
Achieving design closure through delay relaxation parame-
ter. In ICCAD, pages 54–57, 2003.

[16] C.-Y. Yeh and M. Marek-Sadowska. Minimum-area sequen-
tial budgeting for FPGA. In ICCAD, pages 813–817, 2003.

[17] H. Zhou and C. Lin. Retiming for wire pipelining in system-
on-chip. IEEE TCAD, 23(9):1338–1345, September 2004.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

