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Abstract

We present a decomposition strategy to speed up constraint op-
timization for a representative multiprocessor scheduling problem.
In the manner of Benders decomposition, our technique solves re-
laxed versions of the problem and iteratively learns constraints to
prune the solution space. Typical formulations suffer prohibitive
run times even on medium-sized problems with less than 30 tasks.
Our decomposition strategy enhances constraint optimization to
robustly handle instances with over 100 tasks. Moreover, the ex-
tensibility of constraint formulations permits realistic application
and resource constraints, which is a limitation of common heuris-
tic methods for scheduling. The inherent extensibility, coupled
with improved run times from a decomposition strategy, posit con-
straint optimization as a powerful tool for resource constrained
scheduling and multiprocessor design space exploration.

1. Introduction

Static compile time task allocation and scheduling is an impor-
tant step in deploying concurrent applications on multiprocessors.
When the application workload and parallel tasks are known at
compile time, it is viable to determine an application mapping stat-
ically. Signal processing applications derived from static data flow
specifications can be statically scheduled on multiprocessors [1].
Static scheduling is also relevant to rapid design space exploration
(DSE) for microarchitectures and systems [2].

Kwok and Ahmed present a comprehensive taxonomy of static
scheduling algorithms to map a directed acyclic task graph to a
network of processors [3]. Their survey indicates that the fastest
methods are heuristics based on list scheduling. However, heuris-
tics are inherently “short-sighted” and provide no guarantee of
optimality. But besides speed and optimality, another important
metric is the extensibility of an approach: a measure of how easy
it is to accommodate practical implementation and resource con-
straints. For instance, in a DSE framework, the result of a cer-
tain mapping imposes new restrictions on the application and mi-
croarchitecture to guide exploration. Unfortunately, most heuris-
tic methods are not easily extensible. They are customized for a
specific problem and will have to be reworked each time new as-
sumptions or constraints are imposed. Tompkins corroborates this
observation that “(approximation heuristics) lack the complexity
necessary for modeling any real world scheduling problem” [4].

Constraint optimization formulations, such as Mixed Integer
Linear Programming (MILP) and Constraint Programming (CP),
are naturally extensible. For example, Thiele proposes using
MILP to solve a scheduling problem with complex resource con-
straints on memory size, communication bandwidth and access

conflicts to memories and buses [5]. However, the drawback of
using a generic solver is the significant computation cost. In pre-
vious work related to DSE frameworks, we also adopted MILP on
account of its extensibility [6]. However, the solver failed to find
even a single non-optimal solution different from a trivial one for
many medium-sized problems with fewer than 30 tasks.

In this paper, we present a decomposition strategy to speed
up constraint optimization that is applicable to many variants of
the static scheduling problem with diverse implementation and
resource constraints. The basic idea is to divide the scheduling
problem into a constraint optimization “master” problem and a
fast graph-theoretic “sub” problem and solve them iteratively. The
master solves a simplified optimization problem and generates trial
solutions. The sub problem analyzes these solutions and in turn
learns constraints to incrementally prune inferior parts of the so-
lution space. The master problem preserves the generality of con-
straint optimization, while the sub problem computation is special-
ized to quickly analyze partial solutions, derive tight lower bounds,
and efficiently direct search in the master problem. This approach
is inspired by the more general Benders decomposition technique
of “learning from one’s mistakes” [7].

In order to demonstrate the effectiveness of our decomposi-
tion strategy for constraint optimization, we apply it to a repre-
sentative static scheduling problem. We evaluate its performance
against two competitive approaches: an MILP formulation [4] and
a list scheduling heuristic [8]. We show that our approach can ro-
bustly handle large problem instances with over 100 tasks, outdo-
ing MILP and other existing constraint formulations. We also dis-
cuss how practical implementation and resource constraints can be
enforced, and why these extensions may be difficult to accommo-
date in heuristic methods. Thus, the decomposition strategy retains
the extensibility of constraint optimization and improves solver
performance. We advance this as a general solution technique that
has significant potential for many variants of the scheduling prob-
lem with realistic implementation and resource constraints.

This paper is organized as follows. Section 2 states the repre-
sentative scheduling problem. Section 3 describes existing MILP
and list scheduling approaches to solve this problem. Section 4
details our decomposition strategy. Section 5 presents results and
evaluates the performance and extensibility of these approaches.
Section 6 summarizes our work.

2. Problem Description

We consider a representative static scheduling problem for
which we shall demonstrate our approach. The objective is to
schedule a task dependence graph with communication delays on
a multiprocessor to minimize schedule length, or makespan. The
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input task graph is a directed acyclic graph (DAG) G = (V, E),
where vertexes V = {v1, . . . , vn} are computation tasks, and di-
rected edges E ⊆ V × V denote dependence constraints and data
transfers between tasks. The target multiprocessor, denoted by
P = {p1, . . . , pm}, is a fully connected network of m identical
processors. Each task is executed sequentially without preemption
on a single processor. The execution time for task v ∈ V is given
by w(v). The communication delay c((v1, v2)) along any edge
(v1, v2) ∈ E corresponds to the latency due to data transfer when
tasks v1 and v2 are executed on different processors. When both
tasks are assigned to the same processor no latency is incurred.
Each processor is assumed to contain dedicated communication
hardware so that computation can be overlapped with communi-
cation. An example task dependence graph with execution time
and communication delay annotations is displayed in Figure 1.
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Figure 1: An example task dependence graph with annotations for execu-
tion time of each task and communication delay of each edge (source: [8]).

Given a task dependence graph G = (V, E) and a set of pro-
cessors P , a valid allocation A is a function A : V → P that
assigns every task in V to a single processor in P . For a valid allo-
cation, a valid schedule S is a function S : V → �+ that assigns
a non-negative start time to every task and satisfies the following
three conditions:

∀(v1, v2) ∈ E (dependence constraints),

(a) S(v2) ≥ S(v1) + w(v1)

(b) A(v1) �= A(v2) ⇒ S(v2) ≥ S(v1) + w(v1) + c((v1, v2))

∀v1, v2 ∈ V, v1 �= v2 (ordering constraints),

(c) A(v1) = A(v2) ⇒
S(v1) ≥ S(v2) + w(v2) ∨ S(v2) ≥ S(v1) + w(v1) .

The makespan of the schedule S is defined as: maxv∈V S(v) +
w(v). The objective of the scheduling problem is to compute a
valid allocation A and schedule S with minimum makespan.

3. Related Approaches

Various heuristic algorithms, branch-and-bound methods, evo-
lutionary algorithms and constraint formulations have been de-
vised for the representative scheduling problem in Section 2 [3].
We review two different, yet competitive approaches, which we
later use to evaluate our solution.

3.1. MILP Formulations

The static scheduling problem has lent itself to a variety of
MILP formulations [5] [6]. These are typically “single-pass” for-

mulations (the problem constraints are presented at the start of
execution) intended for a commercial MILP solver like ILOG
CPLEX [9], and do not advocate any decomposition or branching
strategies. From experiments, we observed that an MILP model
due to Tompkins based on overlap variables was superior to oth-
ers over a large set of examples [4]. In Section 5, we evaluate our
approach relative to this formulation.

3.2. A List Scheduling Heuristic using Dynamic Levels

List scheduling assigns a priority to each task and schedules
them in descending order of priority. Sih and Lee proposed a
dynamic level scheduling algorithm (DLS), which accounted for
communication delays in list scheduling [8]. The DLS algorithm
uses an attribute called dynamic level to assess the priority of every
task-processor pair and selects the pair with the highest dynamic
level at each scheduling step. Independent benchmarking efforts
for static scheduling algorithms due to Kwok and Ahmad [3] and
Davidović and Crainic [10] have endorsed the effectiveness of the
DLS algorithm for scheduling task graphs onto a bounded num-
ber of processors. The algorithm runs on problem instances with
over 200 tasks in seconds, and the results are usually close to the
minimum makespan.

4. Decomposition-based Constraint Optimization

The objective is to improve the performance of constraint op-
timization formulations for the static scheduling problem in Sec-
tion 2. Our solution scheme is a problem decomposition with two
components which are solved iteratively: a constraint optimiza-
tion “master” problem, and a graph-theoretic “sub” problem. In-
stead of solving a complex optimization problem in one pass, the
decomposition approach iteratively solves simpler versions of the
same problem and learns constraints at each iteration to prune the
solution space.

Algorithm 1 DA(G, w, c, P ) → mspan

1 mspan = ∞
2 φ = empty CNF formula
3 BASECONSTRAINTS(G,w, c, P, φ)

4 while (true)

// master problem
5 xSAT =SATSOLVE(φ)
6 if (xSAT = UNSAT) return mspan

// sub problem
7 G′ = UPDATEGRAPH(G,xSAT )
8 if (G′ contains a cycle)
9 CYCLECONSTRAINTS(G′, xSAT , φ))
10 else
11 mspan = min{mspan, MAKESPAN(G′) }
12 PATHCONSTRAINTS(G′, w, c, mspan, xSAT , φ)

The basic flow of our decomposition approach is outlined in
Algorithm 1. The constraints for the master problem are formu-
lated in conjunctive normal form (CNF) (line 3). Our choice of a
CNF-based encoding is motivated in part by the ease of incorporat-
ing learned constraints from the sub problem as Boolean clauses.



We use a satisfiability (SAT) solver to solve the constraint opti-
mization master problem (line 5) [11]. A satisfiable solution to the
master problem allocates tasks to processors and orders all tasks
allocated to the same processor. The sub problem inspects the sat-
isfying assignment and updates the dependence graph to reflect
task orderings within each processor (line 7). One of two possible
scenarios occur next. (a) There are cyclic dependencies involv-
ing tasks assigned to the same processor. These may occur due
to the task ordering selected by the satisfying assignment. In this
case, the sub problem records these cycles as constraints for the
master problem to avoid revisiting solutions containing these cy-
cles in future iterations (line 9). (b) No cyclic dependencies exist
between tasks. In this case, the result of the master problem is a
valid allocation and a valid schedule. The sub problem computes
the makespan of this schedule and conditionally updates the best
makespan (line 10). It then adds constraints to the master problem
to prune parts of the solution space that are guaranteed to contain
inferior schedules with makespans greater than the best makespan
(line 11). The constraints learned in scenarios (a) and (b) prune
out superfluous solutions and reduce the solution space that the
master problem must search to find the optimum. Alternatively, if
the master problem itself is unsatisfiable, then the best makespan
seen thus far is the minimum makespan for the static scheduling
problem (line 6).

4.1. Master Problem Formulation

There are three sets of Boolean variables in the CNF formula-
tion of the master problem:

∀v ∈ V, ∀p ∈ P,

xa(v, p) =

{
1 : if task v assigned to processor p
0 : else

∀(v1, v2) ∈ E,

xc(v1, v2) =




1 : if tasks v1 and v2 are assigned
to different processors

0 : else

∀v1, v2 ∈ V, (v1, v2) /∈ ET , (v2, v1) /∈ ET ,

xd(v1, v2) =

{
1 : if task v1 precedes task v2

0 : else

Allocation variables xa indicate task assignment to processors.
Communication variables xc indicate if the communication de-
lay is incurred between two dependent tasks (this occurs when
the tasks are assigned to different processors). Ordering variables
xd indicate an assumed precedence between two non-dependent
tasks when assigned to the same processor. We denote by
GT = (V T , ET ), the transitive closure of the directed graph
G = (V, E). Then two tasks v1 and v2 are non-dependent if
(v1, v2) /∈ ET and (v2, v1) /∈ ET . No dependence can be in-
ferred between v1 and v2 in G, hence the master problem selects
an ordering between v1 and v2 when they are assigned to the same
processor.

There are three types of base constraints for the master prob-
lem (see adjacent column). Constraints A1 and A2 are allocation
constraints which assign each task to exactly one processor. Con-
straint A2 specifically emphasizes that a conflict occurs if a task
is assigned to two processors. Constraint C1 determines when

a communication delay is incurred between two dependent tasks.
The value of the communication variable xc(v1, v2) depends en-
tirely on the values of the allocation variables for v1 and v2. Never-
theless, using xc as a primary variable enables the sub problem to
record compact constraints with these variables. Constraints D1
and D2 enforce the selection of a valid order between two non-
dependent tasks assigned to the same processor. These constraints
create a total order among all tasks in a processor.

∀v ∈ V,

(A1)
( ∨

p∈P

xa(v, p)
)

∀v ∈ V, ∀p1, p2 ∈ P, p1 �= p2,

(A2) xa(v, p1) ∧ xa(v, p2) ⇒ 0

∀(v1, v2) ∈ E, ∀p1, p2 ∈ P, p1 �= p2,

(C1) xa(v1, p1) ∧ xa(v2, p2) ⇒ xc(v1, v2)

∀v1, v2 ∈ V, (v1, v2) /∈ ET , (v2, v1) /∈ ET , ∀p ∈ P,

(D1) xa(v1, p) ∧ xa(v2, p) ⇒ xd(v1, v2) ∨ xd(v2, v1)

(D2) xd(v1, v2) ∧ xd(v2, v1) ⇒ 0

4.2. Sub Problem Decomposition Constraints

A satisfiable solution xSAT to the master problem assigns val-
ues to the xa, xc and xd variables consistent with the base con-
straints and additional learned constraints from previous iterations.
The xa variables assigned to 1 generate a valid allocation A,
which allocates each task to exactly one processor. The xd vari-
ables assigned to 1 denote assumed dependence edges between
non-dependent tasks in G that are assigned to the same processor
under A. Thus, the solution xSAT of the master problem is a valid
allocation A and an updated task graph, G′ = (V, E′), where:

E′ = E ∪
{

(v1, v2) | xd(v1, v2) ∧(∃p ∈ P : xa(v1, p) ∧ xa(v2, p)
)

}
.

The sub problem analyzes the allocation A and the updated
graph G′ and learns constraints to direct search in the master prob-
lem. As an example, consider the problem of statically schedul-
ing the task graph in Figure 1 on a 2-processor system. Figure 2
presents two different solutions derived from the master problem.
The assignments to the xa and xc variables are identical in (a) and
(b). They share the same valid allocation A, as listed in Figure 2.
Solutions (a) and (b) differ only in their assignments of the vari-
ables xd(v3, v7) and xd(v7, v3). Consequently, the direction of
the assumed dependence edge between v3 and v7 is different in
(a) and (b).

Solution (a) contains a cycle involving tasks v3, v4 and v7,
which prohibits derivation of any valid schedule. The sub prob-
lem detects this cycle and encodes it as a constraint for the master
problem to avoid any solution containing this cycle in future iter-
ations. Specifically, the cycle constraint in (a) is: xd(v4, v7) ∧
xd(v7, v3) ⇒ 0. Since the original graph G is a DAG, a cy-
cle in G′ arises only due to assumed dependence edges, which
correspond to the xd variables assigned to 1. More generally, if
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Figure 2: Two solutions to the master problem for scheduling the task
graph in Figure 1 on a 2-processor system. The dotted edges are the as-
sumed dependence edges due to xd variables. The thicker edges are part
of the cycle in (a) and the critical path in (b).

Ec = {(u1, v1), (u2, v2), . . . , (uk, vk)} are the edges comprising
a cycle in G′, then the associated cycle constraint is:( ∧

(u,v)∈Ec−E

xd(u, v)
) ⇒ 0 .

Solution (b) in Figure 2 does not contain cycles, hence a valid
schedule S can be computed that assigns a non-negative start time
to every task. The objective is to minimize schedule length, there-
fore an obvious value for S(v) is the delay of the longest path from
any source vertex in the DAG G′. This adheres to the dependence
and ordering constraints requisite for a valid schedule. The sched-
ule S is computed in topological order of the vertexes in G′: if v
is a source vertex, S(v) = 0, otherwise

S(v) = max
(u,v)∈E

S(u) + w(u) + xc(u, v) c(u, v)

The makespan of S is: maxv∈V S(v) + w(v). The algorithm
keeps track of the best makespan from all past iterations and up-
dates it if the makespan of the current schedule S is lower than the
incumbent makespan.

Coming back to the example, the valid schedule S for solu-
tion (b) is listed in Figure 2. The resulting makespan is 21 due
to the critical path (v1, v2, v3, v4, v7). Furthermore, any solution
to the master problem containing this critical path cannot yield a
makespan lower than 21. The sub problem records this fact as
a constraint to eliminate all solutions containing the critical path.
Specifically, the constraint that encodes the critical path in (b) is:
xd(v2, v3) ∧ xd(v4, v7) ⇒ 0.

Note that the algorithm is not restricted to learning only the
critical path as a constraint. Any path in G′ with delay greater
than or equal to the best makespan provides a valid path constraint.
In example (b), if we assume that the incumbent makespan is 20,
then the path (v5, v6, v7) also bounds the makespan and is a valid
constraint (the path has delay 20 since edge (v6, v7) incurs a com-
munication delay). This can be encoded as: xc(v6, v7) ⇒ 0.
The delay of any path is due only to the assumed dependence
edges (xd values) and the original graph edges on which a com-
munication delay is incurred (xc values). More generally, if
Ep = {(u1, v1), (u2, v2), . . . , (uk, vk)} are the edges comprising
a path in G′ with delay greater than or equal to the best makespan
at an iteration, then the associated path constraint is:( ∧

(u,v)∈Ep−E

xd(u, v)
)∧ ( ∧

(u,v)∈Ep∩E,A(u) �=A(v)

xc(u, v)
) ⇒ 0.

4.3. Algorithmic Improvements

In this section, we briefly describe some algorithmic exten-
sions to boost performance of the decomposition strategy. In Al-
gorithm 1, the sub problem is invoked only after the master fully
solves the satisfiability problem and generates an assignment for
all primary variables. However, valid cycle and path constraints
can be derived from partial solutions at intermediate nodes in the
search tree of the SAT solver. This provides a technique to fathom
partial solutions early in the SAT search tree and prune poten-
tially large subsets of inferior solutions. Tight lower bounds on
the makespan of partial solutions reinforce the pruning condition.
Two obvious lower bounds on the makespan are: (a) the delay
of the longest path in the task graph, and (b) the ratio of the to-
tal execution time of unassigned tasks to the number of proces-
sors. A more complex lower bound, due to Gerasoulis and Yang,
propagates the minimum schedule length of primitive fork and join
graph structures in the presence of communication delays [12].

An useful side effect of inspecting partial solutions is that the
sub problem can recommend a decision variable for the master
problem to branch on. For example, if two tasks assigned to the
same processor violate ordering constraints, the sub problem can
determine the next xd variable that must be set to resolve this
conflict. Additionally, the sub problem can apply a priority met-
ric, such as dynamic levels from Section 3.2, and select a task-
processor allocation for the master problem. Thus, the technique
of inspecting partial solutions enables the sub problem to closely
direct search and prune the solution space quickly.

4.4. Related Decomposition Approaches

The use of a decomposition strategy to speed up constraint op-
timization is not new. Benders decomposition is a problem solving
strategy that has been successfully applied to MILP formulations.
A pivotal factor that determines its effectiveness is the derivation
of Benders cuts to exclude superfluous solutions. It is essential
to choose an encoding, based on some insight into the problem
structure, that eases the incorporation of Benders cuts.

Hooker and Ottoson formally proved how Benders decompo-
sition can be generalized for any class of constraint optimization
problems besides MILP [7]. Following this, problem decomposi-
tions using hybrid MILP and Constraint Programming (CP) mod-
els were shown to achieve run time improvements over “single-
pass” MILP or CP models. In the context of static scheduling,
Benini, et al. considered a problem similar to the one presented in
this paper, but with additional constraints on the memory per pro-
cessor [13]. The authors applied an MILP/CP decomposition and
showed that decomposition was superior to solving either model
separately.

However, these works reported experimental results for prob-
lems containing fewer than 20 tasks. We contend that the use of
CP solvers for the sub problem is less efficient. CP models are
generic and do not sufficiently exploit the underlying graph struc-
ture of the scheduling problem. In contrast, the success of list
scheduling methods is due to their ability to operate directly on the
task dependence graph and derive schedules using longest path de-
lay computations. Based on this insight, our approach uses a fast
graph-theoretic sub problem algorithm to learn compact Benders
cuts and quickly prune the solution space.



5. Results and Evaluations

In this section, we present results of our experiments to eval-
uate the decomposition strategy against the DLS list scheduling
heuristic [8] and the MILP formulation using overlap variables [4]
for the scheduling problem in Section 2. We created a prototype
implementation of the decomposition approach on top of the Min-
iSAT SAT solver [11]. The MILP instances were solved using
the ILOG CPLEX v10.1 solver [9]. The experiments were con-
ducted on a PentiumIV 2.4 GHz processor with 1GB RAM run-
ning Linux. We stipulated a timeout of 5 minutes for all our runs.

Two benchmark sets were used in our experiments. The first
benchmark consisted of task graph instances derived from two
practical applications from the multimedia and networking do-
mains, viz. MJPEG decoding and IPv4 packet forwarding. The
task execution times and communication delays were profiled for
the Xilinx MicroBlaze soft processor and the point-to-point fast
simplex links (FSL) available with the Xilinx Embedded Devel-
opment Kit (EDK) [14]. The base task dependence graph can
be replicated to exploit the coarse grained parallelism available
in these applications. For MJPEG decoding, each replicated copy
processes a different frame. For IPv4 packet forwarding, the num-
ber of replications corresponds to the number of network input
ports. We generated 10 problem instances for each application for
different replications of the base task graph. The second bench-
mark was a set of random task graph instances proposed by Davi-
dović et.al [10]. These problems were designed to be unbiased
towards any particular solver approach and are reportedly harder
than other existing benchmarks for scheduling task dependence
graphs.

Table 1 reports the results of the different scheduling ap-
proaches for MJPEG decoding and packet forwarding applica-
tions. Column 1 gives the number of tasks in the task dependence
graph. The subsequent columns report the makespan computed by
the DLS, MILP and decomposition approach (abbreviated “DA”)
for scheduling the task graph on 2, 4, and 6 processors. The
makespan results that were proved to be optimal by MILP and DA
are also highlighted. The non-bold entries are the best solutions at
the end of the 5-minute timeout.

# # Processors = 2 # Processors = 4 # Processors = 6
Tasks DLS MILP DA DLS MILP DA DLS MILP DA

13 20198 19328 19328 14352 14352 14352 14352 14352 14352
24 36702 n/a 36636 22386 21684 21618 19112 19112 19112
35 54264 n/a 54162 30588 n/a 29886 24578 n/a 24190
46 72438 n/a 71640 39148 n/a 38856 30590 n/a 29822
57 89576 n/a 89576 48144 n/a 47602 37310 n/a 36770
68 107178 n/a 107178 56738 n/a 56738 42462 n/a 42462
79 124190 n/a 124190 65482 n/a 65172 47982 n/a 47982
90 142102 n/a 142102 74044 n/a 74044 54068 n/a 54068
101 159244 n/a 159244 87278 n/a 87278 59948 n/a 59948

# # Processors = 2 # Processors = 4 # Processors = 6
Tasks DLS MILP DA DLS MILP DA DLS MILP DA

11 194 194 194 194 194 194 194 194 194
20 246 238 238 194 194 194 194 194 194
29 366 358 358 206 206 206 194 194 194
38 486 n/a 476 246 n/a 238 194 194 194
47 606 n/a 596 310 n/a 302 226 n/a 218
56 714 n/a 714 368 n/a 368 246 n/a 238
65 834 n/a 834 432 n/a 430 302 n/a 292
74 962 n/a 962 488 n/a 484 336 n/a 336
83 1082 n/a 1082 542 n/a 542 368 n/a 368
92 1190 n/a 1190 606 n/a 606 412 n/a 412

Table 1: Makespan results for the DLS, MILP and decomposition approach
(DA) on task graphs derived from MJPEG decoding (top) and IPv4 packet
forwarding (bottom) scheduled on 2, 4 and 6 processors.

Table 2 shows results of the DLS, MILP and DA methods on
the second benchmark with randomly generated task graphs. The
benchmark instances are classified by the number of tasks and
edge density (the percentage ratio of the number of edges in the
task graph to the maximum possible number of edges). Each en-
try in Table 2 is an average over 5 runs for a different number of
processors. The optimal solutions for these instances was known
a priori [10]. Columns 3-5 report the average percentage differ-
ence of the DLS, MILP and DA results from the optimal solution.
Under the DA results, we also indicate in parenthesis the number
of instances for which the algorithm proved optimality of the final
solution and terminated before the timeout (DLS does not provide
any proof of optimality).

# Tasks Edge Density DLS MILP DA (# optimal)

52 10 14.9 n/a 10.7 (0)
52 30 16.2 n/a 9.1 (1)
52 50 14.0 n/a 5.4 (3)
52 70 6.3 n/a 0 (5)
52 90 4.2 n/a 0 (5)
102 10 28.5 n/a 28.5 (0)
102 30 15.7 n/a 15.7 (0)
102 50 7.5 n/a 7.5 (0)
102 70 4.5 n/a 4.3 (1)
102 90 1.2 n/a 1.2 (3)

Avg. Difference 11.3 - 8.2
# Optimal Solutions 0 / 50 0 / 50 18 / 50

Table 2: Average percentage difference of DLS, MILP and decomposition
approach (DA) from the optimal solution for random task graph instances
(benchmark source: [10]) scheduled on 2, 4, 6, 9 and 12 processors.

We observe from Table 1 that the direct MILP formulation
solved using the CPLEX solver [9] does not find any feasible so-
lution on problem instances with more than 30 tasks (indicated by
the “n/a” annotation). This trend seems to be invariant of the ap-
plication task graph structure or the number of processors. Indeed,
on many instances the solver does not go beyond the preprocessing
steps involved in calculating a lower bound for the problem. The
results in Table 2 further attest to the limitations of using an MILP
formulation. In contrast, constraint optimization using our decom-
position approach robustly handles problems with 80-100 tasks,
and proves optimality of the final solution in about 35% of the
cases in both Tables 1 and 2. This is an improvement over previous
constraint optimization techniques using MILP formulations [4] or
hybrid MILP/CP decomposition approaches [13], which were lim-
ited to instances with fewer than 20-30 tasks.

However, the constraint optimization results (MILP and DA)
pale in comparison to the DLS results in Tables 1 and 2. This
is consistent with earlier studies that indicated the efficacy of
DLS and similar list scheduling heuristics for the representative
scheduling problem [3] [10]. We observed from many experiments
that the DLS solution was usually within 5-10% of the optimum
on realistic task graphs and problem instances with over 200 tasks
were solved in seconds. Our DA method quickly finds the DLS
solution on all instances, since the sub problem internally uses
dynamic levels to recommend task-processor allocations for the
master problem. It is reasonably successful in improving the DLS
makespan or proving its optimality on instances with 80-100 tasks.
But on larger problems, DA seldom improves the DLS makespan.
Nevertheless, the utility of MILP and DA, and constraint opti-
mization methods in general, becomes evident if the problem to
be solved imposes additional application and resource constraints
on valid schedules.



5.1. Extensibility of Constraint Optimization Methods

Heuristic approaches like DLS are not easily extensible to in-
clude specialized implementation and resource constraints in the
problem. For example, practical multiprocessor architectures are
connected in specific topologies such as ring or mesh topologies.
Bambha and Bhattacharyya proposed an extension to the DLS list
scheduling heuristic for irregular multiprocessor topologies [15].
However, we observed from our experiments that extending DLS
with topology constraints compromised the original quality of its
results. Table 3 shows the results of running the DLS and DA al-
gorithms on a few instances of the MJPEG decoding application
on processors arranged in ring and mesh topologies. On the aver-
age, DLS results were about 15-20% inferior compared to the DA
results (previously DLS results were inferior only by 2-5% of the
DA results for the basic problem without topology constraints).

# # Processors = 4 # Processors = 6 # Processors = 9
Topology Tasks DLS DA DLS DA DLS DA

Ring 46 41350 40368 49280 33898 48834 38958
79 67888 67888 62380 53362 62310 58568
101 87834 84398 75246 68120 80834 75422

Mesh 46 41350 40368 43108 31972 43108 28632
79 67888 67888 59484 53732 63724 45842
101 87834 84398 68470 68470 72162 63304

Table 3: Makespan results for the DLS and DA approaches on task graphs
derived from MJPEG decoding scheduled on 4, 6 and 9 processors ar-
ranged in ring and mesh topologies.

Other resource constraints may be more difficult to express in
the list scheduling heuristic. An example of such a constraint is
limits on the total amount of memory available on each processor.
The problem objective is to find a valid schedule with minimum
makespan subject to the constraint that the memory consumption
of all tasks assigned to a processor is within the prescribed limit.
List scheduling heuristics like DLS sequentially fix tasks to pro-
cessors based on some local cost function. However, after a few
greedy choices, the heuristic can reach a configuration from which
no valid solutions are possible. In that case, the heuristic must
undo its choices until a feasible configuration is reached. For such
constraints, a greedy heuristic is not even guaranteed to find a sin-
gle valid solution.

Practical extensions such as (a) task release times and dead-
lines, (b) preferred allocations of tasks, (c) mutual exclusion be-
tween execution periods of certain tasks, (d) synchronization re-
quirements between tasks, and (e) constraints on task groupings
are generally difficult to impose in DLS-like heuristics. Constraint
optimization methods, on the other hand, provide an easy way to
encode resource constraints and efficiently integrate them into the
problem. They leverage the advantage of a generic search tool that
does not impose many restrictions on the nature of the constraints.
In this context, our contribution is a decomposition strategy to im-
prove the performance of constraint optimization that is applicable
to many variants of the static scheduling problem.

6. Summary

In this paper, we presented a decomposition approach to speed
up constraint optimization for statically scheduling task depen-
dence graphs to multiprocessors. List scheduling heuristics are
effective for this problem, but difficult to extend with specialized

implementation and resource constraints. Constraint optimization
methods, such as MILP, are naturally extensible but their success
is limited by prohibitive run times even on medium-sized problem
instances. Our decomposition strategy addresses this limitation
in a manner similar to the more general Benders decomposition
technique. The main elements of our strategy are: (a) fast master
and sub problem iterations, (b) compact sub problem constraints to
record inferior parts of the solution space, (c) tight lower bounds to
fathom partial solutions, and (d) variable selection to guide search.
While an MILP formulation for the scheduling problem was inef-
fective on instances with over 30 tasks, our approach was robust on
instances with over 100 tasks. The performance improvement ow-
ing to our decomposition strategy places constraint optimization
as a viable tool for practical resource constrained multiprocessor
static scheduling problems.

In direction of future work, we intend to investigate the follow-
ing techniques to improve solver performance: (a) different master
problem formulations for specialized solvers (b) improved lower
bounds for special graph structures, and (c) symmetry represen-
tation to restrict the solution space. The goal is to integrate our
solution method into a practical design space exploration tool for
multiprocessor platforms.
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