
High-Level Test Synthesis for Delay Fault Testability

Sying-Jyan Wang and Tung-Hua Yeh
Department of Computer Science
National Chung-Hsing University

Taichung 402, Taiwan, ROC

Abstract
A high-level test synthesis (HLTS) method targeted for

delay fault testability is presented. The proposed method,
when combined with hierarchical test pattern generation
for embedded modules, guarantees 100% delay test
coverage for detectable faults in modules. A study on the
delay testability problem in behavior level shows that low
delay fault coverage is usually attributed to the fact that
two-pattern test for delay testing cannot be delivered to
modules under test in consecutive cycles. To solve the
problem, we propose an HLTS method that ensures valid
test pairs can be sent to each module through synthesized
circuit hierarchy. Experimental results show that this
method achieves 100% fault coverage for transition faults
in functional units, while the fault coverage in circuits
synthesized by LEA-based allocation algorithm is rather
poor. The area overhead due to this method ranges from
2% to 10% for 16-bit datapaths.

1. Introduction

Decreasing feature sizes and increasing clock speeds

have combined to alter the defect effects dramatically.
Recent evidence indicates that delay-inducing defects can
no longer be ignored nor go untested [1]. For circuits
designed with 130nm or more advanced technologies, the
transition fault is considered essential to achieve the
acceptable defect level. The detection of delay fault
requires at-speed test techniques, which create signal
transitions to be captured at normal speed. In order to test
delay faults, we need two test patterns, known also as
pattern pair. The first test pattern of the pattern pair is
initialization pattern (V1), and the second test pattern is
activation pattern (V2). V1 is to set up the initial logic value
to a known state of the target net and V2, combined with V1,
is to activate a required transition to test a target fault.

Scan-based test techniques [2],[3] are capable of at-
speed testing. However, there are many complicating
factors when moving from relatively slow scan-based tests
for stuck-at faults to testing for delay faults. At-speed
testing cab be carried out through functional patterns, but it

may be difficult to achieve good delay fault coverage. In
order to conduct delay testing in the functional path, one
needs to provide a pair of independent patterns to the
module under test in two consecutive cycles, which may
not be possible in normal operations.

The behavioral synthesis refers to the process of
producing an RTL circuit from a behavioral description [4].
The behavioral description of a circuit is usually specified
in a hardware description language like VHDL or Verilog,
and it is complied into an intermediate representation
called control data flow graph (CDFG). The scheduling
process determines the cycle-by-cycle behavior of the
design by assigning operations to specific clock cycles or
control steps. The allocation process maps operations in a
scheduled DFG (SDFG) to modules, assigns variables to
registers and constructs the interconnection structure
among modules and registers by using multiplexers or tri-
stated buses. The controller is then generated according as
the cycle-by-cycle behavior of circuits to provide the
required sequence of control signals to select paths in
multiplexers and load data into registers.

The testability in high-level synthesis were discussed
in [5],[6], and a similar research was proposed in [7]. The
main advantage of such methods is that they reduce test
generation time significantly. However, since sequential
automatic test pattern generation (ATPG) is necessary, it is
difficult to apply this method to large circuits. A method
combining hierarchical test generation [8] and behavioral
synthesis is proposed in [9]. In this work, the authors tried
to derive a control path from primary inputs to an
operation’s input and an observation path from the
operation’s output to primary outputs from a given CDFG.
If such two paths exist, they are referred to as the test
environment, and the module that carries out this operation
is testable since the pre-computed test patterns are known.
If the test environment does not exist, extra test
multiplexers are added so that the test environment can be
constructed. The advantage of this method is that only
combinational ATPG is needed, and thus it is suitable for
large designs. Many similar methods were proposed for
RTL designs [10],[11]. Most of the high-level test
synthesis (HLTS) methods only consider stuck-at faults.

978-3-9810801-2-4/DATE07 © 2007 EDAA

The delay fault testability in high-level design are
considered in two recent works [12],[13]. These methods
improves delay fault testability by adding DFT features,
such as test multiplexers, through functions and hold
functions, to circuit under test. Since these methods do not
exploit the behavioral information given in the CDFG, the
area overhead can be very large. Another problem is that
test control signals must be provided externally; that is,
special test architecture, such as the enhanced scan chain,
is needed to provide the test control signals, which not
only includes high area overhead but also requires
complicated timing signals in the test process.

In our paper, we present a novel integrated method
with hierarchical test generation and behavioral synthesis
for delay fault testability. The proposed method is more
flexible since it starts at the behavioral level, and thus it
exploits behavioral information provided in CDFG to
achieve better delay fault coverage with lower hardware
penalty. Furthermore, the testing is conducted in normal
mode and thus there is no need for special test architecture.

2. Preliminaries

Delay testing verifies the whether a circuit is

functionally correct under their operating frequency. Many
different delay fault models have been developed, in which
the transition fault model is more frequently used in recent
years due to its simplicity and ease of ATPG. In this paper,
we present our method and show the experimental results
according to the transition fault model. However, the
proposed method itself is independent of the fault model
used and is applicable to any type of delay testing.

2.1 Transition Fault Testing

In the transition fault model, delay defects are modeled

as two types of faults: slow-to-rise (STR) fault and slow-
to-fall (STF) fault. We need to apply a pair of test patterns
<V1, V2> for the detection of transition faults. An STR
(STF) transition fault can be detected if and only if
following two conditions are satisfied.
1. The initialization pattern, V1, sets the target line to 0 (1).
2. The launch pattern, V2, can make a rising (falling)

transition and V2 is a sa-0 (1) pattern.

2.2 Delay Fault Testability: A Behavioral View

The low delay fault coverage is usually caused by the
circuit architecture. The testability problems can be
attributed to: (1) high data dependency in the behavioral
description, and (2) no path existing from primary inputs
to inputs of an RTL module or from output of an RTL
module to primary outputs (e.g. self loop or constant
multiplication).

The reason that high data dependency may reduce
delay fault coverage can be explained by the example
shown in Figure 1.

Figure 1 CDFG

For the CDFG shown in Figure 1, i1 and i2 are input

variables applied to the primary inputs, out is an output
variable. Assume that operations *1 and *3 are allocated to
the same multiplier unit M in two consecutive cycles, and
a pre-computed test pair <V1, V2> for M is known. If we
want to test module M in the normal functional mode, we
need to deliver V1 and V2 from the primary inputs to the
inputs of module M and to propagate M’s output response
to the primary output. As long as all pre-computed test
pairs of a multiplier can be applied to module M through
the circuit architecture, M is delay fault testable. Let V1l
(V2l) denotes the part of V1 (V2) that is applied to the left
input port of M, while V1r (V2r) is the part of V1 (V2)
applied to the right input port of M. The hierarchical test
patterns can be assigned according to the CDFG as follows.

V1l = i1 (1)
V1r = i2 (2)
V2l = i1 * i2 (3)
V2r = i2 * k (4)

If each pattern pair <V1, V2> satisfies the above
architectural constraints, module M is delay fault testable.
However, in most cases it may not be possible to derive
such test pairs due to data dependency in the CDFG. For
example, let a test pair for the multiplier be V1l = 10, V1r =
30, and V2l = 20. However, since i1 * i2 =300, Eq. (3) is
violated, which means the test pair <V1, V2> cannot be
applied to module M under normal operation.
Unfortunately, the data dependency appears in many
CDFGs, especially the DSP algorithms. Therefore, it is
difficult to achieve high delay fault coverage if we directly
synthesize a given CDFG without considering testability
issues.

Another problem of the DFG is that one of the two
inputs of *2 is a constant k. As a result, the multiplier
module executing this operation cannot be applied with
most pre-computed patterns in the normal-mode operation.
In general, it is difficult to derive hierarchical test patterns
for operations with constant operand.

*1

*3

*2

i1 i2 k

out

2.3 Behavioral Synthesis for Delay Fault

Since the target circuits are non-scan RTL architectures,

we must be able to apply two independent test patterns to
the input ports of an RTL module through the circuit
hierarchy in two consecutive clock cycles to make the
module delay fault testable. Also the output response to the
second pattern must be captured and propagated to one of
the primary outputs. The testability of a module is mainly
determined by the overall RTL architecture, which is the
result of scheduling and allocation process in the high-
level synthesis. The following terminology will be used in
the proposed synthesis procedure.
Definition 1: If it is necessary to store the result of an
operation into a register, the operation is a real operation;
otherwise it is a spurious operation.

In the original CDFG all operations are real operations.
However, a lot of spurious operations will be created in the
synthesized circuit even though they are not defined in the
original CDFG.
Definition 2: An operation in the CDFG is a controllable
operation (CO) if its input pattern satisfies the following
conditions.
1. The input pattern can be applied directly from one or

more primary input variables, or delivered indirectly
through other controllable operations.

2. If the operation has at least two inputs, they must be
individually controllable. In other words, their input
cones are disjoint.

If an operation is a controllable, the set of primary input
variables belonging to its input cone are called
controllable primary input variable set (CPIVS).

For example, operation *1 in Figure 1 is a CO, while
operation *3 is not.
 Definition 3: Consider two operations o1 and o2, and let
CPIVS1 and CPIVS2 be their respective input set. The two
operations form a test operation pair (TOP) if they satisfy
the following four conditions.
1. The two operations are active in two consecutive

cycles.
2. They are the same type of operation.
3. Both operations are COs, and CPIVS1 ∩ CPIVS2 = ∅

when the variables are alive.
4. The second operation o2 must be a real operation and

its output variable is assigned to one of the primary
output registers.

An operation satisfies conditions 1 and 2 is capable of
carrying out a two-pattern test, and condition 3 guarantees
that the required two patterns can be derived through their
associating CPIVS without affecting the original circuit
behavior. Condition 4 ensures the faulty effect can be
observed directly through a primary output register. While
such TOP is assigned to the same module, this module will
be two-pattern testable.

3. Proposed Method

As we discussed in Section 2, the major sources

causing low delay fault coverage in the datapath
components can be attributed to data dependency and
operations with constant inputs. It may not be possible to
find valid test operation pairs in the original CDFG due to
these two reasons. Fortunately, in most cases not all the
functional modules are busy with real operations
simultaneously. Therefore, if a module is not delay fault
testable in the normal mode, it may be possible to
introduce some spurious operations that make the module
testable. These spurious operations can be enforced by
adding some dummy test operations into the original
CDFG. The important issue, however, is to find a way to
add dummy operations that neither affect normal circuit
behavior nor introduce significant area penalty.

3.1 Test Operation

Adding extra test operations will not increase the

number of functional units, since they are allocated to
existing functional units as well. However, they do
introduce requires extra hardware, including multiplexers
and registers. Usually it is not possible to eliminate the
extra multiplexers since we need to provide additional
paths in order to send test patterns to modules under test.
Sometimes we need to reload new patterns into registers
for test purpose, and this may prolong the lifetime of a
variable, which may require extra registers. The overhead
due to extra registers, however, can be reduced by
selecting test input carefully.

3.1.1 CPIVS Selection. The required primary input
variables are loaded in the first control step and their
lifetimes may last several cycles. Assuming that a test
operation is added in control step L and the lifetimes of
some primary input variables are longer than L. In this
case, selecting such variables for the added test operation
does not prolong the input variables’ lifetimes since these
variables are still alive.

On the other hand, if a dummy test operation’s pattern
cannot be derived from the primary input variables applied
in the first control step, it is better to select a primary input
variable that is dead when this test operation is activated.
With this restriction, the dummy test operation will not
affect original circuit behavior since the input variable is
no longer required, and thus we can load a new pattern to
the input variable that is used in the test operation. Note
that reloading a new pattern extends the variable’s lifetime
and thus may require extra registers.

Some DSP algorithms, such as FIR7, only have one
primary input variable, while six temporary variables are
used to hold input patterns in the previous six cycles.

These variables are also classified as CPIVS for
convenience.

3.1.2 Location of the Dummy Test Operation. If a CO is
scheduled at control step L (CS L), and there are rooms in
control steps L–1 and L+1 simultaneously, we will try to
add a test operation in control step L–1 first; and if it fails,
then we will try to add the operation in control step L+1.
The reason is that the first pattern of a two-pattern test is
an initialization pattern. This pattern produces a spurious
operation whose output does not have to be captured into
registers, and thus the variable’s lifetime is not extended.
The location of a test operation pair will affect the test
application time. In the proposed method, we will try to
reduce overall test application time.

3.2 Overall Flow

In the proposed behavioral synthesis flow, we focus on

the datapath part of a circuit. The overall flow is illustrated
in Figure 2. It is assumed that the resource constraints (RC)
and the scheduled DFG (SDFG) of the circuit are known.
We analyze a DFG and find all controllable operations
first, and then construct test operation pairs, details of the
procedure is explained in Figure 3.

Figure 2. Behavioral Test Synthesis Flow

Figure 3. TOP Construction

If a test operation pair can be assigned to each

functional unit, then exit synthesis flow. Otherwise, we
need to schedule the DFG again with one more cycle and
repeat the synthesis flow. In most cases, the above
procedure is enough to deal with the delay test problem. If
a test pair operation still cannot be found in a DFG
because of resource constraints, it may be necessary to add
a test mode control.

Whenever test operation pairs exist for all functional
units, we will perform partial allocation for all test
operation pairs, which allocates the operation pair to the
same module and assigns the output variable of the second
operation to an output register. We apply the Left-Edge
Algorithm (LEA) to allocate the remaining operations and
variables in the SDFG because this method results in the
minimal usage of registers.

Figure 3 illustrates the procedure used to construct test
operation pair. In order to reduce overall test application
time, the procedure first sorts all controllable operations
according to the control step in ascending order. In phase I
of the procedure, we select the earliest controllable
operation, which is scheduled at control step L in the
original CDFG, and try to add an extra test operation at the
preceding control step (i.e., control step L–1). If it does not
work out, then a test operation in control step L+1 is tried
instead. If a test operation cannot be included in either
control step, the next possible solution is to add two test
operations to test a certain module in phase II. If phase II
also fails, there exists at least one module that is not two-
pattern testable under the given architecture. We may need
to add one extra clock cycle to accommodate the extra
TOP, or use a test mode control signal to improve
testability.

TOP Construction procedure:
01. while (for each modules in RC) {
02. // phase I: add one extra test operation
03. select the earliest CO scheduled at CS L;
04. if (add test operation at CS L–1 success)
05. continue;
06. else if (add test operation at CS L+1 success)
07. continue;
08. else {
09. // phase II: add two extra test operations
10. for (each CS L) {
11. if (add TOP at CS L and L+1 success)
12. continue;
13. }
14. // TOP does not exist
15. exit;
16. }
17. }

Test Synthesis for Delay Fault Testability:
Input: SDFG, Resource Constraints RC
Output: RTL Circuit with transition fault testability

01. Lifetime Analysis;
02. Find all controllable operation in SDFG;
03. Construct TOPs;
04. if (each module in RC has a TOP) {
05. Module Allocation;
06. Register Allocation;
07. RTL Datapath Generation;
08. Controller Generation;
09. Hierarchical Test Generation;
10. }
11. else {
12. add one extra clock cycle and re-schedule;
13. goto 1;
14. }

3.3 An Illustrative Example

An example illustrates the proposed behavioral

synthesis flow is presented in this section. Figure 4 gives
an SDFG to be synthesized, and e the available resources
include an adder and a multiplier. An analysis of the
SDFG indicates that there is only one controllable
operation *2 and its CPIVS is {i2, i3}. Note that operations
+1, +2, and +3 are not controllable since *1 is a
multiplication with a constant input, which is not fully
controllable. According to the TOP construction procedure,
a dummy test operation *2’, which is marked by light
broken line in Figure 4, is added to CS 3 with {i1, i4} being
its CPIVS. It can be seen that *2 and *2’ forms a TOP.
The rules for CPIVS selection were discussed in Section
3.2. Note that the dummy test operation added in control
step 3 is the second test operation of the TOP for the
multiplier module, therefore its must be assigned to the
register assigned to the primary output variable (i.e. the
variable “out”).

Figure 4. SDFG

It is required to construct an extra TOP for the adder

module since there are no controllable addition operations.
These two operations are added at control steps CS 1 and
CS 2, and their CPIVS are {i1, i2} and {i3, i4}, respectively.
Note that the TOP is not shown in Figure 4. In this
example we need the same number of registers compared
to Left Edge Algorithm (LEA) based allocation algorithm.

4. Experimental Results

We experimented the proposed method with six

circuits, including the example shown in Figure 4 as well
as several standard benchmarks such as Diffeq, EWF,
FIR7, Wavelet, DCT. For each benchmark, two RTL

architectures are generated: one LEA, and the other by the
proposed HLTS method. The final circuits are synthesized
by Synopsys Design Analyzer with UMC 0.18µm
technology.

In this experiment we employ the transition fault model
for delay testing. 50000 random test patterns are generated
and fed to each circuit, and the patterns are simulated by a
transition fault simulator we developed based on HOPE
[14]. The rational for 50000 random patterns is that the
fault coverage barely changes after applying 50000
random patterns. We also generate deterministic transition
fault test patterns for each module (namely, multiplier and
adder), and check to see if these patterns can be delivered
to the module under test through the circuit hierarchy. The
results are shown in Table I for 16-bit datapaths and Table
II for 8-bit datapaths.

Four experiments are carried out for each benchmark:
LEA(50000) is a circuit generated by LEA and tested by
50000 random patterns, LEA(HIE) is a circuit generated
by LEA and tested by hierarchical test patterns. In this
case we generate hierarchical test patterns for all
operations and choose the results with highest fault
coverage. HLTS (50000) is a circuit generated by the
proposed HLTS method and tested by 50000 random
patterns, and HLTS(HIE) is a circuit generated by the
proposed HLTS method and tested by hierarchical test
patterns. Column three (RC) gives the resource constraints
we used to synthesize the circuits, while column 4 shows
the number of control steps in the SDFG for each circuit.
Columns 5, 6, 7 give the number of module faults (#MF),
detected module faults (#DMF), and module fault
coverage (MFC). Module faults are the transition faults
appear in the synthesized modules. The last two columns
give the silicon area of each circuit and the normalized
overhead. The area is the gate count reported by Design
Compiler.

The experimental results show that hierarchical test
generation for LEA based synthesis method achieves poor
fault coverage. The main reason is that the high data
dependency and operations with constant input render it
difficult to derive hierarchical test patterns from pre-
computed test patterns unless TOPs existing in a given
CDFG. Furthermore, the proposed method indeed achieves
100% transition fault coverage for all modules in a circuit
hierarchy, as it guarantees that a valid test pattern pair can
be delivered to the module under test in two consecutive
cycles. The proposed HLTS method requires slightly more
silicon area. The area penalty ranges from 2% to 11% for
16-bit datapath, and 3% to 23% for 8-bit datapaths.

5. Conclusion and Future Work

We proposed a high-level test synthesis method with

integrated hierarchical test generation targeted for delay
fault testability. Experimental results show that all

*1

+2

+3

i1 i4 i5 CS 0

CS 1

CS 2

CS 3

CS 4

CS 5

k

*2

i2 i3

+1

out

*2’

transition faults in the functional units are testable. As long
as the delay test set for a module is known, the proposed
method ensures that this set of patterns can be delivered
through the synthesized circuit hierarchy.

References

[1] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI

Circuits, Kluwer Academic Publishers, 1998.
[2] J. Savir and S. Patel, “Scan-based transition test,” IEEE

Trans. on CAD, Vol. 12, No.8, pp. 1232-1241, Aug. 1993.
[3] J. Savir and S. Patel, “Broad-side delay test,” IEEE Trans.

on CAD, Vol. 13, No.8, pp. 1057-1064, Aug. 1994.
[4] M.C. McFarland, A.C. Parker, and R. Composano, “The

high-level synthesis of digital systems,” in Proc. IEEE, pp.
301-318, Feb. 1990.

[5] M. T.-C. Lee, W. H. Wolf, and N. K. Jha. “Behavioral
synthesis for easy testability in data path scheduling,” in
Proc .ICCAD, pp. 616-619, Nov. 1992.

[6] M. T.-C. Lee, W. H. Wolf, and N. K. Jha. “Behavioral
synthesis for easy testability in data path allocation,” in
Proc .ICCD, pp. 29-32, Oct. 1992.

[7] T. Yang and Z. Peng, “An efficient algorithm to integrate
scheduling and allocation high-level test synthesis,” in Proc.
DATE, 1998.

[8] B. T. Murray and J. P. Hayes, “Hierarchical test generation
using pre-computed tests for modules,” IEEE Trans. on
CAD, Vol. 9, No. 6, pp. 594-603, Jun. 1990.

[9] S. Bhattacharya and N.K. Jha, “Genesis: a behavioral
synthesis system for hierarchical testability”, in Proc.
European Design Test Conf., pp.272-276, 1994.

[10] I. Ghosh, A. Raghunathan, and N.K. Jha, “Design for
hierarchical testability of RTL circuits obtained by
behavioral synthesis,” IEEE Trans. on CAD, Vol. 16, No.
9, pp. 1001-1014, Sep. 1997.

[11] S. Ohtake, H. Wada, T.Masuzawa, and H. Fujiwara, “A non-
scan DFT method at register-transfer level to achieve
complete Fault efficiency,” in Proc. ASP-DAC, pp.599-604,
2000

[12] Md. Altaf-Ul-Amin, S. Ohtake, and H. Fujiwara, “Design
for Hierarchical Two-Pattern Testability of Data Paths,” in
Proc. ATS, pp.11-16, 2001.

[13] Y. Yoshikaw, S. Ohtake, M. Inoue, and H. Fujiwara,
“Design for Testability Based on Single-Port-Change Delay
Testing for Data Paths,” in Proc. ATS, pp. 254-259, 2005

[14] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault
Simulator for Synchronous Sequential Circuits,” IEEE
Trans. on CAD, Vol. 15, No. 9, pp. 1048- 1058, Sep. 1996.

Table I. Experimental result for 16-bit datapaths
Circuit Type RC CS #MF #DMF MFC(%) Area Overhead

EX LEA(50000/HIE) 1* 1+ 5 4432 3466/39 78.2/0.8 20298.08 1
 HLTS(50000/HIE) 1* 1+ 5 4432 4429/4432 99.93/100 22288.56 1.098

FIR7 LEA(50000/HIE) 2* 2+ 7 8864 4118 / 0 46.46 / 0 42059.88 1
 HLTS(50000/HIE) 2* 2+ 7 8864 8864/8864 100/100 45062.73 1.07

EWF LEA(50000/HIE) 2* 2+ 16 8864 1957/924 22.08/10.42 53189.03 1
 HLTS(50000/HIE) 2* 2+ 16 8864 8852/8864 99.86/100 54028.52 1.016

WAVELET LEA(50000/HIE) 2* 2+ 15 8864 5612 / 0 63.31 / 0 64606.80 1
 HLTS(50000/HIE) 2* 2+ 15 8864 8864/8864 100/100 71450.16 1.105

DIFFEQ LEA(50000/HIE) 2* 1+ 1− 5 8864 7821/401 88.23/4.52 40904.09 1
 HLTS(50000/HIE) 2* 1+ 1− 6 8864 8864/8864 100/100 44334.35 1.083

DCT LEA(50000/HIE) 2* 2+ 15 8864 4080/1000 46.03/11.28 54653.36 1
 HLTS(50000/HIE) 2* 2+ 15 8864 8848/8864 99.82/100 58338.98 1.067

Table II. Experimental result for 8-bit datapaths

Circuit Type RC CS #MF #DMF MFC(%) Area Overhead
EX LEA(50000/HIE) 1* 1+ 5 1048 872/23 83.2/2.19 7244.18 1

 HLTS(50000/HIE) 1* 1+ 5 1048 1048/1048 100/100 8345.89 1.15
FIR7 LEA(50000/HIE) 2* 2+ 7 2096 1332 / 0 63.07 / 0 15213.65 1

 HLTS(50000/HIE) 2* 2+ 7 2096 2096/2096 100/100 17011.11 1.118
EWF LEA(50000/HIE) 2* 2+ 16 2096 824/353 39.31/16.84 21372.04 1

 HLTS(50000/HIE) 2* 2+ 16 2096 2096/2096 100/100 21994.75 1.029
WAVELET LEA(50000/HIE) 2* 2+ 15 2096 1761 / 0 84.01 / 0 25282.57 1

 HLTS(50000/HIE) 2* 2+ 15 2096 2096/2096 100/100 31041.48 1.227
DIFFEQ LEA(50000/HIE) 2* 1+ 1− 5 2096 1949/234 92.99/11.16 14697.97 1

 HLTS(50000/HIE) 2* 1+ 1− 6 2096 2096/2096 100/100 16605.35 1.129
DCT LEA(50000/HIE) 2* 2+ 15 2096 1447/456 69.03/21.75 22140.78 1

 HLTS(50000/HIE) 2* 2+ 15 2096 2096/2096 100/100 24414.52 1.10

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

