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Abstract 
A high-level test synthesis (HLTS) method targeted for 

delay fault testability is presented. The proposed method, 
when combined with hierarchical test pattern generation 
for embedded modules, guarantees 100% delay test 
coverage for detectable faults in modules. A study on the 
delay testability problem in behavior level shows that low 
delay fault coverage is usually attributed to the fact that 
two-pattern test for delay testing cannot be delivered to 
modules under test in consecutive cycles. To solve the 
problem, we propose an HLTS method that ensures valid 
test pairs can be sent to each module through synthesized 
circuit hierarchy. Experimental results show that this 
method achieves 100% fault coverage for transition faults 
in functional units, while the fault coverage in circuits 
synthesized by LEA-based allocation algorithm is rather 
poor. The area overhead due to this method ranges from 
2% to 10% for 16-bit datapaths. 

 
1. Introduction 

 
Decreasing feature sizes and increasing clock speeds 

have combined to alter the defect effects dramatically. 
Recent evidence indicates that delay-inducing defects can 
no longer be ignored nor go untested [1]. For circuits 
designed with 130nm or more advanced technologies, the 
transition fault is considered essential to achieve the 
acceptable defect level. The detection of delay fault 
requires at-speed test techniques, which create signal 
transitions to be captured at normal speed. In order to test 
delay faults, we need two test patterns, known also as 
pattern pair. The first test pattern of the pattern pair is 
initialization pattern (V1), and the second test pattern is 
activation pattern (V2). V1 is to set up the initial logic value 
to a known state of the target net and V2, combined with V1, 
is to activate a required transition to test a target fault.  

Scan-based test techniques [2],[3] are capable of at-
speed testing. However, there are many complicating 
factors when moving from relatively slow scan-based tests 
for stuck-at faults to testing for delay faults. At-speed 
testing cab be carried out through functional patterns, but it 

may be difficult to achieve good delay fault coverage. In 
order to conduct delay testing in the functional path, one 
needs to provide a pair of independent patterns to the 
module under test in two consecutive cycles, which may 
not be possible in normal operations. 

The behavioral synthesis refers to the process of 
producing an RTL circuit from a behavioral description [4]. 
The behavioral description of a circuit is usually specified 
in a hardware description language like VHDL or Verilog, 
and it is complied into an intermediate representation 
called control data flow graph (CDFG). The scheduling 
process determines the cycle-by-cycle behavior of the 
design by assigning operations to specific clock cycles or 
control steps. The allocation process maps operations in a 
scheduled DFG (SDFG) to modules, assigns variables to 
registers and constructs the interconnection structure 
among modules and registers by using multiplexers or tri-
stated buses. The controller is then generated according as 
the cycle-by-cycle behavior of circuits to provide the 
required sequence of control signals to select paths in 
multiplexers and load data into registers. 

The testability in high-level synthesis were discussed 
in [5],[6], and a similar research was proposed in [7]. The 
main advantage of such methods is that they reduce test 
generation time significantly. However, since sequential 
automatic test pattern generation (ATPG) is necessary, it is 
difficult to apply this method to large circuits. A method 
combining hierarchical test generation [8] and behavioral 
synthesis is proposed in [9]. In this work, the authors tried 
to derive a control path from primary inputs to an 
operation’s input and an observation path from the 
operation’s output to primary outputs from a given CDFG. 
If such two paths exist, they are referred to as the test 
environment, and the module that carries out this operation 
is testable since the pre-computed test patterns are known. 
If the test environment does not exist, extra test 
multiplexers are added so that the test environment can be 
constructed. The advantage of this method is that only 
combinational ATPG is needed, and thus it is suitable for 
large designs. Many similar methods were proposed for 
RTL designs [10],[11]. Most of the high-level test 
synthesis (HLTS) methods only consider stuck-at faults. 
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The delay fault testability in high-level design are 
considered in two recent works [12],[13]. These methods 
improves delay fault testability by adding DFT features, 
such as test multiplexers, through functions and hold 
functions, to circuit under test. Since these methods do not 
exploit the behavioral information given in the CDFG, the 
area overhead can be very large. Another problem is that 
test control signals must be provided externally; that is, 
special test architecture, such as the enhanced scan chain, 
is needed to provide the test control signals, which not 
only includes high area overhead but also requires 
complicated timing signals in the test process. 

In our paper, we present a novel integrated method 
with hierarchical test generation and behavioral synthesis 
for delay fault testability. The proposed method is more 
flexible since it starts at the behavioral level, and thus it 
exploits behavioral information provided in CDFG to 
achieve better delay fault coverage with lower hardware 
penalty. Furthermore, the testing is conducted in normal 
mode and thus there is no need for special test architecture. 

 
2. Preliminaries 

 
Delay testing verifies the whether a circuit is 

functionally correct under their operating frequency. Many 
different delay fault models have been developed, in which 
the transition fault model is more frequently used in recent 
years due to its simplicity and ease of ATPG. In this paper, 
we present our method and show the experimental results 
according to the transition fault model. However, the 
proposed method itself is independent of the fault model 
used and is applicable to any type of delay testing. 

 
2.1 Transition Fault Testing 

 
In the transition fault model, delay defects are modeled 

as two types of faults: slow-to-rise (STR) fault and slow-
to-fall (STF) fault. We need to apply a pair of test patterns 
<V1, V2> for the detection of transition faults. An STR 
(STF) transition fault can be detected if and only if 
following two conditions are satisfied. 
1. The initialization pattern, V1, sets the target line to 0 (1). 
2. The launch pattern, V2, can make a rising (falling) 

transition and V2 is a sa-0 (1) pattern. 
 
2.2 Delay Fault Testability: A Behavioral View 
 

The low delay fault coverage is usually caused by the 
circuit architecture. The testability problems can be 
attributed to: (1) high data dependency in the behavioral 
description, and (2) no path existing from primary inputs 
to inputs of an RTL module or from output of an RTL 
module to primary outputs (e.g. self loop or constant 
multiplication). 

The reason that high data dependency may reduce 
delay fault coverage can be explained by the example 
shown in Figure 1. 

 
Figure 1 CDFG  

 
For the CDFG shown in Figure 1, i1 and i2 are input 

variables applied to the primary inputs, out is an output 
variable. Assume that operations *1 and *3 are allocated to 
the same multiplier unit M in two consecutive cycles, and 
a pre-computed test pair <V1, V2> for M is known. If we 
want to test module M in the normal functional mode, we 
need to deliver V1 and V2 from the primary inputs to the 
inputs of module M and to propagate M’s output response 
to the primary output. As long as all pre-computed test 
pairs of a multiplier can be applied to module M through 
the circuit architecture, M is delay fault testable. Let V1l 
(V2l) denotes the part of V1 (V2) that is applied to the left 
input port of M, while V1r (V2r) is the part of V1 (V2) 
applied to the right input port of M. The hierarchical test 
patterns can be assigned according to the CDFG as follows. 

V1l = i1    (1) 
V1r = i2   (2) 
V2l = i1 * i2  (3) 
V2r = i2 * k  (4) 

If each pattern pair <V1, V2> satisfies the above 
architectural constraints, module M is delay fault testable. 
However, in most cases it may not be possible to derive 
such test pairs due to data dependency in the CDFG. For 
example, let a test pair for the multiplier be V1l = 10, V1r = 
30, and V2l = 20. However, since i1 * i2 =300, Eq. (3) is 
violated, which means the test pair <V1, V2> cannot be 
applied to module M under normal operation. 
Unfortunately, the data dependency appears in many 
CDFGs, especially the DSP algorithms. Therefore, it is 
difficult to achieve high delay fault coverage if we directly 
synthesize a given CDFG without considering testability 
issues. 

Another problem of the DFG is that one of the two 
inputs of *2 is a constant k. As a result, the multiplier 
module executing this operation cannot be applied with 
most pre-computed patterns in the normal-mode operation. 
In general, it is difficult to derive hierarchical test patterns 
for operations with constant operand. 
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2.3 Behavioral Synthesis for Delay Fault 
 
Since the target circuits are non-scan RTL architectures, 

we must be able to apply two independent test patterns to 
the input ports of an RTL module through the circuit 
hierarchy in two consecutive clock cycles to make the 
module delay fault testable. Also the output response to the 
second pattern must be captured and propagated to one of 
the primary outputs. The testability of a module is mainly 
determined by the overall RTL architecture, which is the 
result of scheduling and allocation process in the high-
level synthesis. The following terminology will be used in 
the proposed synthesis procedure. 
Definition 1: If it is necessary to store the result of an 
operation into a register, the operation is a real operation; 
otherwise it is a spurious operation. 

In the original CDFG all operations are real operations. 
However, a lot of spurious operations will be created in the 
synthesized circuit even though they are not defined in the 
original CDFG. 
Definition 2: An operation in the CDFG is a controllable 
operation (CO) if its input pattern satisfies the following 
conditions. 
1. The input pattern can be applied directly from one or 

more primary input variables, or delivered indirectly 
through other controllable operations. 

2. If the operation has at least two inputs, they must be 
individually controllable. In other words, their input 
cones are disjoint. 

If an operation is a controllable, the set of primary input 
variables belonging to its input cone are called 
controllable primary input variable set (CPIVS). 

For example, operation *1 in Figure 1 is a CO, while 
operation *3 is not. 
 Definition 3: Consider two operations o1 and o2, and let 
CPIVS1 and CPIVS2 be their respective input set. The two 
operations form a test operation pair (TOP) if they satisfy 
the following four conditions. 
1. The two operations are active in two consecutive 

cycles. 
2. They are the same type of operation. 
3. Both operations are COs, and CPIVS1 ∩ CPIVS2 = ∅ 

when the variables are alive. 
4. The second operation o2 must be a real operation and 

its output variable is assigned to one of the primary 
output registers. 

An operation satisfies conditions 1 and 2 is capable of 
carrying out a two-pattern test, and condition 3 guarantees 
that the required two patterns can be derived through their 
associating CPIVS without affecting the original circuit 
behavior. Condition 4 ensures the faulty effect can be 
observed directly through a primary output register. While 
such TOP is assigned to the same module, this module will 
be two-pattern testable. 

 

3. Proposed Method 
 
As we discussed in Section 2, the major sources 

causing low delay fault coverage in the datapath 
components can be attributed to data dependency and 
operations with constant inputs. It may not be possible to 
find valid test operation pairs in the original CDFG due to 
these two reasons. Fortunately, in most cases not all the 
functional modules are busy with real operations 
simultaneously. Therefore, if a module is not delay fault 
testable in the normal mode, it may be possible to 
introduce some spurious operations that make the module 
testable. These spurious operations can be enforced by 
adding some dummy test operations into the original 
CDFG. The important issue, however, is to find a way to 
add dummy operations that neither affect normal circuit 
behavior nor introduce significant area penalty. 

 
3.1 Test Operation 

 
Adding extra test operations will not increase the 

number of functional units, since they are allocated to 
existing functional units as well. However, they do 
introduce requires extra hardware, including multiplexers 
and registers. Usually it is not possible to eliminate the 
extra multiplexers since we need to provide additional 
paths in order to send test patterns to modules under test. 
Sometimes we need to reload new patterns into registers 
for test purpose, and this may prolong the lifetime of a 
variable, which may require extra registers. The overhead 
due to extra registers, however, can be reduced by 
selecting test input carefully. 

 
3.1.1 CPIVS Selection. The required primary input 
variables are loaded in the first control step and their 
lifetimes may last several cycles. Assuming that a test 
operation is added in control step L and the lifetimes of 
some primary input variables are longer than L. In this 
case, selecting such variables for the added test operation 
does not prolong the input variables’ lifetimes since these 
variables are still alive. 

On the other hand, if a dummy test operation’s pattern 
cannot be derived from the primary input variables applied 
in the first control step, it is better to select a primary input 
variable that is dead when this test operation is activated. 
With this restriction, the dummy test operation will not 
affect original circuit behavior since the input variable is 
no longer required, and thus we can load a new pattern to 
the input variable that is used in the test operation. Note 
that reloading a new pattern extends the variable’s lifetime 
and thus may require extra registers. 

Some DSP algorithms, such as FIR7, only have one 
primary input variable, while six temporary variables are 
used to hold input patterns in the previous six cycles. 



These variables are also classified as CPIVS for 
convenience. 

 
3.1.2 Location of the Dummy Test Operation. If a CO is 
scheduled at control step L (CS L), and there are rooms in 
control steps L–1 and L+1 simultaneously, we will try to 
add a test operation in control step L–1 first; and if it fails, 
then we will try to add the operation in control step L+1. 
The reason is that the first pattern of a two-pattern test is 
an initialization pattern. This pattern produces a spurious 
operation whose output does not have to be captured into 
registers, and thus the variable’s lifetime is not extended. 
The location of a test operation pair will affect the test 
application time. In the proposed method, we will try to 
reduce overall test application time. 
 
3.2 Overall Flow 

 
In the proposed behavioral synthesis flow, we focus on 

the datapath part of a circuit. The overall flow is illustrated 
in Figure 2. It is assumed that the resource constraints (RC) 
and the scheduled DFG (SDFG) of the circuit are known. 
We analyze a DFG and find all controllable operations 
first, and then construct test operation pairs, details of the 
procedure is explained in Figure 3. 

 

 
Figure 2. Behavioral Test Synthesis Flow 

 
Figure 3. TOP Construction 

 
If a test operation pair can be assigned to each 

functional unit, then exit synthesis flow. Otherwise, we 
need to schedule the DFG again with one more cycle and 
repeat the synthesis flow. In most cases, the above 
procedure is enough to deal with the delay test problem. If 
a test pair operation still cannot be found in a DFG 
because of resource constraints, it may be necessary to add 
a test mode control. 

Whenever test operation pairs exist for all functional 
units, we will perform partial allocation for all test 
operation pairs, which allocates the operation pair to the 
same module and assigns the output variable of the second 
operation to an output register. We apply the Left-Edge 
Algorithm (LEA) to allocate the remaining operations and 
variables in the SDFG because this method results in the 
minimal usage of registers. 

Figure 3 illustrates the procedure used to construct test 
operation pair. In order to reduce overall test application 
time, the procedure first sorts all controllable operations 
according to the control step in ascending order. In phase I 
of the procedure, we select the earliest controllable 
operation, which is scheduled at control step L in the 
original CDFG, and try to add an extra test operation at the 
preceding control step (i.e., control step L–1). If it does not 
work out, then a test operation in control step L+1 is tried 
instead. If a test operation cannot be included in either 
control step, the next possible solution is to add two test 
operations to test a certain module in phase II. If phase II 
also fails, there exists at least one module that is not two-
pattern testable under the given architecture. We may need 
to add one extra clock cycle to accommodate the extra 
TOP, or use a test mode control signal to improve 
testability. 

TOP Construction procedure: 
01. while (for each modules in RC) { 
02.   // phase I: add one extra test operation 
03.   select the earliest CO scheduled at CS L;  
04.   if  (add test operation at CS L–1 success) 
05.      continue; 
06.   else if (add test operation at CS L+1 success) 
07.      continue; 
08.   else  { 
09.     // phase II: add two extra test operations 
10.     for (each CS L) { 
11.       if (add TOP at CS L and L+1 success) 
12.          continue; 
13.     } 
14.     // TOP does not exist 
15.     exit; 
16.   } 
17. } 

Test Synthesis for Delay Fault Testability:
Input: SDFG, Resource Constraints RC 
Output: RTL Circuit with transition fault testability 
 
01. Lifetime Analysis; 
02. Find all controllable operation in SDFG; 
03. Construct TOPs; 
04. if (each module in RC has a TOP) { 
05.     Module Allocation; 
06.     Register Allocation; 
07.     RTL Datapath Generation; 
08.     Controller Generation; 
09.     Hierarchical Test Generation; 
10. } 
11. else { 
12.     add one extra clock cycle and re-schedule; 
13.     goto 1; 
14. } 



 
3.3 An Illustrative Example 

 
An example illustrates the proposed behavioral 

synthesis flow is presented in this section. Figure 4 gives 
an SDFG to be synthesized, and e the available resources 
include an adder and a multiplier. An analysis of the 
SDFG indicates that there is only one controllable 
operation *2 and its CPIVS is {i2, i3}. Note that operations 
+1, +2, and +3 are not controllable since *1 is a 
multiplication with a constant input, which is not fully 
controllable. According to the TOP construction procedure, 
a dummy test operation *2’, which is marked by light 
broken line in Figure 4, is added to CS 3 with {i1, i4} being 
its CPIVS. It can be seen that *2 and *2’ forms a TOP. 
The rules for CPIVS selection were discussed in Section 
3.2. Note that the dummy test operation added in control 
step 3 is the second test operation of the TOP for the 
multiplier module, therefore its must be assigned to the 
register assigned to the primary output variable (i.e. the 
variable “out”). 

 
Figure 4. SDFG 

 
It is required to construct an extra TOP for the adder 

module since there are no controllable addition operations. 
These two operations are added at control steps CS 1 and 
CS 2, and their CPIVS are {i1, i2} and {i3, i4}, respectively. 
Note that the TOP is not shown in Figure 4. In this 
example we need the same number of registers compared 
to Left Edge Algorithm (LEA) based allocation algorithm. 

 
4. Experimental Results 

 
We experimented the proposed method with six 

circuits, including the example shown in Figure 4 as well 
as several standard benchmarks such as Diffeq, EWF, 
FIR7, Wavelet, DCT. For each benchmark, two RTL 

architectures are generated: one LEA, and the other by the 
proposed HLTS method. The final circuits are synthesized 
by Synopsys Design Analyzer with UMC 0.18µm 
technology. 

In this experiment we employ the transition fault model 
for delay testing. 50000 random test patterns are generated 
and fed to each circuit, and the patterns are simulated by a 
transition fault simulator we developed based on HOPE 
[14]. The rational for 50000 random patterns is that the 
fault coverage barely changes after applying 50000 
random patterns. We also generate deterministic transition 
fault test patterns for each module (namely, multiplier and 
adder), and check to see if these patterns can be delivered 
to the module under test through the circuit hierarchy. The 
results are shown in Table I for 16-bit datapaths and Table 
II for 8-bit datapaths. 

Four experiments are carried out for each benchmark: 
LEA(50000) is a circuit generated by LEA and tested by 
50000 random patterns, LEA(HIE) is a circuit generated 
by LEA and tested by hierarchical test patterns. In this 
case we generate hierarchical test patterns for all 
operations and choose the results with highest fault 
coverage. HLTS (50000) is a circuit generated by the 
proposed HLTS method and tested by 50000 random 
patterns, and HLTS(HIE) is a circuit generated by the 
proposed HLTS method and tested by hierarchical test 
patterns. Column three (RC) gives the resource constraints 
we used to synthesize the circuits, while column 4 shows 
the number of control steps in the SDFG for each circuit. 
Columns 5, 6, 7 give the number of module faults (#MF), 
detected module faults (#DMF), and module fault 
coverage (MFC). Module faults are the transition faults 
appear in the synthesized modules. The last two columns 
give the silicon area of each circuit and the normalized 
overhead. The area is the gate count reported by Design 
Compiler. 

The experimental results show that hierarchical test 
generation for LEA based synthesis method achieves poor 
fault coverage. The main reason is that the high data 
dependency and operations with constant input render it 
difficult to derive hierarchical test patterns from pre-
computed test patterns unless TOPs existing in a given 
CDFG. Furthermore, the proposed method indeed achieves 
100% transition fault coverage for all modules in a circuit 
hierarchy, as it guarantees that a valid test pattern pair can 
be delivered to the module under test in two consecutive 
cycles. The proposed HLTS method requires slightly more 
silicon area. The area penalty ranges from 2% to 11% for 
16-bit datapath, and 3% to 23% for 8-bit datapaths. 

 
5. Conclusion and Future Work 

 
We proposed a high-level test synthesis method with 

integrated hierarchical test generation targeted for delay 
fault testability. Experimental results show that all 
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transition faults in the functional units are testable. As long 
as the delay test set for a module is known, the proposed 
method ensures that this set of patterns can be delivered 
through the synthesized circuit hierarchy. 
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Table I. Experimental result for 16-bit datapaths 
Circuit Type RC CS #MF #DMF MFC(%) Area Overhead 

EX LEA(50000/HIE) 1* 1+ 5 4432 3466/39 78.2/0.8 20298.08 1 
 HLTS(50000/HIE) 1* 1+ 5 4432 4429/4432 99.93/100 22288.56 1.098 

FIR7 LEA(50000/HIE) 2* 2+ 7 8864 4118 / 0 46.46 / 0 42059.88 1 
 HLTS(50000/HIE) 2* 2+ 7 8864 8864/8864 100/100 45062.73 1.07 

EWF LEA(50000/HIE) 2* 2+ 16 8864 1957/924 22.08/10.42 53189.03 1 
 HLTS(50000/HIE) 2* 2+ 16 8864 8852/8864 99.86/100 54028.52 1.016 

WAVELET LEA(50000/HIE) 2* 2+ 15 8864 5612 / 0 63.31 / 0 64606.80 1 
 HLTS(50000/HIE) 2* 2+ 15 8864 8864/8864 100/100 71450.16 1.105 

DIFFEQ LEA(50000/HIE) 2* 1+ 1− 5 8864 7821/401 88.23/4.52 40904.09 1 
 HLTS(50000/HIE) 2* 1+ 1− 6 8864 8864/8864 100/100 44334.35 1.083 

DCT LEA(50000/HIE) 2* 2+ 15 8864 4080/1000 46.03/11.28 54653.36 1 
 HLTS(50000/HIE) 2* 2+ 15 8864 8848/8864 99.82/100 58338.98 1.067 

 
Table II. Experimental result for 8-bit datapaths 

Circuit Type RC CS #MF #DMF MFC(%) Area Overhead 
EX LEA(50000/HIE) 1* 1+  5 1048 872/23 83.2/2.19 7244.18 1 

 HLTS(50000/HIE) 1* 1+  5 1048 1048/1048 100/100 8345.89 1.15 
FIR7 LEA(50000/HIE) 2* 2+ 7 2096 1332 / 0 63.07 / 0 15213.65 1 

 HLTS(50000/HIE) 2* 2+ 7 2096 2096/2096 100/100 17011.11 1.118 
EWF LEA(50000/HIE) 2* 2+ 16 2096 824/353 39.31/16.84 21372.04 1 

 HLTS(50000/HIE) 2* 2+ 16 2096 2096/2096 100/100 21994.75 1.029 
WAVELET LEA(50000/HIE) 2* 2+ 15 2096 1761 / 0 84.01 / 0 25282.57 1 

 HLTS(50000/HIE) 2* 2+ 15 2096 2096/2096 100/100 31041.48 1.227 
DIFFEQ LEA(50000/HIE) 2* 1+ 1− 5 2096 1949/234 92.99/11.16 14697.97 1 

 HLTS(50000/HIE) 2* 1+ 1− 6 2096 2096/2096 100/100 16605.35 1.129 
DCT LEA(50000/HIE) 2* 2+ 15 2096 1447/456 69.03/21.75 22140.78 1 

 HLTS(50000/HIE) 2* 2+ 15 2096 2096/2096 100/100 24414.52 1.10 
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