
Test Cost Reduction for SoC Using a Combined Approach
to Test Data Compression and Test Scheduling

Quming Zhou
Dept. of Electrical and Computer Engg.

Rice University, Houston, TX, USA
quming@rice.edu

Kedarnath J. Balakrishnan
NEC Laboratories America

4 Independence Way, Princeton, NJ, USA
bala@nec-labs.com

Abstract

A combined approach for implementing system level test com-
pression and core test scheduling to reduce SoC test costs is pro-
posed in this paper. A broadcast scan based test compression algo-
rithm for parallel testing of cores with multiple scan chains is used
to reduce the test data of the SoC. Unlike other test compression
schemes, the proposed algorithm doesn’t require specialized test
generation or fault simulation and is applicable with intellectual
property (IP) cores. The core testing schedule with compression
enabled is decided using a generalized strip packing algorithm.
The hardware architecture to implement the proposed scheme is
very simple. By using the combined approach, the total test data
volume and test application time of the SoC is reduced to a level
comparable with the test data volume and test application time of
the largest core in the SoC.

1. Introduction

Recent advances in technology have made it possible to inte-
grate entire systems on a single chip. These systems-on-a-chip
(SoC) consists of varied components (also called cores) like em-
bedded processors, digital logic, memories, and analog/RF com-
ponents, all in the same chip. With the new paradigm of core based
design, intellectual property (IP) cores and design reuse, the time
to market new SoCs reduces considerably. However, because of
the same factors, the SoC integrator has new challenges for manu-
facturing test of the SoC.

With the increasing complexity and the number of cores in
SoC, the volume of test data required to guarantee good manu-
facturing test quality also increase. In addition, the number and
varied types of cores require different test methodologies for SoC
designs as compared to conventional integrated circuits. Due to
the heterogeneous nature of the cores, some may require BIST
(memories) while others (analog cores) need to be isolated during
conventional digital testing. For certain cores which are IP pro-
tected, the structural information is not available and core internals
like layouts and scan configurations may be fixed. Conventional
state-of-the-art techniques for test data compression like Mentor
Graphics EDT [10], Synopsys DFT Compiler Maxand other EDA
vendor tools utilize structural information for scan chain synthe-
sis, fault simulation and test generation with compression. They
are not applicable at the system level, especially if the SoC has
an IP core. Other techniques for test data compression like selec-
tive Huffman coding [6] or dictionary coding [9] where structural

information is not required have usually focussed on core level
testing. The decoder for these techniques is designed based on the
test patterns for each core separately. Hence, at the system level
multiple decoders are necessary for testing all the cores in the SoC
which leads to high area overhead as well as synchronization and
timing issues.

Another important issue in SoC testing is the restricted access
to internal signals of cores. Recently, the IEEE P1500 standard [1]
has proposed a test architecture consisting of test wrappers for
each core and test access mechanisms (TAMs). There has been
considerable work in the area of TAM/wrapper design. Most of
the previous works have concentrated on optimizing wrapper de-
signs [7,11] and core test scheduling [4,5] to reduce the test appli-
cation time for the SoC. However, these techniques haven’t con-
sidered the impact of test data compression in their design consid-
erations. The focus of this paper is on system level test of SoCs.
We present a combined algorithm for implementing system level
test compression and core test scheduling that is applicable to IP
cores. The proposed algorithm utilizes a broadcast scan [8] based
test compression method across multiple cores and a generalized
strip packing algorithm to decide the core test schedule with com-
pression enabled. We assume that the test wrapper for each core
is decided by the core vendor and hence the core characteristics
like number of scan chains (internal and boundary) etc cannot be
modified.

It is well known that the percentage of unspecified (or don’t
care) bits in automated test pattern generator (ATPG) generated
test patterns (without random filling) is high even for compacted
tests. This high percentage of don’t cares provides an opportunity
to find scan chain sharing from different cores, so that the corre-
sponding test sets can be merged and then broadcasted to multiple
chains in parallel testing. By sharing scan chain inputs among
several cores it is possible to reduce test data volume and shorten
test application time significantly, since cores that share chains are
tested concurrently. The major contribution of this paper is a scan
chain sharing strategy to reduce test volume without fault simula-
tion. Our strategy exploits don’t care bits in test sets and combines
test scheduling with scan chain sharing. To minimize architecture
support, we do merging at scan chain level so that the structure
is same for all test patterns. Another advantage of the proposed
test strategy is that it does not require fault simulation to verify the
fault coverage.

Parallel or concurrent testing has been proposed before for
SoCs, but using ATE capabilities [2]. The broadcast scan tech-
nique [8] where a single input is fed into multiple internal scan

1

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



chains is a form of concurrent testing. However, this scheme and
other techniques based on broadcast scan require a special ATPG
methodology to ensure high fault coverage. In this paper, we ap-
ply the concept of broadcast scan for multiple cores after the test
patterns are generated and hence our technique is applicable to IP
cores with precomputed test sets. [12] proposes a method of shar-
ing test sets for multiple cores with the assumption that each core
has only one scan chain. An algorithm is presented to find the best
position to merge each core test set into the core test set with the
longest scan chain. A scan chain disable signal generator is used to
retrieve the original test set for each core from the shared test set.
The paper partitions test vectors into different segments and each
partition is merged separately in the shared test set which requires
a complex scan chain disable generator and high hardware area
overhead. On the other hand, the proposed scheme is applicable to
cores with multiple scan chains and doesn’t require a complicated
on-chip decoder. In this paper, we present a combined algorithm
for concurrent testing using test set merging and core test schedul-
ing.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background and notation used in this paper. Section 3
describes the proposed architecture and the scan chain merging al-
gorithm. SoC test scheduling taking into account scan chain merg-
ing is presented in section 4. Experimental results are reported in
section 5 and conclusions are in 6.

2. Background and Notation

The basic idea behind the broadcast scan technique [8] was to
utilize a single tester channel to load multiple scan chains simulta-
neously. However, because of the restrictions imposed by this ar-
chitecture on the values that can be shifted into the scan chains, the
fault coverage reduces. Hence, a serial mode is required [3] dur-
ing which the scan chains can be loaded with values independent
of each other to test the faults that became untestable in the par-
allel or broadcast scan mode. Hence, a special ATPG is required,
which can handle both modes of operation to achieve high fault
coverage. The compression obtained using this technique also has
to take into account both the modes of operation.

In the proposed work, we also utilize a single tester channel
to load multiple scan chains. However, there are several differ-
ences from earlier techniques. We are proposing a SoC testing ap-
proach using test data compression based on broadcast scan. We
assume that the test patterns of all the cores are precomputed. Two
scan chains from different cores are checked whether they can be
merged, in which case both of them are connected to the same
tester channel. This means the cores to which these scan chain
belong need to be tested simultaneously. Hence a combined algo-
rithm is required for test compression and core test scheduling.

The following assumptions are made in this paper: a) Each core
has a full scan test architecture with multiple scan chains; b) Each
core is a black box where fault simulations are unavailable; c) The
test set with don’t care bits in test patterns is provided for each
core for full scan testing; d) Test cubes (test patterns with don’t
care bits) in a single test set can not be further merged with each
other. A test set � consists of � test cubes �� � �� � � �� ���� �,
in which unspecified or don’t care bits are left during test pattern
generation. Each test cubes �� is composed of � chain vectors
from � chains �� � � � �� ���� �. Each chain �� contains in turn
	� scan cells. We refer to 	� as the length of chain �� .

3. Proposed Scheme

The proposed test architecture is shown in Fig. 1. Several ex-
ternal TAM lines and an external test clock signal are sent from
the tester. The scheduler encodes the test schedule information i.e.
when each core is tested. Each core may be tested during multi-
ple time periods. A modulo counter is required for each core that
generates the scan enable signal based on the maximum scan chain
length for that core. The internal TAM lines (scan chain inputs) are
tapped from the external TAM lines. Hence, to implement chain
sharing, the corresponding scan chain inputs should be connected
to the same TAM line.

Figure 1. Test Architecture

3.1. Chain Merging

Two chain vectors 
� and 
� are compatible if they do not spec-
ify complementary values in any bit position. If any two chain
vectors, say 
� and 
� are compatible, they are replaced by the
new chain vector 
� that has all the binary values of both 
� and

� as shown in Fig. 2. The length of the resultant chain vector is
the maximum length of 
� and 
� . In Fig. 2, the left most bit of
chain vector 
� is aligned with the third bit of chain vector 
� , and
the right most bit is aligned with the last second bit of chain vector

� . The parameter ���� ��� is used to denote the shifted bits of

� while merging with 
� . The range of ���� ��� is between 0
and the length difference of two merging vectors, ���� ��� � �
in Fig. 2. The opportunity of merging two vectors is increased
by varying ���� ���. The ���� ��� can be implemented by dis-
abling the scan shifting clock to hold the bit values in scan cells.
Negative ���� ��� is not allowed since it will lead to a longer
merged vector than the original chain vectors.

Figure 2. Merging two chain vectors

The above definition of chain vector compatibility can be ex-
tended to compatible scan chains. Two scan chains (say �� and

2



FF1 FF2 FF3

1 1 0

0 1 x

x 1 1

FF1 FF2 FF3

0 1 0

1 0 0

x 1 x

FF1 FF2 FF3 FF4 FF5

0 1 x x 1

1 x 1 0 0

0 0 x 1 0

1 x 0 1 1

chain c11 chain c12 chain c21

(a)

chain c12

FF1 FF2 FF3 FF4 FF5

0 1 1 0 1

1 0 1 0 0

0 0 1 1 0

1 x 0 1 1

FF1 FF2 FF3

0 1 0

1 0 0

x 1 x

FF1 FF2 FF3

merged

vectors

chain c11

chain c21

(b)

Figure 3. Merging Scan Chains

��) are compatible when all the chain vectors of the first chain
(corresponding to every test cube) are compatible with chain vec-
tors of the other chain. After merging, both chain �� and chain
�� are applied with same vectors denoted by ��. There are sev-
eral parameters that affect the chances of merging between two
chains. However, in this paper, we utilize two of them, ���� ���
and 
����� �����, which are easy to implement in hardware. A
merged chain is assigned as an unique ���� ��� (it remains con-
stant across all test vectors) to indicate how many clocks should
be disabled when it is connected together with another chain. This
optimum value of ���� ��� is determined from all possible values
in its range using two factors. The first factor is the number of test
vectors in chain �� that can be merged into chain �� which needs
to be maximized and the second factor is the number of additional
don’t care bits to be specified when the vectors are merged (which
needs to be minimized).

The second parameter utilizes the fact that the order of test vec-
tors is irrelevant for most fault models (stuck-at etc). Without any
loss of generality, we assume that the number of test vectors cor-
responding to the core to which the merging chain belongs to is
not greater than the number of test vectors corresponding to the
core of the target chain. In the proposed scheme, we use a simple
heuristic to decide the vector order. The test vectors of the target
core are sorted in ascending order of specified bits with the least
specified test vectors in the beginning and the most specified in
the end. The test vectors of the merging core are sorted in the op-
posite direction. This sorting allows test cubes with fewest don’t
cares in the merging core to be merged with test cubes with most
don’t cares in the target core.

Fig. 3 illustrates an example of sharing chains across two cores.
Core 1 has two chains, chains ��� and ��� , and three test vectors
(one on each row), and core 2 has one chain ��� and four vectors
as shown in Fig. 3(a). The test set of chain ��� can be merged with
���, resulting in the merged test set in Fig. 3(b). In this example,
���� ��� is 1 for both ��� and ���, and the test volume is reduced
from 38 bits to 29 bits.

The above definition for sharing chains from different cores
has the requirement that all the patterns in one core (the merging
core) should be mergeable with the patterns of the second core (the
target core) which is a hard constraint to satisfy. This constraint

can be removed if the core testing is done in two different modes.
First, the combined test cubes for both the cores are applied in
parallel or concurrently. The remaining unmergeable test cubes
for each core are applied separately in serial mode. We call this as
partial compatibility, and two chains are partially compatible if the
number of unmergeable cubes is not more than a threshold. The
threshold is decided by the number of test patterns and the number
of scan chains in the core.

3.2. Sharing Chains between Cores

The previous subsection described merging between two
chains. In this subsection, we develop our algorithm for shar-
ing scan chains between two different cores, each with multiple
chains. A graph model is used to represent the compatibility be-
tween scan chains. Let ���� �� be a graph with a set of vertices
� and a set of edges � where each vertex represents a scan chain.
An edge exists between two vertices if and only if the correspond-
ing scan chains are mergeable. Let us consider merging chains
between two cores, ����� and ������ . Since we assume that
the scan chains within a core cannot be merged with each other,
the compatibility graph is basically a bipartite graph. The graph
vertices can be decomposed into two disjoint sets containing the
vertices corresponding to the scan chains of each core with the
property that no two vertices within the same set are adjacent.

Consider the following coloring scheme for the vertices of the
graph. Each vertex in the graph is initially assigned an indistinct
color. If there is an edge between two vertices, i.e. the chains cor-
responding to the two vertices can be merged together, then they
can have the same color. The problem of maximum chain sharing
amongst the two cores is similar to minimum coloring of the graph.
In fact, this problem can be mapped into the minimum coloring
problem of a dual graph which is NP-Hard. The final number of
colors should be less than the available ATE channels for the two
cores to be mergeable. Note that merging one chain into another
chain will specify the don’t care bits of vectors in chains, and this
may invalidate other edges of the vertices. Since the problem is
NP-Hard, a greedy heuristic is used to find a solution. The idea
is to maximize the number of remaining graph edges after each
chain merging since each chain merging will cut off edges from
the graph.

1. Build a compatibility graph � by checking the compatibility
of each scan chain in ����� with all chains in ������ . Each
edge is assigned an edge distance that indicates the number
of don’t care bits specified during the merging. Each vertex
in ������ is assigned a distinct color.

2. Build a list 	� for vertices in ����� .

3. Sort the list in ascending order of vertex degrees.

4. Process a vertex with the minimum degree in 	� , say � �
� .

If its degree is zero, assign � �
� a new color, remove it from

graph � and list 	� , and go to step 8.

5. Find all vertices in ������ that are connected with vertex
� �
� . Choose the vertex that has the minimum degree among

them. If the degrees are same, pick the vertex that has the
least edge distance. Lets name this vertex � ��

� , chosen to
merge with � �

� .

6. Merge � �
� with � ��

� . Assign � �
� with the same color as � ��

� ,
delete all edges associated with � �

� , and remove � �
� from

graph � and list 	� .

3



1 2 3

4 5 6 7

3 4

2

3 3 5

CoreI

CoreII

2 3

4 5 6 7

4

2

3 3 5

CoreI

CoreII

3

4 5 6 7

3 4 5

CoreI

CoreII

(a)

(b)

(c)

Figure 4. Selecting Chains to Merge

7. Update edges associated with � ��
� in graph �. Some edges

may not exist and some edge distances may be updated as
well.

8. Repeat step 3, until 	� is empty.

The example in Fig. 4 is used to illustrate the above proposed
merging procedure. ����� has three scan chains and ������ has
five scan chains represented as vertices in the bipartite graph. As-
sume the compatibility edges and the edge distances as shown in
Fig. 4(a). Since vertex 1 of ����� has the smallest degree, it is
chosen as the first candidate. It can only be merged with ver-
tex corresponding to chain 4 of ������ and the graph after this
merging is shown in Fig. 4(b). The next candidate is vertex 2 of
����� which can be either merged with vertex 5 or vertex 6 of
������ , both with degree two. However, since the edge distance
from vertex 2 of ����� to vertex 6 of ������ is smaller than the
edge distance between vertex 2 of ����� and vertex 5 of ������ ,
chain 2 of ����� is merged with chain 6 of ������ . Assume that
after merging with chain 2 of ����� , chain 6 of ������ has a
new edge distance from chain 3 of ����� as shown in Fig. 4(c).
Therefore, the last vertex of ����� which corresponds to chain 3
is merged with vertex 5 of ������ due to the smallest correspond-
ing edge distance. As a result of this chain sharing algorithm, the
seven scan chains of the two cores are reduced to four chains, each
corresponding to one chain of ������ .

4. Test Scheduling

The algorithm presented in the previous section can be used to
determine the merging between scan chains of two cores. How-
ever, current SoCs contain several cores and determining the opti-
mal order of the cores for merging is necessary to obtain the high-
est data compression and lowest test application time. Even when
chain sharing is not used, test scheduling of the different cores is
required to ensure that the limited number of ATE channels are
utilized optimally thereby to reduce the total test application time.

Previous work on chain sharing between cores [12] assumed
a single scan chain for each core and hence didn’t consider the
requirements imposed by the limited number of ATE channels etc.

Such a constraint is obvious from the following example. Suppose
there are three cores in a SoC such that core 1 has 2 scan chains,
core 2 has 4 scan chains and core 3 has 3 scan chains for a total of 9
scan chains. Further, assume the scan chain merging compatibility
is such that both core 1 and core 2 have one chain that can be
merged with scan chains of core 3. To test all the three cores in
parallel using chain sharing, the number of ATE channels should
be atleast 7. However, if the number of ATE channels is 4, only
core 1 and core 3 can be tested in parallel by sharing one chain.
Core 2 has to be tested separately after testing the other two cores.

We formulate the test scheduling as a generalized strip pack-
ing problem, and then present a solution in conjunction with scan
chain sharing. For test scheduling, each core can be considered as
a rectangle, with the width representing the number of scan chains
in the core and the height representing the test time for all the test
patterns of the core [5]. Consider the two-dimensional strip pack-
ing problem which can described as the following. Given a set of
rectangles and an open-end bin of fixed width, pack the rectangles
into the bin in a way that minimizes the overall height of the bin.
All rectangles must be packed with their width parallel to the bot-
tom of the bin (they cannot be rotated). For the test scheduling
problem, width of the bin corresponds to the available number of
ATE channels, and the overall height of the bin is the time required
to test all the cores in the SoC. Hence, the aim is to schedule the
tests so that they are completed in the least possible time. Finding
an optimal solution for the strip packing problem is NP-complete,
so we use a level-oriented heuristic.

Initially, all the rectangles are pre-sorted in order of decreasing
height and the sorted rectangles are packed to the lowest level that
they can fit. The first level is the bottom of the bin and subsequent
levels are defined by the height of the tallest rectangle of the pre-
vious level. Testing for cores at the same level begins at the same
instant and finishes no later than the instant denoted by the height
of the level. The level-oriented algorithm allows cores at the same
level to be tested in parallel and to share the same output response
analyzer. Furthermore, the architecture of sharing ATE channels
amongst multiple scan chains is simplified since all tests in a level
are synchronized. The dynamic test scheduling algorithm with
scan chain sharing is described below.

1. Sort all rectangles (cores) in decreasing order of the height
and process in this order.

2. Add the current rectangle into the lowest level that it can fit
and shift it to the left most. Each rectangle is adjacent to the
rectangle just processed or to the left wall of the bin.

3. Start a new level if the current rectangle can not fit the pre-
vious level i.e., the width goes beyond the available TAM
width. The height of a level is determined by the first rect-
angle in the level. All the subsequent rectangles in the level
will have smaller heights.

4. To check whether a rectangle will fit into the current level,
explore all possible chain sharing between the scan chains
of the current core with all other cores in the current level.
If scan chain sharing is possible, the current rectangle will
have common area with other rectangles and more free space
available in the current level for other rectangles.

5. Loop back to step 2 until all rectangles are packed into the
bin.

The example in Fig. 5 is used to illustrate the test scheduling
algorithm and show the chain sharing reduces the total test vol-
ume as well as total test application time. Fig. 5 (a) shows the

4



Figure 5. Test Scheduling With Chain Sharing

characteristics of the different cores arranged in descending order
of height (testing time for all the test patterns). The width of each
core represents the number of scan chains. Suppose the number of
ATE channels available (TAM Width) is 40. Fig. 5 (b) shows the
core test schedule without any merging. The first two cores will be
packed into the first level since the required width (� � �� � ��)
is less than the available TAM width. However, core 3 has 16 scan
chains and cannot be packed into the first level. Hence it is placed
at level 2, above core 1 which has the most height in level 1. Core 4
has only 10 scan chains and can be accommodated easily in level
1. Core 5 is added to level 2. The total test time for this schedule is
equal to the sum of testing times for core 1 and core 3, since they
represent the height of each level. Hence ���� � 	
�� � �
��
clock cycles are required, as shown in Fig. 5 (b).

The results of test scheduling with scan chain sharing is illus-
trated in Fig. 5 (c). The procedure starts by packing core 1 as the
first core in level 1. When core 2 is added to level 1, possible chain
sharing is explored between the two cores. As a result, two chains
can be shared between core 1 and core 2, shown as the portion
common to rectangles 1 and 2 in Fig. 5 (c). Core 3 has 16 scan
chains and cannot be directly added to level 1, since the required
TAM width will exceed 40. However, while checking scan chain
compatibility, two chains between cores 2 and 3 can be shared.
With this sharing, core 3 can be accommodated in level 1. If the
scan chain compatibilities of cores 2 and 4 are such that all the
scan chains of core 4 can be shared with core 2, the test sched-
ule rectangle for core 4 will be fully contained in the rectangle for
core 2. Core 5 is then added to the next level. The total test time
for this schedule is ���� � ��� � ���� as shown in Fig. 5 (c).

5. Experimental Results

Experiments to evaluate the proposed technique were per-
formed on three industrial SoC designs. Test patterns for the stuck-
at faults of each core (assuming full scan) were generated using a
proprietary ATPG tool with static and dynamic compaction but no

Table 1. SoC Results

SoC 1 SoC 2 SoC 3
No. Cores 7 5 22
No. Chains 76 123 266

Total Scan FF 6988 20241 264226
Data Vol. 4215616 10994900 354526708
Test Time 326096 382795 20685808
Scan FF 1744 6800 50937

No. Chains 16 34 48
Max. Data Vol. 1784112 6337600 93489984

Vol. Ratio 42.3% 57.6% 26.3%
Test Time 112530 187332 3124157

Test TAM Width 22 35 80
Sch. Test Time 255512 382795 6473275

TAM Width 22 35 80
Data Vol. 2598030 6920800 212109250

Prop. Vol. Ratio 61.6% 62.9% 59.8%
Test Time 135168 214552 3499835

Time Ratio 52.9 % 56.0 % 54.0 %
Runtime (s) 2.4 29.2 611.6

random filling of unspecified bits (Xs). The results are shown in
Table 1. The first five rows of Table 1 lists the number of cores,
number of scan chain, the total number of flip-flops, the total test
volume (in bits) and the total test application time for each SoC.
The total test volume is calculated as the sum of test data volume
of each core. Similarly, total test application time shown in Ta-
ble 1 is just the sum of test application times of all the cores, i.e.,
assuming all the cores are tested one by one serially. The next five
rows of Table 1 show the characteristic of the core with the largest
test data volume. The number of flip-flops, number of chains, data
volume and test application time of the largest core in each SoC
are listed. “Vol. Ratio” shows the ratio of the test data volume of
the largest core with the total test data volume of the SoC. Note
that since the proposed scheme doesn’t compress the data of each
core separately, the test data volume of the largest core is the limit
to which total test data volume of the SoC can be reduced. For
the same reason, test time of the largest core will be the minimum
possible test time for the SoC.

Table 2. Details of Cores in SoC1

Core Chains Length Patterns Volume Time
Dct 8 48 607 233088 29136
Idct 8 84 185 124320 15540
Ispq 16 109 1023 1784120 111500
Mc 12 97 414 481896 40158
Mv 12 97 332 386448 32204
Vld 16 97 713 1106576 69161
Rbit 4 77 322 99176 24794

The two rows of Table 1 under “Test Sch.” report the test ap-
plication time using test scheduling (without scan chain sharing)
for the given ATE channels (reported as “TAM Width”). The test
data volume, test application time for the TAM Width using the

5



Table 3. SoC1 Test Schedule for TAM Width 22
With Chain Sharing Without Sharing

Level
Start End TAM Cores Start End TAM Cores

Level 1 0 112530 22 ALL 0 112530 20 Ispq,Rbit
Level 2 112530 124486 20 Vld,Rbit 112530 182404 16 Vld
Level 3 124486 131150 20 Mv,Dct 182404 222976 20 Mc,Dct
Level 4 131150 135168 20 Mc,Idct 222976 255512 20 Mv,Idct

proposed scheme are shown in the last five rows of Table 1. The
row “Vol. Ratio” reports the ratio of the new test data volume with
the total test data volume. The row “Time Ratio” reports the ratio
of the test application time using the proposed scheme with the
test application time using normal test scheduling (without scan
chain sharing). As can be seen from the table, proposed scheme
achieves very good test data volume and test application time re-
duction. An important point to note from the results in Table 1 is
that the test data volume and test application time of the SoC us-
ing the proposed scheme is comparable to that of the largest core
in the SoC. In the case of SoC 2, where the largest core dominates
the SoC, the total test data volume and test application time is only
10% more than that of the largest core. For the other two SoCs,
there are other cores which are similar in size to the largest core
and hence the results are not that spectacular. However, the results
are still significantly less than the original test data volume and test
application time. The proposed algorithm is very fast; the runtime
for the largest SoC is around 11 minutes.

The results are explained in more detail using SoC 1 as an ex-
ample. SoC1 a media-processing SoC with seven cores. Table 2
lists the details of each core. The core Ispq is the largest core
with 42.3% of the total test data volume and with the maximum
number of test patterns. The schedule for SoC 1 with and without
scan chain sharing for TAM Width 22 is shown in Table 3. Since
the proposed algorithm is level oriented, the results are listed level
wise with each subsequent level starting after testing for all the
cores in the previous level is finished. In Table 3, the columns
“Start” and “End” represent the start and end clock cycles of each
level, while the column “TAM” shows the number of TAM lines
used in that level. The column “Cores” lists the cores that are
tested in that level. Both techniques have the test schedule with
four levels. The schedule without chain sharing is able to utilize
only 20 TAM lines at the maximum. When scan chain sharing is
enabled, initially all cores are tested concurrently (Level 1). The
remaining test patterns of each core are tested in the higher levels
without any sharing. Even though there are 22 TAM lines avail-
able, only 20 are used in levels 2-4. The test schedule finishes at
135168 cycles, which is 52.9% of finish time without any chain
sharing.

6. Conclusions

In this paper, we proposed a combined approach for imple-
menting system level test compression and core test scheduling
to reduce SoC test costs. A broadcast scan based test compression
algorithm for parallel testing of cores with multiple scan chains is
used to reduce the test data of the SoC. Unlike other test compres-
sion schemes, the proposed algorithm doesn’t require specialized
test generation or fault simulation and is applicable with intellec-
tual property (IP) cores. A generalized strip packing based core
testing schedule algorithm with compression is presented. The

hardware architecture to implement the proposed scheme is very
simple. By using the combined approach, very good test data vol-
ume and test application time reduction can be obtained. Exper-
iments using the proposed scheme on three industrial SoCs are
reported. Experimental results show that the test data volume and
test application time of the SoC using the proposed scheme is com-
parable with the test data volume and test application time of the
largest core in the SoC.

References

[1] F. DaSilva, Y. Zorian, and et. al. Overview of the IEEE
P1500 Standard. In Proc. Intl. Test Conference, pages 988–
997, 2003.

[2] R. Dorsch, R. H. Rivera, and et. al. Adapting an SOC to ATE
Concurrent Test Capabilities. In Proc. Intl. Test Conference,
pages 1169–1175, 2002.

[3] I. Hamzaoglu and J. H. Patel. Reducing Test Application
Time for Full Scan Embedded Cores. In Proc. of Int. Sympo-
sium on Fault Tolerant Computing, pages 260–267, 1999.

[4] Y. Huang, S. M. Reddy, and et. al. Optimal Core Wrapper
Width Selection and SOC Test Scheduling Based On 3-D Bin
Packing Algorithm. In Proc. Intl. Test Conference, pages 74–
82, 2002.

[5] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. On Using
Rectangle Packing for SOC Wrapper/TAM Co-optimization.
In Proc. VLSI Test Symposium, pages 253–258, 2002.

[6] A. Jas, J. G. Dastidar, M.-E. Ng, and N. Touba. An Efficient
Test Vector Compression Scheme Using Selective Huffman
Coding. IEEE Trans. Computer-aided Design, 22(6):797–
806, 2003.

[7] S. Koranne. Design of Reconfigurable Access Wrappers for
Embedded Core Based SoC Test. IEEE Trans. VLSI Systems,
11(5):955–960, 2003.

[8] K.-J. Lee, J. Chen, and C. Huang. Using a Single Input to
Support Multiple Scan Chains. In Proc. International Con-
ference on Computer Aided Design, pages 74–78, 1998.

[9] L. Li, K. Charabarty, and N. A. Touba. Test Data Com-
pression using Dictionaries with Selective Entries and Fixed-
Length Indices. ACM Transactions on Design Automation of
Electronic Systems, 8(4):470–490, Oct. 2003.

[10] J. Rajski and et. al. Embedded Deterministic Test. IEEE
Trans. Computer-aided Design, 23(5), May 2004.

[11] A. Sehgal, S. K. Goel, E. J. Marinissen, and K. Chakrabarty.
IEEE P1500-Compliant Test Wrapper Design for Hierarchi-
cal Cores. In Proc. Intl. Test Conference, pages 1203–1212,
2004.

[12] G. Zeng and H. Ito. Concurrent Core Test for SOC using
Shared Test Set and Scan Chain Disable. In Proc. Design
Automation and Test in Europe, pages 1045–1050, 2006.

6


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




