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Abstract

This paper presents a new blocking logic to block un-
knowns for temporal compactors. The proposed blocking
logic can reduce data volume required to control the blocking
logic and also increase the number of scan cells that are ob-
served by the temporal compactors. Control patterns, which
describe values required at the control signals of the block-
ing logic, are compressed by LFSR reseeding. In this paper,
the blocking logic gates for some groups of scan chains that
do not capture unknowns are bypassed. Since all the scan
cells in these scan chain groups are observed without speci-
fying the corresponding bits in control patterns, fewer speci-
fied bits are required and more scan cells are observed. The
seed size is further reduced by reducing numbers of specified
bits in the densely specified control patterns. The proposed
method can always achieve the same fault coverage that can
be achieved by direct observation of scan chains. Experi-
ments with large industrial designs clearly demonstrate that
the proposed method is scalable to large circuits. Hardware
overhead for the proposed blocking logic is very low.

1 Introduction

Continuous scaling of semiconductor technology has in-
creased IC chip complexity. As the design complexity in-
creases, test data volume also increases rapidly. Since test
data volume is a major factor that determines test cost,
several test compression techniques including commercial
tools [6, 3] to reduce both volume of input test patterns
and output responses have been developed. Spatial com-
paction [7, 4, 10] reduces response data volume by reduc-
ing the number of outputs (typically outputs of scan chains)
that are observed by the automatic test equipment (ATE). An-
other approach, temporal compaction, reduces response data
volume by compressing a long sequence of responses into a
single signature, which is smaller than the size of even a sin-
gle output response. Hence using a temporal compactor such
as multiple input signature register (MISR) can drastically re-
duce response data volume.

The presence of unknown values (unknowns for short) in
output responses of scan test patterns creates a lot of compli-
cations for test data compression. Especially, entrance of any
unknown into a temporal compactor can be catastrophic since
it corrupts the signature of output responses over the entire
period of testing time. Unknowns can occur due to the pres-
ence of non-scan flip-flops, embedded memories, or tristate
buffers. Limitation in accuracy of simulation can also pro-
duce unknowns. To prevent corrupting the signature, every
unknown that appears at outputs must be blocked before it en-

ters the temporal compactor. Techniques to block unknowns
for temporal compaction are proposed in [1, 5, 6, 9, 11].
Since blocking unknowns for temporal compaction requires
control data that also contribute to overall test data volume, it
is important to reduce control data volume.

A selective compactor scheme where only one scan chain
output is observed (not blocked) at any scan shift cycle is
proposed in [6]. The enhanced selective compactor proposed
in [8] can observe multiple scan chains at a scan shift cycle
at the expense of higher area overhead and larger control data
volume. The simple channel masking technique is commonly
used in Logic Built-in Self-Test (LBIST) [1]. In this scheme,
fault effects that are scanned out at scan shift cycles when all
scan chains are blocked cannot be observed. An enhanced
channel masking scheme presented in [1] improves observ-
ability of the simple channel masking scheme.

Naruse et al. [5] propose an unknown blocking scheme
that is based on LFSR reseeding [2] for LBIST. In order to
reduce the number of seeds that are stored in an on-chip mem-
ory, a best feedback polynomial of LFSR is searched from a
set of different degrees of polynomials. The critical drawback
of this method is its prohibitive run time. Wang et. al. [11]
show that run time for computing control data and control
data sizes can be significantly reduced by using an efficient
algorithm. Another unknown masking technique is proposed
in [9]. This technique uses a combinational logic called XML
to generate blocking control signals. Since the algorithm used
in [9] to minimize hardware overhead for the XML is based
on traversing the large fault isolation table, the main draw-
back of this method is its huge memory space requirement.
Since the hardware (XML) for this method is customized for
a specific set of test responses, the whole XML should be
redesigned for any design change.

All unknown blocking schemes introduced above block
not only unknowns but also errors (fault effects) for mod-
eled and unmodeled faults. Consider an unknown blocking
scheme based on LFSR reseeding such as [5]. The signal
probability of every output of an LFSR is 0.5. In other words,
if a long sequence of control patterns is generated, the output
of every LFSR stage will be set to 1 (0) in 50 % of clock
cycles. Hence, 50 % response data that are scanned out of
outputs of scan chains will be blocked, i.e., not be observed.
Not observing some scan cells can result in decrease in mod-
eled and/or unmodeled fault coverage.

A large IC chip is comprised of several sub-blocks.
Sources of unknowns are typically located in only a few sub-
blocks. For example, if a sub-block requires very tight tim-
ing, some flip-flops in the sub-block are not scanned so that
they function as unknown sources during scan based testing.
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Figure 1. An LFSR Reseeding-based Blocking Logic

Each scan chain is usually routed with flip-flops in the same
sub-block since mixing flip-flops in different sub-blocks to-
gether into one scan chain makes diagnosis difficult. Hence
typically most unknowns are captured in scan chains for a few
sub-blocks [7]. This paper proposes a new unknown blocking
scheme based on LFSR reseeding that can minimize control
data volume and maximize the number of scan cells that are
observed, especially for designs where unknowns concentrate
in a part of the design.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the LFSR reseeding based unknown block-
ing scheme. In Section 3, architecture of the proposed block-
ing logic is described. Section 4 describes the proposed algo-
rithms that minimize the number of specified bits in control
patterns and maximize observability. Experimental results
are presented in Section 5. Section 6 gives conclusions.

2 LFSR Reseeding Based Blocking Scheme

Figure 1 describes the LFSR reseeding based unknown
blocking scheme used in prior work [5, 11]. Every unknown
value that is scanned out of the output of a scan chain (see
X’s on the outputs of scan chains h� and hn) in a shift cycle
must be blocked to prevent it from corrupting the signature by
setting the control input of the corresponding blocking logic
gate to a 1. On the other hand, errors that need to be ob-
served should propagate to the MISR through the blocking
logic gate. For example, in Figure 1, since an error (denoted
by D) that needs to be observed is scanned out of the output
of h� in the current cycle, the control input of the blocking
logic gate for h� is set to a 0. The LFSR should be loaded
with appropriate seeds to block all unknowns and propagate
the errors that need to be observed to the MISR. These seeds
should be stored in the ATE memory prior to test application
along with test data. Hence, if the size of seeds is large, it will
increase overall data volume to be stored in the ATE memory.
(In this paper, we use a scheme that loads a new seed into the
control LFSR for each test pattern.) When test patterns are
compressed by LFSR reseeding, normally the size of seeds,
i.e., the number of stages of LFSR, is determined by the num-
ber of specified bits in the most specified test pattern among
all test patterns. If the number of specified bits in the most
specified test pattern is Smax, the number of stages of LFSR
required is given by Smax �M , where M is a margin to en-
sure that the equations are solvable. Hence, it is important to
minimize the number of specified bits in the most specified
pattern.

To minimize volume of control data, control pattern ci that
has minimal number of care bits is computed for every test
pattern pi. Every scan cell that captures an unknown should
be assigned 1’s in ci (assume that the blocking logic is com-
prised of only OR gates). The number of specified bits in
each control pattern is minimized by minimizing the number
of bits that are specified to 0’s to observe errors. To reduce
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Figure 2. (a) Response Loaded into Scan Cells (b)
Corresponding Control Pattern ci (Prior Work) (c)
Control Pattern ci for the Proposed Blocking Logic

the number of care bits in ci, we reduce the number of faults
that are targeted by test pattern pi. Note that if a fault f is
detected not only by pi but also by many other test patterns,
then even if f is not observed when pi is applied, there is a
high chance that fault f will be detected by other test pat-
terns. Once a set of faults Fi that should be detected by test
pattern pi is determined, then the minimum number of scan
cells required to observe all faults in Fi are selected. Fault
set Fi is called the target fault list of pi. Typically, a fault
is captured into multiple scan cells and some scan cells cap-
ture fault effects for multiple faults. Since observing only one
fault effect is enough to detect the fault, only one fault effect
is selected for observation for every fault in Fi.

Figure 2 (b) gives control pattern ci obtained by using the
procedure described above for the test response shown in Fig-
ure 2 (a). The scan cells that capture unknown values are as-
signed 1’s in ci. Assume that the target fault list of pi contains
faults f�� f�� � � � � f�. Hence ci is specified to observe fault ef-
fects for these 7 faults. Only one fault effect is selected for
each fault for observation. For example, although fault ef-
fects of f� are captured into the third scan cell of scan chain
h� and fifth scan cell of scan chain h�, only the third scan cell
of scan chain h� is selected for observation and assigned a 0
in ci. ci requires 14 specified bits.

After a control pattern ci that has minimal number of spec-
ified bits is computed for test pattern pi, a seed is computed
for ci by using a linear solver. Then the LFSR pattern cri that
will be generated by the LFSR/phase shifter from the seed for
ci is computed by simulating the LFSR/phase shifter. During
the simulation, the LFSR is loaded with the seed for ci and
clocked for l cycles, where l is the number of scan cells in the
longest scan chain.

3 Architecture of the Proposed Method

Figure 3 depicts a scan design that employs the proposed
unknown blocking technique. There are a few differences
between the blocking logic of the proposed technique and that
of prior work [5, 11], which is shown in Figure 1. Note that
the blocking logic of the proposed method has an extra 2-
input AND gate before each OR gate of the blocking logic.
One input of each 2-input AND gate is driven by an output



M

Blocking Logic

1

scan chain h1

scan chain h2

scan chain h3

scan chain h4

I
S
R

M

scan chain hn-3

scan chain hn-2

scan chain hn-1

scan chain hn

I
S
R

. .
 .

. . .

. . .0 1

. .
 .

g

group
register

phase
shifter

. . .

. .
 . group G1

group Gg

LFSR

Figure 3. Architecture of the Proposed Method
of the phase shifter and the other input is driven by an output
of the group register. The n scan chains are divided into g
groups and all the 2-input AND gates that are connected to
the outputs of scan chains that belong to the same group are
driven by a common output of the group register. Hence if
i-th bit of the group register is assigned 0, then the values
captured in all scan cells in i-th group enter the corresponding
MISR, independent of the output states of the phase shifter.
The outputs of scan chains in each group are connected to a
separate MISR. Each group may contain a different number
of scan chains although in the example shown in Figure 3,
every group consists of 4 scan chains. In this paper, all scan
chains that can capture unknowns are placed into a few scan
chain groups. These scan chain groups, which are assigned
1’s in the group register such as Gg of Figure 3, are called
unknown capturing scan chain groups or UCGs. On the other
hand, scan chain groups that capture no unknowns are called
unknown free scan chain groups or UFGs and assigned 0’s in
the group register such as G�.

4 Control Patterns for the Proposed Method

The proposed blocking logic can significantly reduce
data volume for control patterns and improve observability
over [5, 11].

4.1 Reducing 0’s in Control Patterns

The control pattern for prior work [5, 11] shown in Fig-
ure 2 (b) requires 14 specified bits. In the following, we show
that the number of 0’s in the control pattern for the same test
response can be significantly reduced by using the proposed
blocking logic. Consider computing a control pattern ci for
the proposed blocking logic (see Figure 2 (c)) for the test
response shown in Figure 2 (a). Assume that scan chains
are clustered into 4 groups, G�� � � � � G�. Only the scan cells
in groups G� and G� capture unknowns and no other scan
cells capture unknowns. Hence G� and G� are assigned 0’s
in the group register and all scan cells in these scan chain
groups can be observed without specifying any bit of ci to 0
for them. All the 7 faults except 2 faults f� and f� in the tar-
get fault list of pi can be detected by observing G� and G�.
Although the proposed scheme can reduce the number of 1’s
too (see the next section), assume that all scan cells that cap-
ture unknowns are assigned 1’s in the control pattern for now.
Hence, 5 bits are assigned 1’s to block the unknowns in the
control pattern. Only two additional bits need to be specified
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Figure 4. (a) Number of Specified Bits for UCGs (b)
Sorted Control Patterns and Signatures

to 0’s to observe fault effects for f� and f�. In consequence,
total only 7 bits (5 1’s and 2 0’s) need to be specified in the
control pattern for the proposed blocking logic.

As described above, data for the group register are de-
termined according to scan chains that capture unknowns.
A simple method to identify scan cells that can capture un-
knowns is to simulate the design with a set of random pat-
terns. During the simulation, all scan chains that contain scan
cells that capture unknown(s) in the response to any random
pattern are identified. These scan chains are grouped together
into 2-3 UCGs (UCGs are assigned 1’s in the group register).
Since the number of groups, i.e., the number of stages of the
group register, is small and the group register need not be
updated often with different data (in most cases, the group
register needs to be loaded only once during the entire test
session), data volume for the group register is negligible.

4.2 Reducing Specified Bits in Densely Specified
Control Patterns

In LFSR reseeding, the size of seeds (or the number of
stages of the LFSR) is normally determined by the number of
specified bits in the most specified pattern among all patterns.
Hence even if there is only one control pattern that has large
number of specified bits and all the other responses have very
few specified bits, the blocking logic will require large seed
size, which in turn results in large control data volume.

The numbers of specified bits in densely specified control
patterns are reduced as follows. Initially, a control pattern
that requires minimum number of specified bits is computed
for every test pattern. Assume that an LFSR with Smax�M
stages is used to generate control sequences for the blocking
logic. First, we select a set of control patterns that have more
than Smax specified bits. Let this set be Cd and the set that
includes all the other control patterns be Cs. Next, we com-
pute a seed for every control pattern ci in Cs and calculate
the LFSR pattern cri from the computed seed by simulating
the LFSR operation as described in Section 2. We apply cri
to the blocking logic and drop all faults that are observed not
only from the target fault list of pi but also from target fault
lists of all the other test patterns. The signatures of all MISRs
are updated. Hence, many faults will be dropped from target
fault lists of test patterns for which control patterns are in Cd

when processing all control patterns in Cs is complete. Then



the signatures of all MISRs are reset.
Now we start processing control patterns in Cd. Numbers

of specified bits of these control patterns are reduced by un-
specifying the bits that are specified for scan cells in one or
more UCGs, i.e., by not observing scan cells in one or more
UCGs. The UCG(s) for which bits are unspecified in ci are
called the unobserved UCGs of ci. For every control pattern
ci in Cd, we first drop the faults that are captured in scan cells
in UFGs, i.e., unknown free scan chain groups (these faults
are always observed independent of control sequences gen-
erated by the LFSR). The unobserved UCGs are selected to
avoid decrease in fault coverage. We first unspecify the spec-
ified bits for all the UCGs from ci. The number of remaining
target faults of pi that are captured in each UCG is counted.
Then we select a UCGGm that captures the largest number of
target faults of pi, mark the UCG, and specify ci to block all
unknowns and observe all target faults of pi that are captured
in Gm. If the number of specified bits of ci is small enough
for the linear solver to find a seed for ci, then we drop the
faults from the target fault list of pi whose fault effects are
captured in the scan cells that are assigned 0’s in ci. Oth-
erwise we unspecify back the bits that are specified for Gm

from ci. Then we select another UCG among the unmarked
UCGs that captures the largest number of target faults of pi.
We repeat the procedure described above in this paragraph
until all UCGs are marked. When all UCGs are marked, we
select the next control pattern and determine the unobserved
UCGs for it. This is repeated until a set of unobserved UCGs
is determined for every control pattern in Cd.

If in the response to test pattern pi, an unobserved UCG
captures at least one target fault that is captured only in that
UCG (the fault is captured in no other scan chain group), then
not observing the UCG will make some faults undetected. If
this is the case for a control pattern ci (it does not occur often
since many faults in the target faults of pi have already been
dropped and very few faults remain), then ci is applied twice
during test application. In each of the two applications, a
different UCG is selected as the unobserved UCG. This guar-
antees detection of all target faults of pi.

After unobserved UCGs are determined for every control
pattern inCd, the control patterns inCd are sorted by their un-
observed UCGs such that test patterns for which control pat-
terns have the same unobserved UCGs are consecutively ap-
plied during test application. After all test patterns for which
control patterns have the same unobserved UCGs are applied,
the signatures in all MISRs are scanned out and the MISRs
are reset before the next group of test patterns are applied.

Example: Figure 4 (a) shows numbers of specified bits in
each control pattern required for the UCGs Ga� Gb, and Gc

and the total number of specified bits (the column ”total”).
For example, control pattern cx�� requires respectively 21,
23 and 30 specified bits for Ga, Gb and Gc and total 74 spec-
ified bits. Assume that Smax � �� is given for the control
LFSR. All control patterns other than cx� cy, and cz require
fewer than 75 specified bits. Hence Cd � fcx� cy� czg and
Cs � fall control patterns except cx� cy� and czg. An LFSR
seed is computed for every control pattern inCs and the faults
that are observed are dropped from target fault lists of all test
patterns including test patterns for which control patterns are
in Cd. As more faults are dropped, fewer specified bits are

required in each control pattern. After all test patterns except
px� py� and pz for which control patterns are inCd are applied
to the scan chains, the signatures in the MISRs are scanned
out for comparisons with good signatures. Then all MISRs
are reset.

Now control patterns in Cd are processed to compute
seeds for them. Control pattern cx is taken first from Cd

and all specified bits of cx that were specified for the three
UCGs are unspecified. The faults that are captured in UFGs
are dropped from the target fault list of px. Since Ga cap-
tures the largest number of faults, 12 (in Figure 4 (a), the
number over the number of specified bits required for each
UCG represents the number of target faults captured in the
UCG), the bits for Ga are specified to block unknowns and
to observe the 12 faults. Ga is marked. Since the number of
specified bits of cx is only 30 (smaller than Smax � ��), the
linear solver finds a seed for cx. The faults whose fault ef-
fects are captured in the scan cells that are assigned 0’s in cx
are dropped from the target fault list of px. Since Gc captures
more faults than Gb, Gc is marked next and the bits for Gc

are additionally specified in cx. Since the number of speci-
fied bits of cx is only 63 (the sum of bits that are specified
for Ga and Gc), the linear solver still finds a seed for cx. The
faults whose fault effects are captured in the scan cells that
are assigned 0’s in cx are dropped from the target fault list of
px. Since the only unmarked UCG is Gb, Gb is marked next
and the bits for Gb are specified in ci. Since the number of
specified bits of cx now becomes 98, which is far greater than
Smax, the linear solver does not find a seed for cx. The bits
that are specified for Gb are unspecified back and Gb is deter-
mined as the unobserved UCG of cx. If there are faults in the
target fault list of px that can be detected only by observing
Gb, then px will be applied one more time. In the control pat-
tern for the second application of px, a UCG other than Gb is
selected as the unobserved UCG. A seed is computed for cx
and observed faults are dropped from all target fault lists.

Since there are no further unmarked UCGs, we take the
next control pattern cy from Cd and process the UCGs in the
order of Gb, Gc, and Ga (according to the number of faults
captured in each UCG) to determine the unobserved UCGs.
Since specifying cy for Gc after Gb makes the number of
specified bits of cy 76, which is greater than Smax, the bits of
cy that are specified for Gc are unspecified back. Specifying
bits for the remaining unmarked UCG, Ga, makes the num-
ber of specified bits of cy only 61. Hence Gc is determined
to be the unobserved UCG of cy. Using the same procedure
that were used for cx and cy, Gb is determined to be the un-
observed UCG of cz.

Control patterns in Cd are now sorted into two different
groups. For the first group, which includes cx and cz, Gb is
not observed and for the second group, which includes only
cy, Gc is not observed. Since they are not observed (com-
pared with good signatures), the signatures for unobserved
UCGs are denoted by xxx in Figure 4 (b). �

4.3 Improving Observability

Another advantage of the proposed scheme over prior
work [5, 11] is better observability. If an LFSR is used to
generate control signals for the blocking logic, then on an av-
erage only 50% of scan cells are observed. In contrast, in
the proposed scheme, all scan cells in the groups that are as-



signed 0’s in the group register are observed. For example,
in Figure 2 (c), since all scan cells in UFGs, G� and G�, are
observed, 75 % scan cells can be observed (assume that ap-
proximately 50 % scan cells of G� and G� are observed).

5 Experimental Results

We conducted experiments with sets of test patterns gener-
ated for large ISCAS’89 and ITC’99 benchmark circuits and
6 industrial circuits (circuits D1, D2, D3, D4, D5, and D6).
Experimental results are shown in Table 1. We first obtained
characteristics of test pattern sets we use in the experiments
by directly observing responses without output compaction.
The results are reported in the columns under the headings
Direct Observ.. The column # Out gives the number of pri-
mary and scan outputs in each circuit. For each circuit, we
made three versions of scan designs each of which has a dif-
ferent number of unknown sources. Unknown sources were
made by excluding some flip-flops for scan insertion. The
columns X src % give the percentage of non-scan flip-flops
in the scan design. Results for the three versions of scan de-
signs are respectively shown in the columns under the head-
ings low unknown, med unknown, and high unknown. The
columnsX % give the average number of scan cells that cap-
ture unknowns in percentage to the total number of scan cells
(the percentage of scan cells that were observed is given by
��� �X�). The number of test patterns generated is given
in the columns # pat. All test patterns were generated by an
in-house ATPG tool. Fault coverage achieved by each set of
test patterns are shown in the columns FC %.

We applied the same sets of test patterns and compressed
output responses by MISRs through the proposed blocking
logic. The results are shown in the columns under the head-
ings Proposed. The columns obs. cell % report the aver-
age number of scan cells that were observed, i.e., whose re-
sponse values entered the MISRs. For most designs, over 90
% of scan cells were observed. Recall that if the blocking
logic is controlled only by the LFSR/phase shifter like prior
work [5, 11], then approximately only 50 % of scan cells can
be observed. If there are only a few unknowns, then the num-
ber of scan cells that propagate through the proposed block-
ing logic is very close to that of scan cells that can be ob-
served by direct observation. We routed scan flip-flops into
scan chains such that about 30 % scan chains capture un-
knowns in any test pattern for all designs except D1 where
about 15 % scan chains captured unknowns. Scan chains
that capture unknowns in any test pattern were grouped into
3 UCGs for every scan design. The columns # stg show the
number of stages of the control LFSR for the proposed block-
ing logic while columns old # stg show the number of stages
of the control LFSR for prior work [5, 11] where the block-
ing logic is controlled only by the LFSR/phase shifter. The
number of stages of LFSR was significantly reduced for ev-
ery scan design by using the proposed blocking logic. It is
notable that the number of stages of LFSR for the high un-
known version of b22s was reduced from 117 stages to only
14 stages. The number of densely specified control patterns,
i.e., the number of control patterns that are placed in Cd (see
Section 4.2), are given in the columns # den pat. The numbers
shown in parentheses in the same columns give the number of
test patterns that were applied twice because the unobserved

UCG(s) capture at least one target fault that is not captured
in any other group. Note that the number of test patterns that
are applied twice is very small for every scan design. Fault
coverage of the proposed method is not reported since it is
always same as fault coverage that can be achieved by direct
observation. Run time clearly demonstrates scalability of the
proposed method. Run time is about 1 minute or shorter for
all ISCAS and ITC 99 circuits. Due to limited page space, run
time is reported only for low unknown versions. Run times
for med and high unknown versions are close.

If we ignore storage for signatures (since we store very
few signatures for an entire test set, storage requirement for
the signatures is negligible), the compression that can be
achieved by the proposed method is approximately given
by (the number of scan outputs) / (the number of stages of
LFSR). The proposed method achieved 440X compression
for the low unknown version of D6. In these experiments,
a separate seed was stored for each test pattern. However, if
we generate multiple LFSR patterns from a single seed, even
larger compression can be achieved. Since control pattern for
the proposed blocking are very sparsely specified (have large
number of don’t cares), it will be easy to find compatible con-
trol patterns that can share the same seeds.

Table 2 compares results of the proposed method with re-
sults of prior work [5, 9, 11]. Since prior work [5, 9] tar-
gets LBIST application, accurate comparison of the proposed
method with [9, 5] is limited. Except s5378, area overhead
of the proposed method is lower than that of [9]. We com-
puted gate equivalents (GEs) of the proposed blocking logic
by using the formula used in [9]. Test responses used by [9]
have little more unknowns than those used by the proposed
blocking logic. If responses have more unknowns, then area
overhead for the proposed blocking logic may increase.

Even if responses used by the proposed method have more
unknowns (except s13207) than those used by [5], the num-
ber of stages of LFSR for the proposed method is smaller than
that of stages of LFSR for [5]. The storage amount required
for the proposed method (columns stor bits) is significantly
smaller than [5] for every circuit. The storage amount re-
quired for the proposed method is also significantly (about
40-50%) smaller than that required for [11] for every circuit.
Run time of the proposed method is several orders of mag-
nitude shorter than [5] (the time unit for results of the pro-
posed method is second while the time unit for results of [5]
is hour). As mentioned above, we stored a separate seed for
each test pattern. However, if we generate multiple LFSR
patterns from a single seed, then even larger compression can
be achieved.

6 Conclusions

This paper presents a new blocking logic to block un-
knowns for temporal compactors. The proposed blocking
logic can reduce data volume required to control the block-
ing logic and also improve the number of scan cells that are
observed by temporal compactors. Control patterns, which
describe values required at the control signals of the block-
ing logic, are compressed by LFSR reseeding. In the pro-
posed method, scan chains are clustered into several groups
and the outputs of the scan chains in each group are con-
nected to 2-input AND gates that are controlled by the same



Table 1. Experimental Results
CKT low unknown med unknown high unknown

Direct Observ. Proposed Direct Observ. Proposed Direct Observ. Proposed
X obs. old # X obs. old # X obs. old #

# src X # FC cell # stg den time src X # FC cell # stg den src X # FC cell # stg den
Name Out % % pat % % stg # pat sec % % pat % % stg # pat % % pat % % stg # pat

s5378 228 .56 .43 139 98.7 97.9 8 18 7(0) 2.6 .56 1.2 134 92.4 90.1 7 15 0(0) 5.0 5.7 129 79.1 80.2 22 36 4(0)
s9234 250 .88 .56 206 89.3 92.4 8 16 3(1) 6.9 1.8 2.4 183 83.1 88.0 13 21 3(2) 5.3 7.2 177 78.3 83.1 39 47 2(0)
s13207 790 .15 .13 207 98.2 93.1 8 19 3(0) 9.7 .45 1.0 196 95.5 85.2 17 28 2(0) 2.0 3.0 193 88.5 83.3 34 41 3(0)
s15850 684 .34 .34 140 96.3 96.9 13 31 9(0) 9.7 1.8 1.6 80 83.5 88.3 33 52 6(0) 5.0 7.6 83 72.6 82.5 98 122 6(0)
s35932 2048 .17 .16 25 91.3 88.0 42 142 3(3) 11.9 .98 1.0 26 89.3 87.5 54 200 3(2) 5.0 2.0 28 85.6 87.3 76 176 2(2)
s38417 1742 .18 .36 190 98.2 84.9 17 33 6(1) 45.3 .98 2.1 182 95.0 83.9 51 68 12(0) 2.0 5.3 180 88.4 82.4 111 133 6(0)
s38584 1730 .48 .30 194 95.4 88.1 19 40 2(0) 48.9 2.0 1.3 190 93.8 84.4 34 49 13(2) 5.0 2.1 185 87.9 84.0 51 69 6(1)
b17s 1512 .99 .11 539 91.1 85.7 10 41 5(4) 207 2.0 .15 551 90.2 90.4 12 34 17(2) 5.0 .44 551 88.1 85.4 21 43 26(2)
b20s 512 .41 .11 701 96.1 95.4 8 17 19(3) 64.9 1.8 .18 603 94.8 93.6 7 28 11(4) 5.1 .35 658 93.8 94.4 9 20 9(0)
b21s 512 .82 .06 664 96.6 97.2 7 19 3(2) 60.1 1.8 .21 545 94.2 92.2 8 19 0(0) 5.1 .52 255 86.7 90.0 13 36 2(0)
b22s 757 .95 .09 668 94.2 95.1 7 25 10(2) 110 1.9 .25 674 93.1 91.3 10 20 14(0) 5.0 1.2 691 88.1 87.2 14 117 54(1)
D1 796 .39 .003 333 99.5 99.8 7 18 0(0) 19.1 1.9 .01 331 98.0 99.5 7 23 0(0) 5.1 .03 325 95.0 99.5 7 26 0(0)
D2 2455 .46 .13 418 98.8 98.7 93 377 14(9) 1.2K 2.0 .25 400 97.8 94.4 89 356 15(10) 5.0 .52 395 91.8 94.4 144 349 12(6)
D3 6795 .09 1.0 921 97.8 86.6 170 246 54(0) 1.3K .19 1.6 858 96.8 84.8 211 345 74(5) .50 4.7 929 84.5 83.5 630 852 77(4)
D4 5014 .09 .12 540 97.1 85.8 30 58 39(3) 699 .49 1.1 533 96.8 84.5 89 130 46(3) 5.0 3.5 521 84.5 83.2 238 314 42(2)
D5 4980 .08 3.2 545 89.3 83.6 182 245 13(12) 5.6K .49 5.8 551 84.0 82.2 314 401 8(6) 5.0 6.8 551 81.6 81.7 364 422 4(4)
D6 66K .10 .14 1443 92.3 85.4 149 311 48(32) 15K 1.0 .96 1330 88.9 99.0 838 1135 88(38) 5.0 2.6 1142 82.2 83.3 2090 2313 83(39)

Table 2. Comparisons with Prior Work
CKT Proposed [9] Proposed [5]� [11]�

X area X area X # stor time stor time stor
Name % GE % GE % stg bits sec bits hour bits
s5378 5.67 843 7.3 338 .43 8 1112 2.6 3090 3 1904

s13207 0.98 937 1.3 1351 .14 8 1544 11.4 11816 13.2 3150
s15850 1.64 860 2.2 1164 .34 13 1820 9.7 2800 10.9 2907
s38584 2.10 2666 2.2 3286 .30 19 3686 48.9 21042 12.3 6240
�
X� � ���� % for all circuits, �X� � ��� % for all circuits

control signal before the blocking logic gates. If no scan
chains in a group capture unknowns, then the correspond-
ing blocking logic gates are bypassed by the 2-input AND
gates. Hence no bits need to be specified in the control pat-
tern for that group. This can significantly reduce the number
of 0’s that should be specified to propagate errors for obser-
vation. Since all the scan cells in the group are observed, by-
passing can improve observability. Numbers of specified bits
in highly specified test patterns are reduced by not observ-
ing one or more scan chain groups. The scan chains groups
that are not observed are selected such that no decrease in
fault coverage results. Experimental results show that control
patterns for the proposed blocking logic require very small
number of specified bits. The number of scan cells that are
observed by the proposed blocking logic is close to that of
scan cells that can be achieved by direct observation even un-
der existence of many unknowns in responses. Run time of
the proposed method is several orders of magnitude shorter
than that of prior work [5]. Experiments with large indus-
trial designs clearly demonstrate scalability of the proposed
method. Since only n 2-input AND gates, where n is the
number of scan chains in the design, and a small group regis-
ter are only additional hardware to the blocking logic of prior
work, hardware overhead for the proposed blocking logic is
very low.
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