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Abstract

Chip-multiprocessors are quickly becoming popular in
embedded systems. However, the practical success of CMPs
strongly depends on addressing the difficulty of multi-
threaded application development for such systems. Trans-
actional Memory (TM ) promises to simplify concurrency
management in multithreaded applications by allowing pro-
grammers to specify coarse-grain parallel tasks, while
achieving performance comparable to fine-grain lock-based
applications.

This paper presents ATLAS, the first prototype of a
CMP with hardware support for transactional memory. AT-
LAS includes 8 embedded PowerPC cores that access co-
herent shared memory in a transactional manner. The data
cache for each core is modified to support the speculative
buffering and conflict detection necessary for transactional
execution. We have mapped ATLAS to the BEE2 multi-
FPGA board to create a full-system prototype that operates
at 100MHz, boots Linux, and provides significant perfor-
mance and ease-of-use benefits for a range of parallel ap-
plications. Overall, the ATLAS prototype provides an ex-
cellent framework for further research on the software and
hardware techniques necessary to deliver on the potential
of transactional memory.

1 Introduction

Processor vendors are turning en masse towards chip-
multiprocessors (CMPs) as a practical way to turn increas-
ing transistor budgets into scalable performance without the
power and complexity challenges of aggressive uniproces-
sors. The trend towards CMPs in the embedded domain is
as strong as it is in the desktop and server domains. Sev-
eral embedded vendors, such as ARM, ARC, Broadcom,
Freescale, NEC, PMC-Sierra, and Raza Microelectronics,
are selling chips or licensing designs for CMPs for cache-
coherent shared memory configurations. Moreover, there
is significant research activity in porting embedded appli-
cations for CMPs and optimizing their microarchitecture to
meet the domain characteristics [1, 15, 14, 2].

Nevertheless, the practical success of CMP-based sys-
tems is limited by the difficulty of parallel program-

ming [24]. While in some systems we can utilize CMP
cores by running many programs concurrently, parallel pro-
gramming is necessary in order to reduce the execution
time of one program. Existing models for multithreaded
programming using locks or mutexes are challenging for
most programmers as they introduce a tradeoff between per-
formance and correctness. The use of coarse-grain locks
makes it easy to write a correct parallel program but it typ-
ically limits the parallelism in the code. The use of fine-
grain locks reveals additional concurrency but often leads
to races, deadlocks, livelocks and other difficult bugs [16].

Transactional Memory (TM) [13] is a promising tech-
nology that can simplify concurrency management in mul-
tithreaded programs. TM allows programmers to define
coarse-grain parallel tasks (transactions) that will be exe-
cuted atomically and in isolation. Using optimistic con-
currency, TM executes these tasks in parallel on a CMP,
providing performance similar to that with fine-grain locks.
Furthermore, transactions address other challenges of lock-
based parallel code such as deadlocks and provide robust-
ness to failures. Recently, there has been significant re-
search on efficient software and hardware TM implementa-
tions from both academia and industry [9, 3, 20, 19, 23, 12,
11, 26, 22, 21, 17]. Hardware support for TM is considered
necessary in order to eliminate the overheads of managing
concurrent execution of transactions and to allow TM pro-
grams to use existing software libraries without the need for
recompilation.

This paper presents ATLAS, the first prototype of a CMP
with hardware support for transactional memory. ATLAS
includes 8 embedded PowerPC cores with a shared memory
system. The data cache for each core is enhanced to buffer
transactional state during optimistic execution and detect
potential conflicts between concurrent transactions. More-
over, ATLAS relies on transactional execution mechanisms
to keep the data caches coherent, eliminating the need for
a conventional cache coherence protocol [9]. We mapped
ATLAS to the BEE2 multi-FPGA board [6] to provide a
full-featured prototype operating at 100MHz. The system
boots the GNU/Linux operating system and provides sup-
port for transaction-based parallel programming and paral-
lel application tuning. Early experiments with full applica-
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tions demonstrate that ATLAS is easy to program and pro-
vides scalable performance. ATLAS provides a valuable
tool for validating the advantages of transactional memory.
It allows software researchers to investigate transactional
programming techniques at hardware speeds. The FPGA
mapping allows hardware researchers to tune hardware pa-
rameters as further insights are generated from application
studies.

2 Transactional Memory Overview

To parallelize an application, a programmer must break
the code up into multiple threads that can execute in par-
allel. The programmer must also synchronize the threads
when they potentially operate on the same data in mem-
ory. The conventional synchronization approach is the use
of lock primitives. If the system supports transactional
memory, the programmer can synchronize threads simply
by wrapping all the code that operates on the potentially
shared data into a transaction. Transactions are guaranteed
by the system to appear to execute atomically and isolated,
even if multiple transactions are executed concurrently. TM
systems achieve high performance through optimistic con-
currency. A transaction runs without acquiring locks, op-
timistically assuming no other transaction operates concur-
rently on the same data. If this is true at the end of its execu-
tion, the transaction commits its writes to shared memory.
If not, the transaction violates, its writes are rolled back, and
it is re-executed.

A TM system must implement the following mecha-
nisms: (1) isolation of stores until the transaction commits;
(2) conflict detection between concurrent transactions; (3)
atomic commit of stores to shared memory; (4) rollback
of stores when conflicts are detected. Conflict detection
requires tracking the addresses read (read-set) and written
(write-set) by each transaction. A conflict occurs when the
write-set of one transaction intersects with the read-set of
another concurrently executing transaction. These mech-
anisms can be implemented either with hardware support
(HTM) [9, 3, 20, 19] or in a software only manner (STM)
[23, 12, 11, 26, 22, 21, 17]. HTM systems support trans-
actional mechanisms at minimal overheads and make the
implementation details transparent to software.

HTM systems implement speculative buffering and track
read- and write-sets in caches [9]. The data caches in CMP
cores are sufficient to buffer the state for the transactions in
most applications [7] and simple virtualization techniques
can handle the rare case of a cache overflow. For conflict
detection, an HTM system can utilize the cache-coherent
protocol. As messages are exchanged between cores to lo-
cate data on cache misses, it is possible to detect the over-
lap between a read-set and a write-set that triggers a con-
flict. Simulation studies have shown that such hardware TM
implementations can allow multithreaded programs to syn-
chronize in a high performance manner using fairly simple,
coarse-grain, transactions in their code [18].

3 The ATLAS CMP System

ATLAS is the first full-system prototype for a CMP with
transactional memory support. This section presents its ba-
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Figure 1. The data cache organization for ATLAS.

sic architecture, the hardware design, and its software envi-
ronment. The prototype is currently operational at 100MHz,
boots the Linux operating system, and runs multithreaded
applications that use transactional memory.

3.1 The TCC TM Architecture

ATLAS prototypes the Transactional Coherence and
Consistency (TCC) architecture for hardware-based trans-
actional memory [18]. TCC assumes a set of proces-
sor cores with private first-level caches that are connected
through a snooping bus to the shared memory (shared
caches and DRAM). The cores execute transactions spec-
ulatively, while tracking the read- and write-sets in the data
cache organization shown in Figure 1. As a core performs
loads and stores within a transaction, it sets the SR and SM
bits to show that the corresponding word is now part of the
transaction’s read-set or write-set, respectively. The first
time a word is written in a specific cache line, the cache also
pushes a pointer to it into the write-set address FIFO. The
cache operates as a write-buffer, isolating all writes from
shared memory until the transaction completes.

At the end of the transaction, the core arbitrates for per-
mission to commit the write-set to the shared memory.
While we execute multiple transactions in parallel, only one
is allowed to commit at any point in time. Once granted a
commit token, the core uses the write-set address FIFO to
traverse the cache and commit the transaction’s writes. To
detect conflicts, all other cores snoop the commit messages,
searching their data caches for the committed addresses. If a
word currently committed belongs to the read-set of a sec-
ond transaction (the SR bit is set), a violation is triggered
for the second transaction. The committing transaction is
always guaranteed to complete. Before the commit is over,
the processor resets the SR and SM bits in the cache. On
a core that executes a transaction that violates, we undo its
effect by invalidating its write-set from the cache (invali-
date lines with SM bits set). Register checkpointing at the
boundaries of transactions are also necessary to undo regis-
ter updates.

An interesting feature of TCC is that communication be-



Figure 2. ATLAS on The BEE2 multi­FPGA board.
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Figure 3. Block diagram of the ATLAS system.

tween cores occurs only in bulk at transaction boundaries.
This is the only point where caches are kept coherent and
access ordering (consistency) is enforced. In other words,
TCC uses this simple commit mechanism to replace the
complex cache coherence protocols like MESI. This is pos-
sible because well synchronized programs should access
truly shared data only within user-defined transactions.

A user-defined transaction may be large enough to over-
flow the data cache. In this case, the core arbitrates immedi-
ately for the commit token, performs a partial commit, and
does not release the token until it reaches the real end of
the transaction. Such overflow events slowdown commits
but are rare in tuned programs. In Section 3.3, we discuss
how ATLAS provides explicit support to help programmers
identify and quickly eliminate overflows and other bottle-
necks in their parallel code.

3.2 The ATLAS Hardware Design

ATLAS implements the TCC architecture for CMPs with
transactional memory support. ATLAS includes 8 PowerPC
405 cores that run multithreaded code for applications and
a ninth core that handles the operating system and I/O de-
vices. The design has been mapped onto the BEE2 multi-
FPGA board shown in Figure 21 [6].

Figure 3 illustrates how ATLAS is mapped to the BEE2
board. The four outer FPGAs, labeled as User FPGAs, are
connected in a star topology through the 5th FPGA, des-
ignated as the Control FPGA. Figure 4(a) shows the block

1ATLAS is also part of the RAMP project that aims at developing
FPGA-based technology for prototyping modern CMP systems [4].
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FPGAs.

diagram of the User FPGA. Each FPGA includes two Pow-
erPC 405 cores enhanced with a TCC data cache. We use
the hardcore PowerPC cores in the VirtexII-Pro FPGAs. We
chose to use the hardcore PPC, instead of a synthesized soft-
core, for a shorter design time and to allow us to focus our
efforts on the memory system and software components.
Moreover, retrofitting a hardcore for transactional memory
is an interesting challenge that many embedded SoC devel-
opers will face when building CMPs based on pre-existing
hardcores.

The data cache design, written in synthesizable Verilog,
is attached to the PowerPC cores through IBM’s Processor
Local Bus (PLB). The cache has 32 byte lines and has con-
figurability in its set associativity, data capacity and write-
set address FIFO capacity (4-way, 32 KB and 8 KB default
setting respectively). The internal data cache in the Pow-
erPC cores is disabled. The TCC cache is in turn connected
to a network switch (shared by two cores) that forwards
cache misses and commit requests to the control FPGA
through a central switch. Overall, TCC’s FPGA implemen-
tation adds 14% overhead in the control logic, and 29% in
on chip memory as compared to a non-speculative incarna-
tion of our cache. For instructions, we use the built-in in-
struction cache in each PowerPC core. As we run Linux on
ATLAS, each core activates the built-in TLB (unified, fully-
associative, 64 entries). We also connect two SRAM blocks
to the processor through the On-Chip Memory (OCM) bus.
The first SRAM serves for register checkpointing (in soft-
ware), while the second SRAM is to coordinate system calls
and exceptions for Linux (refer to Section 3.3). The two
SRAMs are implemented on the FPGA using the on-chip
block SRAM (BRAM) blocks available.

The Control FPGA provides a hub to connect all the pro-
cessors to the shared memory and I/O devices. The current
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ATLAS design does not use secondary caches, though this
is not fundamental. As depicted in Figure 4b, the Control
Switch interfaces with the TCC token arbiter, the DDR con-
troller and the PowerPC 405 core that runs the Linux OS.
The PowerPC core for Linux uses its built-in data cache but
broadcasts its memory writes to all other processors for co-
herence purposes. All traffic sent through switches is packe-
tized with a single packet format to simplify routing around
the system.

Another function for the Control FPGA is to provide I/O
capabilities for ATLAS. A number of I/O peripherals are
connected to the PowerPC core that runs Linux, including
an Ethernet controller, a UART controller (for console in-
put/output), a SelectMap controller for programming the
user FPGAs through Linux, and a SystemACE controller
that interfaces to a CompactFlash card. Using Network File
System (NFS), ATLAS can access external storage over the
Ethernet.

3.3 The ATLAS Software Design

The ATLAS software stack consists of the API for mul-
tithreaded programming with transactions and the system
software.

For application programming, the user partitions work
into parallel threads and defines atomic transactions within
each thread. As explained in [8], this approach allows for
both non-blocking synchronization of parallel code with
coarse-grain code and speculative parallelization of sequen-
tial code. We currently provide an API for C-based transac-
tional programming, which allows users to define transac-
tion boundaries. The application is compiled with a regular
C compiler (gcc in our case) and linked with the ATLAS
library that provides optimized assembly-based implemen-
tations of the API calls. At the start of a transaction, the
API call checkpoints the processor’s register file, clears SM
and SR bits in the data cache, and registers the transac-
tion with the commit token arbiter. When the transaction
completes, the API call first requests the commit token and,
when granted, triggers the commit of the write-set to the
shared memory. The library also defines an exception han-
dler triggered when a data cache detects a violation for the
currently executing transaction. The handler invalidates the
write-set in the data-cache, restores the register checkpoint,
and restarts the transaction.

The ATLAS system software is summarized in Figure 5.

ATLAS runs Linux only on the PowerPC core in the con-
trol FPGA. The 8 PowerPC cores in the user FPGAs run
a simple runtime kernel that coordinates with Linux. This
approach is similar to the Intel MISP concept for efficient
CMPs [10]. Each user application starts on the PowerPC
core in the control FPGA as a regular user application un-
der Linux. On the first call to the ATLAS library, the context
of the application (private stack pointer, program counter,
and process information) is transferred to the primary TCC
PowerPC core (core number 0). The primary core executes
the application and invokes the other 7 processors as needed
on parallel regions in the program.

During the program execution, the Linux PowerPC core
handles all interrupts due to external devices. It also handles
any OS code needed to support the execution on the TCC
PowerPC cores, like system calls or an exception such as
a TLB miss. On a TLB exception,the TCC PowerPC core
sends the faulting address to the core running Linux. The
OS core regenerates the exception, runs the corresponding
OS code to resolve it (e.g., access page table for the proper
translation entry), and sends the information back to the re-
questing core. We handle other exceptions and system calls
in a similar manner (I/O, memory allocation etc). Hence,
the user code can run assuming full OS support at any point
of the program. At the current scale of the ATLAS system, a
single core running the OS is sufficient to serve 8 cores run-
ning application code. Using a single core for the OS allows
us to run conventional Linux without special consideration
for concurrency in the OS code. In larger scale configura-
tions of ATLAS, the number of OS cores may need to be
scaled as well. In this case, we will have to port SMP Linux
onto ATLAS. We will also have the opportunity to explore
the use of transactional synchronization in system code.

An important part of the ATLAS system is the support
for performance tuning of user applications. Transactional
memory makes it easy to write a correct parallel program.
Nevertheless, a program may still include performance bot-
tlenecks such as frequent transaction violations or expen-
sive overflows [8]. To help the user identify the most signifi-
cant bottlenecks, ATLAS includes a profiler framework that
utilizes performance counters built in the PowerPC cores
and additional counters and filters introduced in the TCC
cache [5]. The hardware tracks the occurrence of all vi-
olations and overflows, the corresponding instruction and
data references that triggered them, and an approximation
of their cost. The profiler software uses this information
to identify the most important problems and pinpoint the
offending variables or lines in the user source code. The ac-
curate feedback on performance bottlenecks allows ATLAS
users to quickly tune their applications as they can focus on
the important issues only and avoid the need to understand
the whole application in detail.

4 Evaluation

Table 1 presents the basic statistics of the ATLAS design
(default configuration). The design is currently operational
on the BEE2 board running at 100MHz.

To demonstrate the performance potential of ATLAS, we
ran five typical multiprocessor benchmarks: three scientific



CPUs 9 IBM PowerPC 405 cores at 100MHz
16KB 2-way I-cache
32KB 4-way TCC data cache (8 cores)
16KB 2-way data cache (1 core)

Main Memory 512MB DDR2 at 200 MHz

I/O 10/100 Mbps Ethernet, RS232 UART,
512MB Compact Flash

OS Montavista 3.1 Linux (ver 2.4.30)

EDA Tools Xilinx EDK 7.1i

User FPGA Xilinx XC2VP70, 17,641 LUTs (26%),
212KB BRAMs (32%)

Ctrl FPGA Xilinx XC2VP70, 16,284 LUTs (24%),
66KB BRAMs (10%)

Table 1. ATLAS design statistics.
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benchmarks from the SPLASH2 suite [27] (radix, mp3d,
ocean); a hashtable microbenchmark that performs random
insert, remove, and lookup operations on a hashtable; and
vacation, a benchmark that emulates the travel reservation
management and database system. All applications include
multiple threads that operate on data in the shared memory
in an irregular manner. Coarse-grain transactions allow for
a simple way to synchronize the parallel threads. There are
two sets of metrics we analyze in our evaluation. First, we
examine the speedup each application can achieve using 8
processors over the sequential (original) version of the ap-
plication running on a single processor. Despite the use of
coarse-grain transactions, we would like to see near-linear
speedups. Second, we are interested in breaking down the
execution time of each benchmark to its basic components
such as useful or busy cycles, stall cycles due to cache
misses, cycles spent on transactional execution overhead
such as commit time, and idle time and violation idle due to
lack of parallelism. The ability to provide such breakdowns
is important for both verification purposes and to provide
programmers with further profiling information.

Figure 6 shows the speedup each application achieves
on ATLAS using 2, 4, or 8 of the PowerPC cores for its
execution. In general, most applications scale well with
the number of processors, with the exception of hashtable,
which barely sped up from four to eight processors. Fig-
ure 7 shows the execution time breakdown for each appli-
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Figure 7. Breakdown of profiled real execution time in

ATLAS and reported execution time from TASSEL. Num­
bers are normalized to the one processor case of each

method.

cation. The graph indicates that hashtable does not scale to
8 processors due to the poor locality it exhibits in its data
references as it performs random accesses to a large hash
table. Apart from the latency of cache misses, the high fre-
quency leads to bandwidth saturation and contention effects
on the interconnect network. Specifically, the average cache
refill latency for hashtable is 80 cycles, while the typical
case for uniprocessor execution is 57. It is also interesting
to observe, in Figure 7, that transactional execution over-
heads (commit time) contributes 13.3% to execution time.
We have extensively compared the performance reported by
ATLAS to that predicted by architectural simulators for the
TCC architecture and the results match with high accuracy,
except higher commit time. This mismatch is mainly from
the sacrifices made to fit the design onto an FPGA, which
are described in [25].

We should also point out that, despite running at 100MHz
on FPGAs, the ATLAS design is 100 times faster than the
TCC simulator running on a 2GHz PowerPC G5 systems.

5 Conclusions & Future Work

ATLAS is the first full-system prototype of a CMP with
hardware support for transactional memory. Mapped on
the BEE2 multi-FPGA board, ATLAS operates at 100MHz,
boots Linux, and exhibits good performance for parallel ap-
plications written with transactional memory. It also pro-
vides direct support for performance profiling and guided
tuning to further simplify parallel software development.

Looking forward, we intend to use ATLAS as the frame-
work for further exploration of transactional memory in
CMP systems. From a software perspective, ATLAS allows
for fast software development and evaluation using the de-
manding applications and large datasets that CMPs are tar-
geted towards. The insights from application studies will be
very useful in terms of improving TM implementations and
programming models. ATLAS will also allow us to study
the use to transactions in the operating system code. From a
hardware point of view, we are interested in studying further
hardware support for parallel application development (de-
bugging and tuning). We are also interested in larger-scale



configurations of ATLAS which should be possible given
the latest generation of high density FPGAs.
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