

ASIP-Based Multiprocessor SoC Design for Simple and Double

Binary Turbo Decoding

Olivier Muller, Amer Baghdadi, Michel Jézéquel

Electronics Department, ENST Bretagne, Technopôle Brest Iroise, 29238 Brest, France
{olivier.muller, amer.baghdadi, michel.jezequel}@enst-bretagne.fr

Abstract

This paper presents a new multiprocessor platform for
high throughput turbo decoding. The proposed platform is
based on a new configurable ASIP combined with an
efficient memory and communication interconnect scheme.
This Application-Specific Instruction-set Processor has an
SIMD architecture with a specialized and extensible
instruction-set and 5-stages pipeline control. The attached
memories and communication interfaces enable the design
of efficient multiprocessor architectures. These
multiprocessor architectures benefit from the recent
shuffling technique introduced in the turbo-decoding field to
reduce communication latency. The major characteristics of
the proposed platform are its flexibility and scalability
which make it reusable for various standards and operating
modes. Results obtained for double binary DVB-RCS turbo
codes demonstrate a 100 Mbit/s throughput using 16-ASIP
multiprocessor architecture.

1. Introduction

Systems on chips in the field of digital communication
are becoming more and more diversified and complex. In
this field, performance requirements, like throughput and
error rates, are becoming increasingly severe. To reduce the
error rate with a lower signal-to-noise ratio (closer to the
Shannon limit), turbo (iterative) processing algorithms have
recently emerged [1] [2]. These algorithms, which originally
concerned channel coding, are currently being reused over
the whole digital communication system, like for
equalization, demodulation, synchronization, and MIMO.

Furthermore, the severe time-to-market constraints and
the continuously developing new standards and applications
in this digital communication, make resorting to new design
methodologies and the proposal of a flexible turbo
communication platform inevitable. Flexibility could be
achieved by the use of programmable/configurable
processors rather than ASICs. Thus, embedded
multiprocessor architectures integrating an adequate
communication Network on Chip (NoC) will constitute an
ultimate solution to preserve flexibility while achieving the
required computation and throughput rates.

Algorithm parallelization of turbo decoding has been
widely investigated these last few years. Several
implementations have also been proposed. Some of these

implementations succeeded in achieving high throughput
for specific standards by optimizing as much as possible
and with a highly dedicated architecture [3]. However, such
implementations do not take into account about flexibility
and scalability issues. Unlike these implementations, others
include software and/or reconfigurable parts to achieve the
required flexibility while achieving lower throughput [6].
Among those who have tackled performance and flexibility
constraints simultaneously we can cite the parallel
multiprocessor implementation presented in [4] [5]. In this
work, an advanced heterogeneous communication network
that optimizes data transfer and enables parallel turbo-
decoding implementation was proposed. Instruction-level
parallelism is increased by using a dedicated Tensilica
Xtensa core. Nevertheless, to the best of our knowledge,
supporting double binary turbo codes and exploiting ASIP
capabilities in multiprocessor architectures is still lacking in
existing works.

In this work, we propose a new flexible and high
performance ASIP model for turbo decoding. This model
can be configured to support all simple and double binary
turbo codes up to eight states. Besides the specific
arithmetic units that compose this processor model, special
care was taken with the memory organization and
communication buses. Its architecture facilitates its
integration in a multiprocessor scheme enabling an efficient
and flexible implementation of the turbo decoding
algorithm.

The rest of the paper is organized as follows. The next
section presents the turbo decoding algorithm and the
design flow we used, to better understand subsequent
sections. Section 3 details the proposed ASIP architecture
model for turbo decoding. Section 4 illustrates how
multiprocessor architectures can be designed to achieve
higher throughput thanks to the ASIP architecture and to a
new decoding technique. Finally, section 5 summarizes the
results obtained and concludes the paper.

2. Background: Application and Design Flow

2.1. Turbo Decoding

Discovered in 1993 with turbo codes [1], the turbo

principle relies on information exchange and iterative
processing between the various elementary processing
steps. The exchanged information is called extrinsic
information.

3-9810801-0-6/DATE06 © 2006 EDAA

Π

SISO0

SISO1

Π-1Π

red0

sys

red1 output

Interleaved
domain

Desinterleaved
domain

extrinsic

β

γ

time

Fr
am

e

0

N

α

α

β, extrinsic Fr
am

e

0

N

α

extrinsic

T

β

T/2
time

(a)

(b)

(c) (d)

Π

SISO0

SISO1

Π-1Π

red0

sys

red1 output

Interleaved
domain

Desinterleaved
domain

extrinsic

β

γ

time

Fr
am

e

0

N

α

α

β, extrinsic Fr
am

e

0

N

α

extrinsic

T

β

T/2
time

(a)

(b)

(c) (d)
Figure 1. Turbo decoding: (a) turbo decoder, (b) SISO, (c) forward backward scheme, (d) butterfly scheme

When decoding parallel concatenated convolutional
codes (Figure 1.a), the processing steps are the elementary
Soft Input Soft Output (SISO) decoders. These SISO blocks
implements the BCJR algorithm [8] which is the optimal
algorithm for the maximum a posteriori (MAP) decoding of
convolutional codes. In practice, MAP decoding is not used
because of its complexity and is approximated by a log-
MAP or max-log-MAP algorithm [9].

Using input symbols and a priori extrinsic information,
each SISO generates a posteriori probabilities (APP). Then
APPs are scrambled by interleaver (Π) or deinterleaver
(Π-1) to be used in the opposite interleaving domain.

Figure 1.b illustrates the main steps of the BCJR
algorithm. Firstly, the branch metrics (or γ metrics) between
two states represents the probability that a transition occurs
between these two states. Secondly, forward recursion (or α
recursion) computes the likelihood of all the states in the
trellis given the past observations. This processing is
recursive as a trellis section (i.e. the likelihood of all states)
is computed with the previous trellis section and branch
metrics between these sections. Thirdly, backward recursion
(or β recursion) computes the likelihood of all the states in
the trellis given the future observations. This processing is
the same as the forward recursion, but the frame is
processed in the backward direction. Finally, once the
forward and backward likelihoods of the states are
computed, the extrinsic information can be computed from
them. Initially, the BCJR algorithm uses the Forward-
Backward scheme, depicted in Figure 1.c. However there
exist many other schemes such as the butterfly one (Figure
1.d). Number of existing schemes has increased amazingly
with parallelization of the BCJR algorithm [10]. This
parallelization consists of dividing the frame into windows
or sub-blocks. Nevertheless, when parallelization is applied,
the ending points of sub-blocks are unknown, except at
frame ending points. This indetermination can be overcome
with estimations of ending points obtained either by pre-
acquisition or by message passing between neighbouring
sub-blocks.

To clarify our explanations, the DVB-RCS turbo code
 [7] example will be used as a reference in the rest of this
paper. It is an eight-state double binary circular
convolutional turbo code with a frame size ranging from 12
to 216 bytes.

2.2. ASIP Design Flow

Tradeoffs between ASIC high performance and
programmable processor flexibility are achieved by the
application of specific instruction set processors (ASIPs)
 [11]. The use of such processors in embedded SoCs is
becoming more and more mandatory due to the increase in
application complexity and the emerging of new
applications and ever changing standards.

Several approaches and frameworks are now proposed
by EDA vendors for ASIP design. ASIP design involves, in
addition to hardware cores, software development tools like
simulators, compilers, assemblers, debuggers and linkers. In
one approach, an environment where the designer can select
and configure predefined hardware elements to enhance a
predefined basic processor core according to the application
needs is proposed. User-defined hardware blocks, together
with the corresponding instructions, can be added to the
processor [14]. In an other approach the designer has full
freedom for the ASIP architecture where he uses an
Architecture Description Language (ADL) to specify the
instruction set and the ASIP architecture [12] [13].

In this paper we used the LISATek framework from
CoWare Inc. [13] which is based around the LISA ADL
 [12], allowing the automatic generation of ASIP software
development tools, and VHDL, Verilog and SystemC
models for hardware synthesis and system integration. For
multiprocessor architecture integration and simulation,
SystemC is used together with CoWare ConvergenSC
framework.

3. ASIP Architecture for Turbo Decoding

3.1. Context of Architectural Choices

Our aim is to achieve parallel processing of the MAP

algorithm using the sub-block-level parallelism as
mentioned in section 2.1. The idea is to design a dedicated
processor for the sub-block processing.

First, such a processor should support the max-log-
MAP algorithm with a limited sub-block size for double
(and simple) binary turbo codes with a maximum of eight
states (section 2.1) . Each sub-block will be processed with
the butterfly scheme.

Thus, two identical operating units are required (one for

RT_A(i,j) RADD_A(i,j)

>
x0.5

RMC_A

RGE_A

RC_A(j)RGI_A(i)

processing matrix

RGI_A
x4 Global ALU

RC_A
x8

RGE_A
x4

RIE_A
x4

RMC_A
x8

DECISION_A

FE STEXOP FDC
AD DRESS_ A
A DDRESS_ B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

BPC

Forward
Recursion Unit

Backward
Recursion Unit

Control Unit

M
crossAB

x8

M
config

M
prog

M
sys

x2

M
red

x2

M
info_ext

x4

Metrics
buffer future

Metrics
buffer past

info_ext

info_ext

ASIP

B

A

decision

decision

M
crossBA

x8

(a)

(b)

(c)

(d)

RT_A(i,j) RADD_A(i,j)

>
x0.5

RMC_A

RGE_A

RC_A(j)RGI_A(i)

RT_A(i,j) RADD_A(i,j)

>
x0.5

RMC_A

RGE_A

RC_A(j)RGI_A(i)

processing matrix

RGI_A
x4 Global ALU

RC_A
x8

RGE_A
x4

RIE_A
x4

RMC_A
x8

DECISION_A

processing matrixprocessing matrix

RGI_A
x4

RGI_A
x4 Global ALU

RC_A
x8

RC_A
x8

RGE_A
x4

RGE_A
x4

RIE_A
x4

RIE_A
x4

RMC_A
x8

RMC_A
x8

DECISION_A

FE STEXOP FDC
AD DRESS_ A
A DDRESS_ B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

BPC FE STEXOP FDC
AD DRESS_ A
A DDRESS_ B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

BPC FE STEXOP FDC
AD DRESS_ A
A DDRESS_ B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

BPC

zol_inst
zol_loop

zol_active
branch_active

BPC

Forward
Recursion Unit

Backward
Recursion Unit

Control Unit

M
crossAB

x8

M
config

M
prog

M
sys

x2
M
sys

x2

M
red

x2
M

red

x2

M
info_ext

x4
M

info_ext

x4

Metrics
buffer future

Metrics
buffer past

info_ext

info_ext

ASIP

B

A

decision

decision

M
crossBA

x8
M

crossBA

x8

(a)

(b)

(c)

(d)

Figure 2. (a) ASIP architecture, (b) Recursion unit, (c) Processing node, (d) Control unit

each recursion). The use of two recursion units (rather than
one) allows the processor to support a wide range of
decoding schemes.

Second, in order to handle the inter sub-block
communications, the processor should have adequate
communication interfaces.

Finally, this processor should retain flexibility while
achieving high performance. Application-specific
instruction set processors present the ideal solution to
achieve such tradeoffs [11].

3.2. The Architecture of the ASIP

3.2.1 Global View

The ASIP is mainly composed of operative and control
parts besides its communication interfaces and attached
memories (Figure 2.a). The operative part is based on two
identical recursion units, corresponding to forward and
backward processing in the MAP algorithm. Each unit
produces recursion metrics that can be stored in cross
memories to be used later by the other unit. Another
dedicated memory that contains the trellis description is
required for configuration. This trellis description makes
possible the implementation of all turbo codes with a
maximum of eight states.

Incoming systematic and redundant data, in addition to
extrinsic information, are stored in external memories
attached to the ASIP (sys, red, info_ext). Future and past
memories are used to initialize recursion metric values, as
the beginning and ending values of each sub-block are not
known by the sub-block.

3.2.2 Recursion Unit
Each recursion unit is based on Single Instruction

Multiple Data (SIMD) architecture in order to exploit trellis

parallelism. In fact, as supported trellis implies up to 32
transitions (Figure 2.b), 32 processing nodes are
incorporated in each unit. This could also be decomposed
into the maximum number of states supported (8) by the
maximum number of decisions per decoding time (4). The
organization of these processing nodes inside a recursion
unit can be viewed as a processing matrix, where the
considered state gives the column and the considered
decision the line. With such a representation, each node of
the matrix is associated with a transition.

A processing node (Figure 2.c) contains two adders,
multiplexers, one register for configuration (RT) and an
output register (RADD). Two comparators are shared
between each set of 4 nodes. Comparisons are executed
between two RADD registers neighbouring either linewise
or columnwise, depending on the ASIP instructions.

The recursion unit also contains a GLOBAL ALU, that
performs gamma calculations, metrics actualizations, hard
decisions and other global processing. All registers of the
recursion unit are 16 bits in width.

3.2.3 Control
The ASIP control part is based on a five-stage pipeline

(Figure 2.d). These stages are Fetch, Decode, Operand
Fetch, Execute, and Store. For this part, several control
registers are required. Thus, the sub-block size is fixed in
the register R_SIZE, and the current processed symbol
inside the recursion unit A (resp. recursion unit B) is stored
in ADDRESS_A (resp. ADDRESS_B). These addresses, as
well as the program counter and the corresponding
instruction, are then pipelined. In addition, the control
architecture provides Zero Overhead Loop (ZOL) and
branch mechanisms. To alleviate the ASIP instruction set,
the ZOL mechanism uses R_SIZE to set the loop size to the
value R_SIZE/2 (according to the butterfly scheme chosen).

3.3. ASIP Instruction Set

The designed instruction set of our ASIP architecture is
coded on eight bits. The basic version contains 30
instructions. The following section details the mandatory
instructions to perform simple turbo decoding. These
instructions are divided into three different classes: control,
operative and IO.

3.3.1 Control
As mentioned previously, ZOL instruction repeats

R_SIZE/2 times the loop on the instructions that follow the
ZOL instruction. This instruction was designed in order to
match the butterfly scheme for the MAP algorithm. An
unconditional branch instruction has also been designed and
uses the direct addressing mode. SET_SIZE instruction is
used to set the ASIP sub-block size to a maximum size of
64 symbols.

3.3.2 Operative: MAP
An ADD instruction is defined and used in two different

modes: metrics computation (add m) and extrinsic
information computation (add i). According to the ADD
mode and to the configuration registers (RT), each
processing node selects the desired operands to perform the
arithmetic task and to store the result in the corresponding
RADD register.

In the same way, a MAX instruction was defined with
the same modes as an ADD instruction. This basic
instruction only performs one comparison. So, in a turbo
decoding case, it has to be repeated as often as necessary to
obtain either extrinsic information or recursion metrics at
the considered address in the sub-block.

The basic instruction set also contains the DECISION
instruction to produce hard decisions on processed symbols
and an ACTU instruction to normalize recursion metrics
and avoid overflow.

3.3.3 IO
The basic instruction set also provides input and output

instructions. With these instructions, parallel multi-accesses
are executed in order to:

- load decoder input data, input recursion metrics,
configuration,

- store output recursion metrics,
- handle internal cross metrics between the two

recursion units,
- send extrinsic information packets and hard decisions.
Extrinsic information packets contain the four extrinsic

pieces of information of the current symbol, and a header.
This header contains the sub-block address and an ASIP ID.
As the sub-block size is limited to 64, only 6 bits are needed
to code sub-block addresses. Taking into consideration a
multiple ASIP integration, the choice to code the ASIP ID
on 2 bits was made to induce a packet header of 8 bits (cf.
section 4.2).

3.4. DVB-RCS Example

The 26-instruction code, shown in Figure 3, processes
continuously a 48-symbol sub-block of a DVB-RCS SISO

on the previously presented ASIP, using the butterfly
scheme.

ZOL4LDSTaddmmaxmmaxmACTUx24ZOL4LDSTaddmmaxmmaxmACTUx24

LD_CONFIG 0
LD_CONFIG 1
LD_CONFIG 2
LD_CONFIG 3
SET_SIZE 48

_loop: LD_REC

ZOL 4
LD_ST
add m
max m
max m
ACTU

ZOL 9
LD_CROSS
add i
max i
max i
max i
ST_EXT
add m
max m
max m
ACTU

ST_REC
jmp _loop

x24

x24

LD_CONFIG 0
LD_CONFIG 1
LD_CONFIG 2
LD_CONFIG 3
SET_SIZE 48

_loop: LD_REC

ZOL 4
LD_ST
add m
max m
max m
ACTU

ZOL 9
LD_CROSS
add i
max i
max i
max i
ST_EXT
add m
max m
max m
ACTU

ST_REC
jmp _loop

x24

x24

Figure 3. ASIP code for DVB-RCS example

The first 6-instructions load the required configuration
and initialize the recursion metrics. Then the first part of the
butterfly is performed using the ZOL instruction. In this
loop, two “max m” instructions are needed because DVB-
RCS is a double binary code. The second part of the
butterfly scheme is then executed through another ZOL
loop. In this last loop, the “max i” instruction is used three
times to compute the extrinsic information of the eight-state
DVB-RCS code. Finally, the SISO exports the sub-block
ending metrics and program branches to the beginning of
the butterfly.

Thus, regarding the execution time, 5*N/2 cycles are
needed in the first part of the butterfly scheme, and 10*N/2
cycles in the second part, where N is the sub-block size. So
about 15*N/2 cycles are needed to process the N symbols of
the sub-block. thus 7.5 cycles are roughly needed per
symbol.

3.5. Results

Using a LISATek VHDL Generator, a VHDL
description of the ASIP architecture was generated. It was
synthesized with a Synopsys Design Compiler in ST
0.09µm (resp. 0.18µm) ASIC technology under worst-case
conditions. The synthesized ASIP has a maximum clock
frequency of 335 (resp. 180) MHz and occupies about 97
(resp. 93) KGates (equivalent).

This means that a single processor, running the two SISO
of 6 turbo iterations over a DVB-RCS code, will potentially
have a throughput of 7.4 (resp. 4) Mbit/s.

4. Multiprocessor Turbo Decoding

A multiprocessor architecture constitutes an ideal
candidate for delivering the high computation and
communication rates required by the new digital
communication standards while preserving flexibility
through software programming.

In the previous section, an ASIP for parallel turbo
decoding with its attached memories and communication
interfaces was presented. This ASIP can be used for
multiprocessing, where SISO computation is mapped on
ASIPs while interleaving is mapped on communication
resources.

In state-of-the-art multiprocessors turbo decoding, this
interleaving is considered as a limiting factor. In fact, in
sub-block level parallelism, the scramble property of
interleaving can induce conflicts in communication
resources. This forces the communication network to store
information until the targeted sub-block can process it. Of
course, network buffering resources, and consequently time
needed to interleave information, increase with the number
of processors. This problem is currently solved by
minimizing interleaving delay, with specific communication
networks [5]. In the following sections, a new approach is
proposed to tackle interleaving problems, and then a turbo
decoding multiprocessor architecture is described.

4.1. Shuffling for Interleaving Transparency

Shuffling was introduced in [16] to improve performance
in iterative decoding codes, with better extrinsic information
management.

In standard decoding, after each iteration, each
component decoder delivers extrinsic messages to other
decoders which use these messages as a priori values at the
next iteration.

In shuffled decoding, decoders work in parallel in
interleaved and desinterleaved domains. Decoders do not
wait until the end of iterations to send extrinsic messages to
other decoders and to use received extrinsic messages. Thus
decoders use more reliable a priori information.
Nevertheless, to preserve BER performance, shuffling
requires additional iterations. The ratio between iterations in
the serial case and the shuffling case defines the efficiency
of the shuffling. This appears as a constant factor (typically
between 1.2 and 1.9) depending on the interleaving rules.

Shuffling turbo decoding can be seen as concurrent
decoding and interleaving. Consequently, communication
time overlaps with the computation time. If shuffled turbo
decoding is strictly applied as presented in [16], each
decoder restarts a new iteration only when all extrinsic
messages of the other decoders have been completely
received. This delay (network propagation time) leads to

synchronization between processors and communication
network. Thus, communication is partially overlapped by
the processor load.

To overcome this communication overhead, we propose
that processors restart a new iteration without waiting for all
incoming extrinsic messages. In the case of communication
networks with low latency, simulations realized on the
DVB-RCS code with this modified shuffled turbo decoding
have shown negligible performance degradation in
comparison with shuffled turbo decoding. Network latency
should not exceed the time required for few APP emissions.

4.2. ASIP-based Multiprocessor Architecture

In order to use the modified shuffled turbo decoding
technique presented above, half of the processors have to be
mapped on each interleaving domain. Then, in each domain,
each sub-block is mapped on a processor.

Using the proposed ASIP architecture (section 3), Figure
4 presents a 4-ASIP turbo decoder architecture where each
SISO is implemented using two ASIPs. In this figure, three
kinds of networks are used: data interface network, state
metric network, and extrinsic information network. These
networks take advantage of packet switching
communication [15].

First, the data interface network is used to dispatch new
frame data to ASIPs and, concurrently, to gather output data
from ASIPs.

Second, the state metric network makes intra SISO
exchanges possible between neighbouring ASIPs (sub-
blocks). It is a set of buffers between neighbouring
processors, reflecting the trellis termination strategy. Thus,
with a circular trellis termination strategy, i.e. ending and
beginning states are identical, a buffer between the first and
last ASIP is mandatory (Figure 4).

Finally, the extrinsic information network is based on
routers to make inter SISO exchanges possible between
ASIPs. As the proposed ASIP supports the butterfly
scheme, two packets can be sent on this network per

Router

M
sys

x2

M
red

x2 ASIP1 M
info_ext

x4

Metrics
buffer

past

M
sys

x2

M
red

x2 ASIP0 M
info_ext

x4

Metrics
buffer

past

future

future

ASIP3

Metrics
buffer

past

ASIP2

Metrics
buffer

past

future

future

M
sys

x2

M
red

x2

M
sys

x2

M
red

x2

M
info_ext

x4

M
info_ext

x4

IO_IF

SISO0 SISO1

data interface network

state metric network extrinsic information
network

Router

M
sys

x2
M
sys

x2

M
red

x2
M
red

x2 ASIP1 M
info_ext

x4
M

info_ext

x4

Metrics
buffer

past

M
sys

x2
M
sys

x2

M
red

x2
M
red

x2 ASIP0 M
info_ext

x4
M

info_ext

x4

Metrics
buffer

past

future

future

ASIP3

Metrics
buffer

past

ASIP2

Metrics
buffer

past

future

future

M
sys

x2
M
sys

x2

M
red

x2
M
red

x2

M
sys

x2
M
sys

x2

M
red

x2
M
red

x2

M
info_ext

x4
M

info_ext

x4

M
info_ext

x4
M

info_ext

x4

IO_IF

SISO0 SISO1

data interface network

state metric network extrinsic information
network

Figure 4. ASIP based multiprocessor architecture for turbo decoding

emission and per ASIP. Packet headers are used by routers
to perform routing and interleaving. A router contains a part
of the interleaving or desinterleaving table and buffering
mechanisms to support up to four input ports and four
output ports. So the basic router can only support four
processors as ASIP ID is coded on 2 bits (cf. section 3.3.3).

For architectures with more than four processors, several
routers are needed. In this case, a Benes like network [17],
based on the routers described above is proposed. Such a
topology is scalable, as routers are identical and
configurable. It is also flexible, due to router tables. As
routers manage 4 output ports, minimum network latency is
equal to log base 4 of the number of ASIPs per SISO.
Simulations to evaluate average network latency are in
progress.

4.3. Results

As the modified shuffled turbo decoding is used, the
performance of the proposed ASIP-based multiprocessor
architecture depends on the number of integrated ASIPs and
on shuffling efficiency (see 4.1). Table 1 summarizes
multiprocessor turbo decoding performance for DVB-RCS
code with 6 iterations and a 1.7 shuffling efficiency.

Table 1. Performance for DVB-RCS turbo decoding
Number of ASIPs 4 8 16 32
Sub-blocks per SISO 2 4 8 16
Throughput [Mbit/s] @ 0.18µm 13.6 27.2 54.4 108.8
Throughput [Mbit/s] @ 0.09µm 25.2 50.4 100.8 201.6
Number of routers 1 2 8 16

Compared to the results presented for simple binary
turbo codes [4] (22.64 Mbit/s with 16 ASIPs and 5 iterations
@ 0.18µm), our platform achieves equivalent performance1
and a better flexibility by supporting double (and simple)
binary turbo codes up to eight states.

5. Conclusion

In order to meet flexibility and performance constraints
of current and future digital communication applications, an
increasing number of application-specific instruction-set
processors combined with dedicated communication and
memory infrastructures are required. In this paper, we have
presented a flexible and scalable multiprocessor architecture
based on a new ASIP architecture for high throughput turbo
decoding.

The ASIP has a dedicated SIMD architecture with a
specialized, extensible instruction-set and 5-stage pipeline
control. The memory architecture and communication
interfaces allow for the efficient assembling of multiple
ASIP cores.

We have illustrated how the modified shuffled turbo
decoding technique can be used to resolve an interleaving
bottleneck. Using this technique and sub-block level
parallelism, the proposed ASIP-based multiprocessor
architecture allows a high throughput while preserving

1 With our architecture, throughput for a simple binary turbo decoder is
half the throughput of a double binary decoder (DVB-RCS code).

flexibility and scalability thanks to an adequate packet
switching communication network.

Other experiments and evaluations are being conducted
on the proposed architecture model.

References
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near

Shannon Limit Error-Correcting Coding and Decoding:
Turbo-Codes,” in Proc. 1993 International Conference on
Communications (ICC’93), Geneva, Switzerland, 1993.

[2] D. J. C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, pp. 399–
431, Mar. 1999.

[3] D. Gnaëdig, E. Boutillon, M. Jezequel, V. Gaudet, G. Gulak,
"On Multiple Slice Turbo Code", 3nd International
Symposium on Turbo Codes and Related Topics, Brest,
France, pp. 343-346, Sept. 2003.

[4] F. Gilbert, M. Thul and N. Wehn. “Communication Centric
Architectures for Turbo-Decoding on Embedded
Multiprocessors”, Proceedings of DATE 2003, Munich.

[5] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier and N. Wehn,
“A Scalable System Architecture for High-Throughput
Turbo-Decoders”, Journal of VLSI Signal Processing Vol. 39,
pages 63-77, Netherlands 2005.

[6] A. La Rosa, C. Passerone, F. Gregoretti, and L. Lavagno,
“Implementation of a UMTS turbo-decoder on a dynamically
reconfigurable platform”, Proceedings of DATE 2004, Paris.

[7] C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J.
Tousch, N. Pham, “The Turbo Code Standard for DVB-
RCS”, 2nd International Symposium on Turbo Codes &
Related Topics, Brest, France, 2000. p. 535-538.

[8] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol error rate,”
IEEE Trans. Inf. Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[9] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-
Optimal Maximum a Posteriori Algorithms Suitable for
Turbo Decoding,” European Transactions on
Telecommunications (ETT), vol. 8, no. 2, 1997, pp. 119–125.

[10] Y. Zhang and K.K. Parhi, “Parallel Turbo decoding”,
Proceedings of the International Symposium on Circuits and
Systems, volume 2, 23-26 May 2004 Page(s):II - 509-12.

[11] A. Oraioglu, A. Veidenbaum, “Application Specific
Microprocessors” (Guest Editors Introduction), IEEE Design
& Test Magazine, Jan/Feb, 2003.

[12] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, and H.
Meyr, “A Methodology for the Design of Application
Specific Instruction Set Processors (ASIP) Using the Machine
Description Language LISA”. In Proceedings of the ICCAD,
San Jose, USA, Nov. 2001.

[13] CoWare Inc., http://www.coware.com/
[14] Tensilica Inc, http://www.tensilica.com/
[15] L. Benini and G.D. Micheli, “Networks on Chips: A New

SoC Paradigm,” IEEE Computer, vol. 35, no. 1, 2002, pp.
70–78.

[16] Juntan Zhang, Fossorier, M.P.C., “Shuffled iterative
decoding”, IEEE Transactions on Communications
Volume 53, Issue 2, Feb. 2005 Page(s):209 – 213.

[17] V. E. Benes, “Mathematical Theory of Connecting Network
and Telephone Trafic”, New York, NY: Academic, 1965.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

