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Abstract 
 

This paper presents a new multiprocessor platform for 
high throughput turbo decoding. The proposed platform is 
based on a new configurable ASIP combined with an 
efficient memory and communication interconnect scheme. 
This Application-Specific Instruction-set Processor has an 
SIMD architecture with a specialized and extensible 
instruction-set and 5-stages pipeline control. The attached 
memories and communication interfaces enable the design 
of efficient multiprocessor architectures. These 
multiprocessor architectures benefit from the recent 
shuffling technique introduced in the turbo-decoding field to 
reduce communication latency. The major characteristics of 
the proposed platform are its flexibility and scalability 
which make it reusable for various standards and operating 
modes. Results obtained for double binary DVB-RCS turbo 
codes demonstrate a 100 Mbit/s throughput using 16-ASIP 
multiprocessor architecture. 
 
 
1. Introduction 
 

Systems on chips in the field of digital communication 
are becoming more and more diversified and complex. In 
this field, performance requirements, like throughput and 
error rates, are becoming increasingly severe. To reduce the 
error rate with a lower signal-to-noise ratio (closer to the 
Shannon limit), turbo (iterative) processing algorithms have 
recently emerged  [1] [2]. These algorithms, which originally 
concerned channel coding, are currently being reused over 
the whole digital communication system, like for 
equalization, demodulation, synchronization, and MIMO. 

Furthermore, the severe time-to-market constraints and 
the continuously developing new standards and applications 
in this digital communication, make resorting to new design 
methodologies and the proposal of a flexible turbo 
communication platform inevitable. Flexibility could be 
achieved by the use of programmable/configurable 
processors rather than ASICs. Thus, embedded 
multiprocessor architectures integrating an adequate 
communication Network on Chip (NoC) will constitute an 
ultimate solution to preserve flexibility while achieving the 
required computation and throughput rates.  

Algorithm parallelization of turbo decoding has been 
widely investigated these last few years. Several 
implementations have also been proposed. Some of these 

implementations succeeded in achieving high throughput 
for specific standards by optimizing as much as possible 
and with a highly dedicated architecture  [3]. However, such 
implementations do not take into account about flexibility 
and scalability issues. Unlike these implementations, others 
include software and/or reconfigurable parts to achieve the 
required flexibility while achieving lower throughput  [6]. 
Among those who have tackled performance and flexibility 
constraints simultaneously we can cite the parallel 
multiprocessor implementation presented in  [4] [5]. In this 
work, an advanced heterogeneous communication network 
that optimizes data transfer and enables parallel turbo-
decoding implementation was proposed. Instruction-level 
parallelism is increased by using a dedicated Tensilica 
Xtensa core. Nevertheless, to the best of our knowledge, 
supporting double binary turbo codes and exploiting ASIP 
capabilities in multiprocessor architectures is still lacking in 
existing works. 

In this work, we propose a new flexible and high 
performance ASIP model for turbo decoding. This model 
can be configured to support all simple and double binary 
turbo codes up to eight states. Besides the specific 
arithmetic units that compose this processor model, special 
care was taken with the memory organization and 
communication buses. Its architecture facilitates its 
integration in a multiprocessor scheme enabling an efficient 
and flexible implementation of the turbo decoding 
algorithm. 

The rest of the paper is organized as follows. The next 
section presents the turbo decoding algorithm and the 
design flow we used, to better understand subsequent 
sections. Section 3 details the proposed ASIP architecture 
model for turbo decoding. Section 4 illustrates how 
multiprocessor architectures can be designed to achieve 
higher throughput thanks to the ASIP architecture and to a 
new decoding technique. Finally, section 5 summarizes the 
results obtained and concludes the paper. 

 
2. Background: Application and Design Flow 

 
2.1. Turbo Decoding 

 
Discovered in 1993 with turbo codes  [1], the turbo 

principle relies on information exchange and iterative 
processing between the various elementary processing 
steps. The exchanged information is called extrinsic 
information.
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Figure 1. Turbo decoding: (a) turbo decoder, (b) SISO, (c) forward backward scheme, (d) butterfly scheme

When decoding parallel concatenated convolutional 
codes (Figure 1.a), the processing steps are the elementary 
Soft Input Soft Output (SISO) decoders. These SISO blocks 
implements the BCJR algorithm  [8] which is the optimal 
algorithm for the maximum a posteriori (MAP) decoding of 
convolutional codes. In practice, MAP decoding is not used 
because of its complexity and is approximated by a log-
MAP or max-log-MAP algorithm  [9]. 

Using input symbols and a priori extrinsic information, 
each SISO generates a posteriori probabilities (APP). Then 
APPs are scrambled by interleaver (Π) or deinterleaver 
(Π-1) to be used in the opposite interleaving domain. 

Figure 1.b illustrates the main steps of the BCJR 
algorithm. Firstly, the branch metrics (or γ metrics) between 
two states represents the probability that a transition occurs 
between these two states. Secondly, forward recursion (or α 
recursion) computes the likelihood of all the states in the 
trellis given the past observations. This processing is 
recursive as a trellis section (i.e. the likelihood of all states) 
is computed with the previous trellis section and branch 
metrics between these sections. Thirdly, backward recursion 
(or β recursion) computes the likelihood of all the states in 
the trellis given the future observations. This processing is 
the same as the forward recursion, but the frame is 
processed in the backward direction. Finally, once the 
forward and backward likelihoods of the states are 
computed, the extrinsic information can be computed from 
them. Initially, the BCJR algorithm uses the Forward-
Backward scheme, depicted in Figure 1.c. However there 
exist many other schemes such as the butterfly one (Figure 
1.d). Number of existing schemes has increased amazingly 
with parallelization of the BCJR algorithm  [10]. This 
parallelization consists of dividing the frame into windows 
or sub-blocks. Nevertheless, when parallelization is applied, 
the ending points of sub-blocks are unknown, except at 
frame ending points. This indetermination can be overcome 
with estimations of ending points obtained either by pre-
acquisition or by message passing between neighbouring 
sub-blocks. 

To clarify our explanations, the DVB-RCS turbo code 
 [7] example will be used as a reference in the rest of this 
paper. It is an eight-state double binary circular 
convolutional turbo code with a frame size ranging from 12 
to 216 bytes.  

 

2.2. ASIP Design Flow 
 

Tradeoffs between ASIC high performance and 
programmable processor flexibility are achieved by the 
application of specific instruction set processors (ASIPs) 
 [11]. The use of such processors in embedded SoCs is 
becoming more and more mandatory due to the increase in 
application complexity and the emerging of new 
applications and ever changing standards. 

Several approaches and frameworks are now proposed 
by EDA vendors for ASIP design. ASIP design involves, in 
addition to hardware cores, software development tools like 
simulators, compilers, assemblers, debuggers and linkers. In 
one approach, an environment where the designer can select 
and configure predefined hardware elements to enhance a 
predefined basic processor core according to the application 
needs is proposed. User-defined hardware blocks, together 
with the corresponding instructions, can be added to the 
processor  [14]. In an other approach the designer has full 
freedom for the ASIP architecture where he uses an 
Architecture Description Language (ADL) to specify the 
instruction set and the ASIP architecture  [12] [13].  

In this paper we used the LISATek framework from 
CoWare Inc.  [13] which is based around the LISA ADL 
 [12], allowing the automatic generation of ASIP software 
development tools, and VHDL, Verilog and SystemC 
models for hardware synthesis and system integration. For 
multiprocessor architecture integration and simulation, 
SystemC is used together with CoWare ConvergenSC 
framework. 

 
3. ASIP Architecture for Turbo Decoding 

 
3.1. Context of Architectural Choices 

 
Our aim is to achieve parallel processing of the MAP 

algorithm using the sub-block-level parallelism as 
mentioned in section 2.1. The idea is to design a dedicated 
processor for the sub-block processing. 

First, such a processor should support the max-log-
MAP algorithm with a limited sub-block size for double 
(and simple) binary turbo codes with a maximum of eight 
states (section 2.1) . Each sub-block will be processed with 
the butterfly scheme. 

Thus, two identical operating units are required (one for
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Figure 2. (a) ASIP architecture, (b) Recursion unit, (c) Processing node, (d) Control unit 

 
each recursion). The use of two recursion units (rather than 
one) allows the processor to support a wide range of 
decoding schemes. 

Second, in order to handle the inter sub-block 
communications, the processor should have adequate 
communication interfaces. 

Finally, this processor should retain flexibility while 
achieving high performance. Application-specific 
instruction set processors present the ideal solution to 
achieve such tradeoffs  [11]. 

 

3.2. The Architecture of the ASIP 
 
3.2.1 Global View 

The ASIP is mainly composed of operative and control 
parts besides its communication interfaces and attached 
memories (Figure 2.a). The operative part is based on two 
identical recursion units, corresponding to forward and 
backward processing in the MAP algorithm. Each unit 
produces recursion metrics that can be stored in cross 
memories to be used later by the other unit. Another 
dedicated memory that contains the trellis description is 
required for configuration. This trellis description makes 
possible the implementation of all turbo codes with a 
maximum of eight states. 

Incoming systematic and redundant data, in addition to 
extrinsic information, are stored in external memories 
attached to the ASIP (sys, red, info_ext). Future and past 
memories are used to initialize recursion metric values, as 
the beginning and ending values of each sub-block are not 
known by the sub-block. 

 

3.2.2 Recursion Unit 
Each recursion unit is based on Single Instruction 

Multiple Data (SIMD) architecture in order to exploit trellis 

parallelism. In fact, as supported trellis implies up to 32 
transitions (Figure 2.b), 32 processing nodes are 
incorporated in each unit. This could also be decomposed 
into the maximum number of states supported (8) by the 
maximum number of decisions per decoding time (4). The 
organization of these processing nodes inside a recursion 
unit can be viewed as a processing matrix, where the 
considered state gives the column and the considered 
decision the line. With such a representation, each node of 
the matrix is associated with a transition.  

A processing node (Figure 2.c) contains two adders, 
multiplexers, one register for configuration (RT) and an 
output register (RADD). Two comparators are shared 
between each set of 4 nodes. Comparisons are executed 
between two RADD registers neighbouring either linewise 
or columnwise, depending on the ASIP instructions.  

The recursion unit also contains a GLOBAL ALU, that 
performs gamma calculations, metrics actualizations, hard 
decisions and other global processing. All registers of the 
recursion unit are 16 bits in width. 

 

3.2.3 Control 
The ASIP control part is based on a five-stage pipeline 

(Figure 2.d). These stages are Fetch, Decode, Operand 
Fetch, Execute, and Store. For this part, several control 
registers are required. Thus, the sub-block size is fixed in 
the register R_SIZE, and the current processed symbol 
inside the recursion unit A (resp. recursion unit B) is stored 
in ADDRESS_A (resp. ADDRESS_B). These addresses, as 
well as the program counter and the corresponding 
instruction, are then pipelined. In addition, the control 
architecture provides Zero Overhead Loop (ZOL) and 
branch mechanisms. To alleviate the ASIP instruction set,  
the ZOL mechanism uses R_SIZE to set the loop size to the 
value R_SIZE/2 (according to the butterfly scheme chosen). 



3.3. ASIP Instruction Set 
 

The designed instruction set of our ASIP architecture is 
coded on eight bits. The basic version contains 30 
instructions. The following section details the mandatory 
instructions to perform simple turbo decoding. These 
instructions are divided into three different classes: control, 
operative and IO. 
 

3.3.1 Control 
As mentioned previously, ZOL instruction repeats 

R_SIZE/2 times the loop on the instructions that follow the 
ZOL instruction. This instruction was designed in order to 
match the butterfly scheme for the MAP algorithm. An 
unconditional branch instruction has also been designed and 
uses the direct addressing mode. SET_SIZE instruction is 
used to set the ASIP sub-block size to a maximum size of 
64 symbols. 
 

3.3.2 Operative: MAP 
An ADD instruction is defined and used in two different 

modes: metrics computation (add m) and extrinsic 
information computation (add i). According to the ADD 
mode and to the configuration registers (RT), each 
processing node selects the desired operands to perform the 
arithmetic task and to store the result in the corresponding 
RADD register. 

In the same way, a MAX instruction was defined with 
the same modes as an ADD instruction. This basic 
instruction only performs one comparison. So, in a turbo 
decoding case, it has to be repeated as often as necessary to 
obtain either extrinsic information or recursion metrics at 
the considered address in the sub-block. 

The basic instruction set also contains the DECISION 
instruction to produce hard decisions on processed symbols 
and an ACTU instruction to normalize recursion metrics 
and avoid overflow. 

 

3.3.3 IO 
The basic instruction set also provides input and output 

instructions. With these instructions, parallel multi-accesses 
are executed in order to: 

- load decoder input data, input recursion metrics, 
configuration, 

- store output recursion metrics, 
- handle internal cross metrics between the two 

recursion units, 
- send extrinsic information packets and hard decisions. 
Extrinsic information packets contain the four extrinsic 

pieces of information of the current symbol, and a header. 
This header contains the sub-block address and an ASIP ID. 
As the sub-block size is limited to 64, only 6 bits are needed 
to code sub-block addresses. Taking into consideration a 
multiple ASIP integration, the choice to code the ASIP ID 
on 2 bits was made to induce a packet header of 8 bits (cf. 
section 4.2). 

 

3.4. DVB-RCS Example 
 

The 26-instruction code, shown in Figure 3, processes 
continuously a 48-symbol sub-block of a DVB-RCS SISO 

on the previously presented ASIP, using the butterfly 
scheme.  

ZOL4LDSTaddmmaxmmaxmACTUx24ZOL4LDSTaddmmaxmmaxmACTUx24

LD_CONFIG 0
LD_CONFIG 1
LD_CONFIG 2
LD_CONFIG 3
SET_SIZE 48

_loop: LD_REC

ZOL 4 
LD_ST
add m
max m
max m
ACTU

ZOL 9
LD_CROSS
add i
max i
max i
max i
ST_EXT
add m
max m
max m
ACTU

ST_REC
jmp _loop

x24

x24

LD_CONFIG 0
LD_CONFIG 1
LD_CONFIG 2
LD_CONFIG 3
SET_SIZE 48

_loop: LD_REC

ZOL 4 
LD_ST
add m
max m
max m
ACTU

ZOL 9
LD_CROSS
add i
max i
max i
max i
ST_EXT
add m
max m
max m
ACTU

ST_REC
jmp _loop

x24

x24

 
Figure 3. ASIP code for DVB-RCS example 

The first 6-instructions load the required configuration 
and initialize the recursion metrics. Then the first part of the 
butterfly is performed using the ZOL instruction. In this 
loop, two “max m” instructions are needed because DVB-
RCS is a double binary code. The second part of the 
butterfly scheme is then executed through another ZOL 
loop. In this last loop, the “max i” instruction is used three 
times to compute the extrinsic information of the eight-state 
DVB-RCS code. Finally, the SISO exports the sub-block 
ending metrics and program branches to the beginning of 
the butterfly.  

Thus, regarding the execution time, 5*N/2 cycles are 
needed in the first part of the butterfly scheme, and 10*N/2 
cycles in the second part, where N is the sub-block size. So 
about 15*N/2 cycles are needed to process the N symbols of 
the sub-block. thus 7.5 cycles are roughly needed per 
symbol.  

 

3.5. Results 
 

Using a LISATek VHDL Generator, a VHDL 
description of the ASIP architecture was generated. It was 
synthesized with a Synopsys Design Compiler in ST 
0.09µm (resp. 0.18µm) ASIC technology under worst-case 
conditions. The synthesized ASIP has a maximum clock 
frequency of 335 (resp. 180) MHz and occupies about 97 
(resp. 93) KGates (equivalent). 

This means that a single processor, running the two SISO 
of 6 turbo iterations over a DVB-RCS code, will potentially 
have a throughput of 7.4 (resp. 4) Mbit/s. 

 
4. Multiprocessor Turbo Decoding 
 

A multiprocessor architecture constitutes an ideal 
candidate for delivering the high computation and 
communication rates required by the new digital 
communication standards while preserving flexibility 
through software programming.  

In the previous section, an ASIP for parallel turbo 
decoding with its attached memories and communication 
interfaces was presented. This ASIP can be used for 
multiprocessing, where SISO computation is mapped on 
ASIPs while interleaving is mapped on communication 
resources.  



In state-of-the-art multiprocessors turbo decoding, this 
interleaving is considered as a limiting factor. In fact, in 
sub-block level parallelism, the scramble property of 
interleaving can induce conflicts in communication 
resources. This forces the communication network to store 
information until the targeted sub-block can process it. Of 
course, network buffering resources, and consequently time 
needed to interleave information, increase with the number 
of processors. This problem is currently solved by 
minimizing interleaving delay, with specific communication 
networks  [5]. In the following sections, a new approach is 
proposed to tackle interleaving problems, and then a turbo 
decoding multiprocessor architecture is described. 

 

4.1. Shuffling for Interleaving Transparency 
 

Shuffling was introduced in  [16] to improve performance 
in iterative decoding codes, with better extrinsic information 
management. 

In standard decoding, after each iteration, each 
component decoder delivers extrinsic messages to other 
decoders which use these messages as a priori values at the 
next iteration. 

In shuffled decoding, decoders work in parallel in 
interleaved and desinterleaved domains. Decoders do not 
wait until the end of iterations to send extrinsic messages to 
other decoders and to use received extrinsic messages. Thus 
decoders use more reliable a priori information. 
Nevertheless, to preserve BER performance, shuffling 
requires additional iterations. The ratio between iterations in 
the serial case and the shuffling case defines the efficiency 
of the shuffling. This appears as a constant factor (typically 
between 1.2 and 1.9) depending on the interleaving rules.  

Shuffling turbo decoding can be seen as concurrent 
decoding and interleaving. Consequently, communication 
time overlaps with the computation time. If shuffled turbo 
decoding is strictly applied as presented in  [16], each 
decoder restarts a new iteration only when all extrinsic 
messages of the other decoders have been completely 
received. This delay (network propagation time) leads to 

synchronization between processors and communication 
network. Thus, communication is partially overlapped by 
the processor load.  

To overcome this communication overhead, we propose 
that processors restart a new iteration without waiting for all 
incoming extrinsic messages. In the case of communication 
networks with low latency, simulations realized on the 
DVB-RCS code with this modified shuffled turbo decoding 
have shown negligible performance degradation in 
comparison with shuffled turbo decoding. Network latency 
should not exceed the time required for few APP emissions. 

 

4.2. ASIP-based Multiprocessor Architecture 
 

In order to use the modified shuffled turbo decoding 
technique presented above, half of the processors have to be 
mapped on each interleaving domain. Then, in each domain, 
each sub-block is mapped on a processor. 

Using the proposed ASIP architecture (section 3), Figure 
4 presents a 4-ASIP turbo decoder architecture where each 
SISO is implemented using two ASIPs. In this figure, three 
kinds of networks are used: data interface network, state 
metric network, and extrinsic information network. These 
networks take advantage of packet switching 
communication  [15]. 

First, the data interface network is used to dispatch new 
frame data to ASIPs and, concurrently, to gather output data 
from ASIPs. 

Second, the state metric network makes intra SISO 
exchanges possible between neighbouring ASIPs (sub-
blocks). It is a set of buffers between neighbouring 
processors, reflecting the trellis termination strategy. Thus, 
with a circular trellis termination strategy, i.e. ending and 
beginning states are identical, a buffer between the first and 
last ASIP is mandatory (Figure 4). 

Finally, the extrinsic information network is based on 
routers to make inter SISO exchanges possible between 
ASIPs. As the proposed ASIP supports the butterfly 
scheme, two packets can be sent on this network per
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Figure 4. ASIP based multiprocessor architecture for turbo decoding



emission and per ASIP. Packet headers are used by routers 
to perform routing and interleaving. A router contains a part 
of the interleaving or desinterleaving table and buffering 
mechanisms to support up to four input ports and four 
output ports. So the basic router can only support four 
processors as ASIP ID is coded on 2 bits (cf. section 3.3.3).  

For architectures with more than four processors, several 
routers are needed. In this case, a Benes like network  [17], 
based on the routers described above is proposed. Such a 
topology is scalable, as routers are identical and 
configurable. It is also flexible, due to router tables. As 
routers manage 4 output ports, minimum network latency is 
equal to log base 4 of the number of ASIPs per SISO.  
Simulations to evaluate average network latency are in 
progress. 

  
4.3. Results 
 

As the modified shuffled turbo decoding is used, the 
performance of the proposed ASIP-based multiprocessor 
architecture depends on the number of integrated ASIPs and 
on shuffling efficiency (see 4.1). Table 1 summarizes 
multiprocessor turbo decoding performance for DVB-RCS 
code with 6 iterations and a 1.7 shuffling efficiency. 

Table 1. Performance for DVB-RCS turbo decoding 
Number of ASIPs 4 8 16 32 
Sub-blocks per SISO 2 4 8 16 
Throughput [Mbit/s]  @ 0.18µm 13.6 27.2 54.4 108.8 
Throughput [Mbit/s]  @ 0.09µm 25.2 50.4 100.8 201.6 
Number of routers 1 2 8 16 

 

Compared to the results presented for simple binary 
turbo codes [4] (22.64 Mbit/s with 16 ASIPs and 5 iterations 
@ 0.18µm), our platform achieves equivalent performance1 
and a better flexibility by supporting double (and simple) 
binary turbo codes up to eight states. 
 

5. Conclusion 
 

In order to meet flexibility and performance constraints 
of current and future digital communication applications, an 
increasing number of application-specific instruction-set 
processors combined with dedicated communication and 
memory infrastructures are required. In this paper, we have 
presented a flexible and scalable multiprocessor architecture 
based on a new ASIP architecture for high throughput turbo 
decoding. 

The ASIP has a dedicated SIMD architecture with a 
specialized, extensible instruction-set and 5-stage pipeline 
control. The memory architecture and communication 
interfaces allow for the efficient assembling of multiple 
ASIP cores. 

We have illustrated how the modified shuffled turbo 
decoding technique can be used to resolve an interleaving 
bottleneck. Using this technique and sub-block level 
parallelism, the proposed ASIP-based multiprocessor 
architecture allows a high throughput while preserving 
                                                           
1 With our architecture, throughput for a simple binary turbo decoder is 
half the throughput of a double binary decoder (DVB-RCS code).  

flexibility and scalability thanks to an adequate packet 
switching communication network. 

Other experiments and evaluations are being conducted 
on the proposed architecture model. 
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