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Technical University of Braunschweig, Dept. E.I.S.

Mühlenpfordtstr. 23, D-38106 Braunschweig, Germany
[klingauf, gaedke, guenzel]@eis.cs.tu-bs.de

Abstract

Our concept of a virtual transaction layer (VTL) architec-
ture allows to directly map transaction-level communication
channels onto a synthesizable multiprocessor SoC implemen-
tation. The VTL is above the physical MPSoC communication
architecture, acting as a hardware abstraction layer for both
HW and SW components. TLM channels are represented by
virtual channels which efficiently route transactions between
SW and HW entities through the on-chip communication net-
work with respect to quality-of-service and realtime require-
ments. The goal is to methodically simplify MPSoC design by
systematic HW/SW interface abstraction, thus enabling early
SW verification, rapid prototyping and fast exploration of cri-
tical design issues. With TRAIN, we present our implementa-
tion of such a VTL architecture for Virtex-II Pro and PowerPC
and illustrate its efficiency by experimentation.

1. Introduction

Modern multiprocessor System-on-Chip (MPSoC) archi-
tectures require the system engineer to juggle with an incre-
asing number of heterogeneous processor cores, signal pro-
cessing components, peripheral controllers, memory subsy-
stems, and on-chip communication architectures. As a result,
in current HW/SW codesign methods one of the most import-
ant issues is mapping the system’s communication infrastruc-
ture to the target architecture, which particularly affects the
HW/SW integration phase, i.e. development of the HW/SW
interfaces [19].

Raising communication modeling to the transaction le-
vel (TLM) is considered as a key technology for fast design
space exploration and early embedded software development.
However, in current design flows, the abstract point-to-point
transaction channels of the TLM model cannot be mapped
directly to the target architecture. Rather, they have to be re-
fined to a synthesizable representation, implementing both
the cycle-accurate timing protocol and the low-level signals

of the target communication architecture. This results in a
significant TLM-to-RTL design gap, which not only affects
productivity and design reuse, but also prevents the early ex-
ploration of critical design issues. Moreover, the final results
of the communication refinement process in terms of design
constraints such as timing, area, and power consumption are
not deterministically predictable, which renders accurate pro-
gnosis in the TLM model impossible.

In order to make TLM-based HW/SW codesign of MP-
SoC more comfortable, we introduce our concept of a virtual
transaction layer (VTL). The VTL is a logical communicati-
on layer which is placed above the physical communication
architecture of the target MPSoC. The goal is to systemati-
cally facilitate communication refinement with TLM, and in
particular, to simplify the HW/SW integration phase. To this
end, a flexible and scalable HW/SW communication architec-
ture is required which from the programmer’s point of view
fully retains all TLM channels as virtual channels in the final
system implementation. The key features that such an archi-
tecture should provide are:

Flexibility: The hardware part of the architecture should be
highly flexible and scalable, enabling each processor
core to be connected to an arbitrary number of on-chip
communication networks.

Performance: The HW/SW interface should deliver highest
possible data transfer rates according to the underlying
communication subsystems.

Adaptability: The VTL should be highly retargetable, ren-
dering any re-engineering of MPSoC components unne-
cessary. For software components, TLM channel inter-
face method calls such as put and get should be trans-
parently mapped to the HW/SW interface. Hardware
components should be accessible independently from
their communication protocol.

Configurability: Each TLM channel of the high-level sy-
stem model should be represented by a virtual commu-
nication channel in the implementation model. Virtual
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channels should be routable to different on-chip commu-
nication networks, and should provide quality of service
(QoS) management.

In this paper we present the TRAIN TRAnsaction INter-
change architecture which meets all of the above require-
ments and, thanks to its modular design, can be efficiently ad-
apted to virtually any target architecture. To justify our design
decisions, we will first briefly outline current TLM design
methods for MPSoC and give an overview on related work.
We then will describe the TRAIN architecture in detail and
look at how we map HW/SW communication efficiently to
the target system using a hardware abstraction layer. We ha-
ve implemented this architecture on the Virtex-II Pro FPGA
fabric and illustrate our approach with experimental results.

2. TLM-based SoC design and related work

Recent and upcoming SoCs contain sophisticated commu-
nication architectures ranging from common bus architectu-
res to novel networks-on-chip (NoC). Numerous subsystems
include application-specific processors, peripheral IP and dis-
tributed memories (figure 1). According to [8], 90% of new
ASICs already contain a CPU and the trend of building hete-
rogeneous MPSoCs will even be accelerated.

Figure 1. Complex multiprocessor SoC

Large interest has been attracted by transaction level mo-
deling with system level design languages such as SpecC
[4] and SystemC [6]. Based on the orthogonalization of sy-
stem functionality and system communication, these langua-
ges support virtual prototyping and mixed-mode simulation
[1, 5, 9] as well as communication analysis [11, 16, 17] using
several TLM abstraction levels. Faced with the task of gene-
rating a synthesizable MPSoC implementation, however, the
crucial issue is communication refinement.

Methodical communication modeling is considered as a
key technology for straightforward SoC design. Thus, ma-
ny recent publications deal with standardization proposals for
TLM channels [12, 15] and TLM abstraction layers [2, 13].
In [1] and [17], the authors tackle automatic communication
refinement, and Kogel et al. [11] address virtual architecture

mapping using a generic bus model. Fummi et al. [3] and Ra-
maswamy et al. [14] show application-specific techniques for
HW-assisted verification with SystemC. However, all of these
approaches do not provide generic solutions for TLM-to-RTL
communication synthesis.

A straightforward approach for improving MPSoC design
efficiency is using wrappers to connect heterogeneous IP to
the on-chip communication network. Outstanding research in
this field has been done by Jerraya et al. [19]. Their metho-
dology, however, requires the manual adaptation and configu-
ration of architecture templates, and HW/SW communication
refinement is not generically taken into account, which in our
opinion is crucial for automatic SW synthesis from TLM.

We believe that in current and future MPSoC there is a
rising demand for more and more generic communication ar-
chitectures which overlay the complex infrastructure of the
on-chip communication networks, thus providing a generic
yet flexible TLM-based view of communication to the sy-
stem engineer. In the following, we present our approach for
such an architecture, which in combination with our systema-
tic TLM design method [9] and automatic refinement strategy
[10] can considerably improve MPSoC design efficiency.

3. TRAIN top-level architecture

With TRAIN, we developed a specification and reference
implementation of a number of generic HW and SW adapters
to interconnect processor cores, HW components, and SW
modules to a virtual transaction layer architecture in a MP-
SoC. Our HW and SW communication adapters are runtime-
configurable and map virtual transaction-level point-to-point
channels between HW and SW components to physical com-
munication paths on a target platform, using a tunneling pro-
tocol. By this means, TRAIN represents an abstract commu-
nication layer for MPSoC.

When designing TRAIN, we aimed at a scalable, adaptable
and highly configurable architecture which includes quality-
of-service features required by realtime applications. TRAIN
covers bidirectional communication between both HW and
HW as well as SW and HW components, e.g. between a pro-
cessor core and multiple HW entities such as IP cores, pe-
ripheral components, memories, etc. In a multiprocessor sy-
stem, TRAIN can be used to connect each processor core to
an arbitrary number of HW entities.

TRAIN-based virtual communication is mappable to phy-
sical point-to-point connections, on-chip buses and networks-
on-chip (NoC) as well as a mix of these architectures. Each
HW component is equipped with a communication adapter
called accessor, and each processor core connects to the on-
chip communication subsystems by a CPU adapter. On the
SW side, TRAIN comprises of a platform-specific device dri-
ver and a hardware abstraction layer (HAL). An overview of
TRAIN applied to a processor subsystem of an MPSoC (figu-
re 1) is depicted in figure 2.



Figure 2. TRAIN architecture overview

3.1. CPU adapter

The TRAIN CPU adapter routes transactions between SW
processes and HW modules connected to the on-chip com-
munication network. It consists of three different types of
components: The HW/SW controller, CPU port adapters and
technology adapters.

The HW/SW controller’s task is to coordinate CPU-to-
HW and HW-to-CPU data transfers in terms of scheduling
and routing. The data is transferred in a block-by-block man-
ner using a FIFO buffer of configurable size. By the technolo-
gy adapters, the data blocks are transferred to the appropriate
destination on-chip bus or network. The mapping from ad-
dress ranges to technology adapters is given by a routing table
which can be configured at runtime. Currently, 16 technology
adapter slots are provided by our reference implementation.

The CPU port’s signalling, data, and status-and-control
adapters map our TRAIN specific CPU interface to a target
CPU. A HW/SW data handshake mechanism including in-
terrupt handling ensures data integrity, while error detection
guarantees transfer reliability.

3.2. Accessors

To integrate HW IP cores into the virtual transaction layer,
accessors can be used. They connect the HW IP’s interface to
the target bus or NoC using a technology adapter. To allow for
advanced QoS management independent from the underlying
architectures’ capabilities, they also can be connected to the
CPU adapter by sideband signals. For example, an ongoing

transfer can be aborted by the CPU adapter to give way for a
high-priority transaction.

Moreover, accessors can provide remote direct memory
access (RDMA) capabilities. Using this feature, the CPU ad-
apter can initiate an arbitrary length data burst between an
accessor and a memory block. The transaction is controlled
by the accessor and does not require further CPU interaction,
which enables fast SW-controlled HW-to-memory transfers.

As a standard interface to HW IP, we decided to use
the Open Core Protocol (OCP) [12], because this interface
is platform-independent, versatile and commonly used. For
OCP-compliant HW cores, accessors basically are composed
of a technology adapter, which maps the OCP interface to the
target bus or NoC. If a HW core utilizes another communi-
cation interface, its accessor additionally has to be equipped
with an appropriate communication wrapper (figure 2).

3.3. Technology adapters

Technology adapters (TA) are used to connect the TRAIN
CPU adapters and accessors to the platform’s communication
architecture, which in MPSoC typically incorporates multiple
buses or networks-on-chip. The TA’s intention is to hide the
complexity of the underlying communication network and si-
multaneously utilize as much of the architecture’s features as
possible. Each TA can be configured to work as master, sla-
ve, or both. For interfacing to the TAs, we use a light-weight
OCP subset, which allows for using TAs both in accessors and
CPU adapters. The TA translates this protocol into a certain
bus or network protocol and vice versa.



4. HW/SW interface abstraction

4.1. Hardware abstraction layer

A primary objective of the virtual transaction layer ap-
proach is to use the same SW implementation for the target
system as for high-level TLM simulation or even hardware-
in-the-loop verification. To this end, the VTL includes a hard-
ware abstraction layer (HAL) providing an API that lets SW
modules communicate with HW modules by simple TLM in-
terface method calls. It communicates with the CPU adapter
of a processor core by a HW/SW handshake protocol. In order
to support realtime applications, the HAL should also allow
for configuring each virtual HW/SW communication chan-
nel with QoS requirements. Moreover, the HAL should be
highly portable in terms of supported target architectures and
operating systems. This results in the following architectural
demands:

• For each processor core in the MPSoC, one HAL instan-
ce should aggregate all virtual HW/SW channels that
exist for this processor.

• The HAL should provide a single common API applica-
ble to any target architecture.

• The platform dependent part of the HAL should be kept
as small as possible.

These requirements can be achieved by splitting the HAL
implementation into three layers, namely device driver, virtu-
al channel manager, and HAL API. This concept is outlined
in figure 3. The advantage of this approach is that the de-
vice driver is the only platform-dependent part of the HAL
implementation, thus minimizing re-engineering effort when
switching to another target processor or operating system.

Figure 3. HW/SW interface abstraction

Device driver
The low-level driver provides communication primitives

that gain access to the TRAIN CPU adapter, i.e., IRQ hand-
ling, register I/O and data transfer. Its intended purpose is to
decouple the mid-layer from the hardware.

Many MPSoC operating systems such as embedded linux
or QNX shield kernel space from user space to safeguard sy-
stem integrity. In such systems, the HAL driver would be
part of the kernel space and thus should provide a common
interface to the user space. As file I/O is part of every OS
implementation, we propose to represent HW/SW communi-
cation channels by means of virtual file pointers to the user
space. Thus user applications can establish HW/SW commu-
nication by simply reading and writing data streams to a file,
using standard OS function calls. The higher-level HAL API
uses these file pointers as a base to provide more sophisticated
communication services to the user application, i.e. SystemC-
like transaction-level channels and events for thread synchro-
nization.

Virtual channel management and TRAIN-API
The virtual channel manager in the mid-layer implements

the main functionality of the HAL. It uses the low-level devi-
ce driver for platform-independent data handshake with HW
components via the TRAIN CPU adapter, and provides the
TRAIN-API to applications.

QoS requirements can be announced by special TRAIN-
API method calls. The following SystemC example shows the
QoS configuration of a high-level TLM channel in the top-
level model of the system:

// create TLM channel
train_fifo<myobj> channel;
// connect moduleA with moduleB using the channel
moduleA.outPort(channel);
moduleB.inPort(channel);
// configure QoS requirements
channel.setProperty("QoS_Mode", "Burst");
channel.setProperty("QoS_Bandwidth", "30 MB");

For QoS transactions, the HAL and the CPU adapter treat
HW/SW communication with respect to the special require-
ments, as far as this is supported by the underlying communi-
cation architecture. For normal channels, a best effort service
is delivered.

PowerPC implementation
We have created a reference implementation of these con-

cepts using SystemC for the TLM channel library and C/C++
for the HAL. The HAL was compiled with the GNU cross
compiler for the PowerPC 405 processor, which is part of
the Virtex-II Pro FPGA fabric. As depicted in figure 3, the
HAL uses a system configuration file to become aware of the
available HW slaves in the system, their adresses, and their
module names in the TLM model. This configuration file can
be generated by a simple script from a SystemC model of the
whole HW/SW system and allows for automatic initialisation
of all HW/SW communication channels in the final MPSoC
implementation. To this end, the QoS requirements specified
in the SystemC model are also included.



4.2. HW/SW communication

For SW-to-HW data transfers, the HAL divides the SW’s
transaction data into blocks appropriate to the CPU adapter’s
FIFO size and sends them via a technology adapter to the de-
stination. HW-initiated transfers are signaled to the HAL by
interrupts, which in response reads the CPU adapter’s FIFO
buffer and reassembles the data blocks. Each TRAIN transac-
tion starts with a 64bit header indicating transfer mode, target
port address and transaction length.

If multiple data transfers through one CPU adapter take
place at the same time, data blocks are time-division multi-
plexed according to the QoS configurations of the actuating
virtual channels. As a result, a high-priority transaction can
slow down or even stall a lower-priority transaction when
both transactions share one medium on the chip.

5. Design flow

TRAIN was designed as a back-end for automating MP-
SoC synthesis from abstract transaction-level communication
models. The integration of TRAIN into our TLM-based de-
sign flow (see [9, 10]) is outlined in figure 4.

Figure 4. Design flow integration

In the high-level model, transactions between system com-
ponents are described by abstract TLM channel method calls
like put(data) and get(data). In the implementation
model, the TLM channels have to be replaced by physical on-
chip buses and networks with architecture-specific protocols
and complex RTL signal interfaces.

To bridge this gap, in the first step of the design flow TLM
method calls are refined to synthesizable interfaces, e.g. OCP
(see [10]). Afterwards, TRAIN CPU adapters and IP core ac-
cessors are chosen from a target platform library. The result
is a fully synthesizable RTL implementation of the MPSoC
which still reflects the original TLM communication chan-
nels by means of virtual channels.

In figure 4, this concept is demonstrated by an example
TLM model, in which data is sent from one module to another
by a TLM channel. In the final RTL implementation, this data
is sent from a processor core to a HW module via an on-
chip bus. However, by using a TRAIN CPU adpater and a
HW accessor, the complex interface and protocol of the on-
chip bus is completely hidden from the HW and SW modules.
From the HW and SW module’s point of view, a simple point-
to-point connection is established.

6. Experimental results

In order to analyze the practicability of our approach, we
created a TRAIN reference implementation for the Xilinx
Virtex-II Pro [18] FPGA fabric. We chose the V2P30 as a
target platform. It boasts 13,696 logic slices and two immer-
sed PowerPC 405 processor cores that connect to the on-chip
CoreConnect [7] bus architecture.

We implemented a C/C++ hardware abstraction layer as
described in section 4 and compiled it for the PowerPC with
Xilinx EDK 7.1. To equip the PowerPC with a TRAIN HW
interface, we implemented a CPU adapter which is utilizing
the PowerPC’s on-chip memory interface DSOCM. Further-
more, we implemented technology adapters and accessors for
the FPGA’s On-chip Peripheral Bus (OPB). To set up a test
system, we created various HW modules. These modules pro-
vide TRAIN-compliant OCP bus interfaces and are connected
to the OPB by accessors. They are runtime configurable and
can produce and consume programmable amounts of data.

Table 1 lists the ressource allocations and timing estima-
tions of our TRAIN library for the Virtex-II Pro. All com-
ponents were implemented with Verilog and compiled with
Xilinx ISE 7.1. As can be seen in the table, the additional res-
source allocation by TRAIN in a MPSoC is quite low. For ex-
ample, when both processor cores of the V2P30 are equipped
with a CPU adapter, 93% of the FPGA are still unallocated.

Table 1. TRAIN ressource allocation on V2P

Component Slices Clock (MHz)
CPU Adapter 488 98
Tech. Adapter OPB (master) 97 283
Tech. Adapter OPB (slave) 67 195
OCP-2-OPB Accessor (master) 223 188
OCP-2-OPB Accessor (slave) 202 129

To analyze the performance of our TRAIN implementati-
on, we first measured the transfer times of 1MB transactions
from SW to HW using different FIFO sizes in the CPU adap-
ter. The results are shown in the left-hand diagram of figure 5.
It can be seen that due to fixed arbitration times for each block
transfer, small block sizes are not suitable for bus-based com-
munication. On the OPB, a block size of 4KB turned out to
be applicable.
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Figure 5. Experimental results

In the middle diagram, we then measured the through-
put of our CPU adapter when routing transactions from
SW threads to HW modules via the OPB. In addition, the
PLB curve in this diagram depicts the transfer time for
standard PLB-based RAM writes by the PowerPC without
TRAIN. The comparison shows that TRAIN outperforms
normal shared-memory-based HW/SW communication on
the Virtex-II Pro, since it can take advantage of the fast on-
chip memory interface of the PowerPC.

Finally, the graph on the right-hand side shows the transfer
times of a 16MB SW-to-HW transaction at different additio-
nal OPB loads. For this experiment, a configurable master and
a corresponding slave module have been used to pollute the
OPB with additional bus traffic, using a higher priority than
the SW-to-HW virtual channel. The diagram shows that our
TRAIN implementation is able to operate the underlying sha-
red communication architecture to full capacity, with respect
to its QoS configuration.

All experiments were done using a 50MHz clock.

7. Conclusion

In this paper, we introduced our concept of a virtual tran-
saction layer which overlays the physical communication ar-
chitecture of an MPSoC. The goal is to reflect high-level
channels of a TLM model as virtual channels in the final im-
plementation. By tunneling communication through the on-
chip buses and networks, virtual channels provide runtime-
configurable point-to-point links with standard interfaces to
HW and SW components. We have shown that this approach
enables the mapping of TLM channels to various MPSoC
communication architectures and hence can facilitate auto-
matic TLM-to-RTL communication refinement. Our TRAIN
reference implementation for Virtex-II Pro provides QoS sup-
port and includes a platform-independent hardware abstracti-
on layer for SW components.

In our ongoing work, we address runtime-reconfigurable
distributed embedded systems and implement additional
TRAIN CPU adapters and accessors. Furthermore, we are de-
veloping a SystemC framework for fast communication archi-
tecture analysis and synthesis based on the VTL approach.
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