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Abstract 
Conventional high-level synthesis uses the worst case 
delay to relate all inputs to all outputs of an operation. 
This is a very conservative approximation of reality, 
especially in arithmetic operations (where some bits are 
required later than others and some bits are produced 
earlier than others). This paper proposes a pre-synthesis 
optimization algorithm that takes advantage of this 
feature for more efficient high-level synthesis of data-flow 
graphs formed by additions and multiplications. The 
presented pre-processor analyzes the critical path at bit-
granularity and splits the arithmetic operations into sub-
words fragments. In particular, some of the specification 
multiplications are broken up into several smaller 
multiplications, additions, and other operations of three 
new types specially defined to reduce the clock cycle 
duration. These fragments become the input to any 
regular high-level synthesis tool to speed up circuit 
execution times. The experimental results carried out 
show that implementations obtained from the optimized 
specification are on average 70% faster and in most cases 
substantial area reductions are also achieved. 
 
 
 

1. Introduction 
 
Conventional  high-level synthesis (HLS) algorithms 

progressively refine a behavioral description to create 
equivalent register-transfer level (RTL) hardware (HW) 
implementations of the design subject to various goals, 
such as performance, area and power consumption. Thus, 
a trade-off arises among execution times of circuits 
(latency or number of cycles needed to perform a 
computation times the clock cycle length), costs of their 
HW resources and energy consumed. The synthesis 
process is basically performed in two steps: scheduling 
(introduces the concept of time and parallelism to set the 
cycle where every operation starts its execution); and 
allocation (establishes the HW resources adequate to 
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execute every operation and store and transmit every 
argument). 

Scheduling algorithms assume the worst case delay to 
relate all inputs to all outputs of an operation. However, in 
the execution of arithmetic operations neither every input 
bit is required at the same time, nor every output bit is 
calculated in parallel. This assumption enormously 
restricts the design space, and therefore, the set of 
reachable implementations becomes highly conditioned 
by the supplied description of the behavior. Traditionally, 
it has been softened by adding optimization phases at the 
end of the synthesis process to adjust the design decisions 
taken [1]-[3]. Furthermore, the increasing complexity of 
upcoming systems prevents designers from considering 
the overall effect of description styles on the final 
implementation. Then, it seems obliged the convenience 
of HLS algorithms able to produce implementations 
independent of the descriptive style used to define the 
behaviors. Until now few design techniques have 
somewhat taken advantage of this feature: bit-level 
chaining, non-integer multi-cycle and bit-level synthesis.  

Bit-level chaining [4]-[5] allows the execution in the 
same cycle of several data-dependent operations with 
rippling effect (e.g., additions and multiplications) to 
exploit their inherent parallelism. Thus, part of these 
chained operations can be executed in parallel at the bit-
level. Non-integer multi-cycle [4] allows chaining the 
result produced in one cycle by a multi-cycle operator 
(that executes one operation across several consecutive 
cycles) to the next data-dependent operation. In order to 
reduce the execution time, these two techniques let some 
bits of several data-dependent operations be computed in 
parallel. However, in order to chain several operations in 
one clock cycle, both require that all of them finish their 
executions in the selected cycle. Moreover, multi-cycle 
adds another disadvantage: the execution of one operation 
is constrained to consecutive cycles, and the result is 
solely available the cycle the operation is completed in 
(even if some result bits have already been computed in 
prior cycles). Although these two techniques help to 
reduce either the circuit latency or the cycle duration, the 
implementations synthesized are still excessively 
influenced by the description style used in the 
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specification. Note, for example, that the clock-cycle 
duration equals the execution time of the longest set of 
chained operations scheduled in the same cycle. 

Bit-level synthesis [6]-[7] aims to minimize the 
datapath area by increasing the HW reuse at the bit level. 
In order to achieve this goal, every result bit is considered 
available (to be used as an input operand) the cycle it is 
calculated in, even if the overall execution of the 
operation has not finished yet. Thus, one operation can 
begin its execution as soon as some bits of its input 
operands are available, and continue across several not 
necessarily consecutive cycles as well. Bit-level synthesis 
algorithms are based on a flow of selective fragmentations 
of the specification operations. The selected operations 
are substituted for several chained data-dependent 
operations whose types and widths may be different from 
those in the original operation. And some specification 
operations or operation fragments may be executed over 
several linked functional units (FUs). Besides, operations 
with different types, representations, or widths can share 
the same FU to perform the calculi they have in common. 
For example, a multiplication comprises several additions 
that could be executed over the same adders than other 
additions present in the behavioral specification. This 
technique overcomes the limitation of conventional 
allocation algorithms that prevent the binding of two 
operations to the same FU unless they share their same 
type, representation and width. However, these bit-level 
synthesis transformations are mainly focused on HW-
reuse gain, and therefore, they do not result adequate for 
time-constrained synthesis.  

This paper presents a pre-synthesis optimization 
algorithm specially suited for time-constrained designs. It 
includes a novel method to split multiplications into a set 
of additions, smaller multiplications, and other operations 
of three new types specially defined to reduce the clock-
cycle duration. The new specification becomes then a 
better start point for any regular HLS tool to achieve 
faster circuits. 

 
2. Motivational example 

 
This section provides with the aid of an example, the 

overlook of how the pre-synthesis fragmentation of 
multiplications may improve the performance of a circuit 
without compromising its area. Fig. 1 a) shows a data- 
flow graph (DFG) of a behavioral description formed by 
eight operations: four additions and four multiplications. 
The cycle length of all the schedules of this behavior 
presented in this section have been calculated taking into 
account the rippling-effect property of additions and 
multiplications, which allow the execution in parallel of 
some of their bits. 

Table I shows the operation to cycle assignments 
synthesized by the commercial tool Synopsys Behavioral 
Compiler from the behavioral description in Fig. 1 a) with 
a latency equal to three cycles. Three different synthesis 
processes have been performed enabling, both separately 
and jointly, operation chaining and multi-cycle operators. 
Fig. 1 b) and c) illustrates the operation fragmentations 
performed to the original specification, and the resultant 
optimized specification, respectively. Note that 

      Figure 1. a) Behavioural specification, b) operation fragmentations, c) optimized specification. 

architecture beh of example is
begin
main:process
…
begin

E := A + B;
F := C + D;
I := E × F;
J := G + H;
Q := N × O;
K1 := TriangleUp(I, J);
K2 := TriangleDown(I(15 downto 1), J(15 downto 1));
K3 := K2 + K1(19 downto 16);
K <= K3 & K1(15 downto 0);

P1 := L(15 downto 0) + M(15 downto 0);
P2 := L(31 downto 16) + M(16 downto 16) + Carry(P1);
P := P2 & P1;

R1 := TriangleUp(P1, Q);
R2 := Rectangle(P(31 downto 1), Q);
R3 := TriangleDown(P(31 downto 17), Q(15 downto 1));
R4 := R2 + R1(19 downto 16);
R5:= R3 + R4(19 downto 16);
R <= R5 & R4(15 downto 0) & R1(15 downto 0);

end process main;
end beh;
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multiplication K=I×J has been partitioned into two 
fragments, and has been substituted in the specification 
for two new operations that execute the calculi included in 
the triangles marked as T1 and T2 plus one addition to 
sum up the two partial results. Besides, multiplication 
R=P×Q has been partitioned in a similar way to produce 
three fragments, and has been substituted for three new 
operations that execute the calculi included in the two 
triangles T3 and T4 and the rectangle R1, plus two 
additions to sum the partial results. Finally, addition 
P=L+M has been also partitioned into two smaller 
additions.  

These multiplication fragmentations may produce 
operations of three new types: TriangleUp that calculates 
the portion of the multiplication inside a triangle with its 
right angle situated in the upper left corner part in the 
figure (triangles T1 and T3), TriangleDown that computes 
the portion inside a triangle with its right angle in the 
bottom right (triangles T2 and T4), and Rectangle that 
calculates the portion inside a rectangle. In order to 
synthesize the new specifications, three new components 
able to execute the new operations have been designed 
and added to the module library. The schedule 
synthesized by BC from the optimized specification for 
latency three cycles (chaining and multi-cycle enabled) is 
shown in Table II.  

Table III summarizes the main features of every 
implementation. All the values shown have been produced 
by Synopsys Design Compiler after logic synthesis, and 

include, in all cases, the routing and controller costs. The 
execution time of the implementation synthesized from 
the optimized specification is up to two times faster and it 
is also the smallest one. Not only the partition of slower 
operations reduces the cycle length, but also increases the 
FU reuse among operation fragments (including the new 
modules as well). These results show that the partition of 
operations constitutes a great choice to solve the time-
constrained scheduling problem at virtually no additional 
cost in terms of area.  

 
3. Pre-synthesis optimization method 

 
The proposed algorithm optimizes behavioral 

specifications in order to obtain faster implementations 
from conventional synthesis algorithms. This goal is 
achieved by decomposing slow operations into several 
smaller, and thus, faster ones, that are assigned to 
different cycles. The operation types considered are 
multiplications and additions. The partitions of additions 
performed are quite similar to the ones proposed in [7]. 
These new transformations take into account the potential 
HW reuse as well, in addition to the factors already 
considered (circuit latency, execution time and mobility of 
every operation, and data dependencies). This contributes 
to reduce the circuit area while trying to minimize the 
execution time. However, the great novelty of this 
optimization algorithm resides in the multiplication 
partitioning. Multiplications are decomposed into several 
new operations of types: addition, multiplication, 
TriangleUp, TriangleDown, and Rectangle. The three new 
operation types have been specially defined to obtain the 
maximum number of result bits of every multiplication 
fragment, while needing the minimum number of operand 
bits to be executed. This way, data dependencies among 
the fragments of every partitioned multiplication are less 
restrictive, and therefore, the searched design space 
bigger.  

The new algorithm comprises the following phases: 
1) Cycle-length estimation. The critical path is identified 
and its duration used to estimate the clock-cycle length. 
2) Operation partitioning. Some of the operations in the 
behavioral description are broken up in order to fulfil the 
time constraint imposed in the previous phase. 
 

   Table I. Conventional schedules of behavior in Fig. 1 

 Cycle selected to execute the operation

Operation Chaining Multicycle Chaining + 
Multicycle 

E = A + B  1 1 1 
F = C + D 1 1 2 
I = E × F 1 2 2 
J = G +H 3 2 2 
K = I × J 3 3 3 

P = L + M 2 1 1 
Q = N × O 2 1 1 
R = P × Q 2 2 and 3 2 and 3 

 
Table II. Schedule obtained after optimization 

 Variables calculated in every cycle 
Operation Cycle 1 Cycle 2 Cycle 3 
E = A + B E   
F = C + D F   
I = E × F  I  
J = G +H  J  
K = I × J  K1 K2, K3 

P = L + M P1 P2  
Q = N × O Q   
R = P × Q R1 R2, R4 R3, R5 

 

Table III. Comparison of implementations 

 Execution time  
(ns) 

Area  
(equivalent gates)

Chaining 79,2 11520 

Multicycle 53,1 15361 

Chaining + 
Multicycle 52,3 15213 

Optimized 
specification 36,3 11196 



3.1 Cycle-length estimation 
 
The first step to estimate the cycle length becomes the 

identification of the critical path. The critical path of a 
behavioral description is the path of the DFG that takes 
the longest time to be executed. In the present version of 
the optimization algorithm we have considered additive 
and multiplicative operations, and the time needed to 
execute every DFG path has been measured in number of 
1-bit chained additions. The latency of one n-bit addition 
has been considered equivalent to n chained additions of 1 
bit, and the latency of one m×n multiplication equivalent 
to m+n-2 chained additions of 1 bit. 

To calculate the time consumed by one path, operations 
are crossed from its output to the input. For every 
operation crossed, some value is added to the latency of 
the last operation (the one that produces the path output). 
The value added in each case depends on the type of the 
operation crossed, and its successor in the path (the one 
crossed previously). Four different situations arise: 
1) Addition followed by addition. The second addition 
can begin its execution once the least significant bit (LSB) 
of the first one is calculated. Then the execution time of 
two chained additions sums one to the latency of the 
second one.  
2) Addition followed by multiplication. The LSB of the 
multiplication can be calculated once the LSB of the 
addition is available. However, because the time required 
to calculate the multiplication LSB is nearly negligible 
compared to the delay of 1-bit addition, we can assume 
that the calculus of the LSB of both operations can be 
performed in the time required to execute 1-bit addition. 
The calculus of the second bit of the multiplication result 
can begin once the two LSBs of the previous addition are 
available, and can be executed in parallel with the third bit 
of the addition. Thus, the execution time adds two to the 
multiplication latency, and equals the number of bits of 
the multiplication output.  
3) Multiplication followed by addition. The two LSBs of 
the multiplication and the LSB of the addition can be 
calculated in the time required to compute 1-bit addition. 
The reason is again that the time needed to calculate the 
LSB of one multiplication is nearly negligible compared 

to the delay of 1-bit addition. Thus, the execution time 
coincides with the delay of the addition.  
4) Multiplication followed by multiplication. Every result 
bit of the second multiplication can be calculated once the 
same bit of the previous multiplication is available. Then 
two chained multiplications add one to the latency of the 
second multiplication.  

Once the execution time of every different path in the 
DFG is calculated, the one with the biggest delay is 
selected as the critical path. Its execution time is used then 
to estimate the cycle length (measured in number of 1-bit 
chained additions). It becomes the critical path delay 
divided by the circuit latency (λ). 

 
3.2 Operation partitioning 

 
The execution time of some specification operations 

may take longer than the clock cycle length estimated in 
the previous phase. In order to meet the time constraint 
imposed, they must be broken up, and their fragments 
executed in different cycles. At most, the number of 
partitions obtained from every specification operation 
equals its latency divided by the estimated cycle length. 
The algorithm always breaks up every operation to obtain 
this minimum number of fragments, avoiding in this way 
an excessive number of operations in the final optimized 
specification. Two fragments of the same operation have 
small probability to be scheduled in the same cycle. 
Therefore the algorithm tries to partition operations into 
fragments of similar sizes that can share the same set of 
HW resources, contributing in this way to reduce the 
implementation area. These fragmentations produce new 
data dependencies among operations and operation 
fragments. The execution of one fragment requires the 
previous execution of the precedent LSB of the same 
operation (to use the carry out produced as its carry in), 
and also the bits used as input operands. 

 
3.3 Multiplication partitioning 

 
The number of partitions to be obtained from the 

fragmentation of one m×n multiplication equals the 
division of the multiplication latency, measured in number 

Table IV. Features of the modules designed to execute the new operations 

 # bits 
operand 1 

# bits 
operand 2 # result bits # adders Set of adders widths 
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of 1-bit chained additions (m+n-2) by the estimated cycle 
length. All the partitions are obtained from the vertical 
fragmentation of the calculus matrix of the multiplication, 
such that the execution of every fragment produces some 
bits of the multiplication output. The number of result bits 
calculated by every fragment is obtained after dividing the 
width of the multiplication result by the number of 
partitions. If the number of partitions is a divisor of the 
width of the multiplication result, then every fragment 
produces the same number of bits of the multiplication 
output. Otherwise, some fragments can produce one bit 
more than others.  

The vertical partitions are performed taking into 
account the number of output bits calculated by every 
fragment. These partitions do not always directly produce 
smaller multiplications and additions, and, in most cases, 
additional fragmentations are required to obtain new 
operations. The operation types considered in these 
partitions are: addition, multiplication, TriangleUp, 
TriangleDown, and Rectangle. TriangleUp and 
TriangleDown operations calculate the multiplication 
portion inside a triangle with a right angle in the 
upper/lower part of the geometric figure, and Rectangle 
operations calculate the multiplication portion inside a 
rectangle. These operation types have been specially 
defined to avoid the excessive fragmentation that occurs 
when partitioning vertically a multiplication to obtain just 
new multiplications and additions. They also constitute a 
regular pattern that appears in most multiplication 
fragments, contributing in this way to increase the HW 
reuse and, in consequence, to reduce the circuit area. In 

order to take advantage of the definition of these new 
operation types, it is necessary to design and add to the 
module library new components able to execute them. 
Table IV shows some features of these three new 
modules: the number of bits of the input operands and the 
result, the number of chained adders that compose the 
partial results, and their widths. 

There are three different partition types, depending on 
their situation in the multiplication matrix: the least 
significant partition (LSP), central partitions (CPs) and the 
most significant partition (MSP). The set of operations 
obtained from every partition type depends on the 
multiplication and fragments sizes. Fig. 2 a) and 2 b) 
shows the different LSPs and MSPs captured from the 
vertical partition of one multiplication and the set of 
operations given in each case, respectively. The 
fragmentations obtained from the CPs partitions can be 
calculated in a similar way. Note that, although the 
operations shown in the figure are only multiplications, 
TriangleUp, TriangleDown, and Rectangle, every 
partition also includes a set of additions needed to sum the 
partial results. 

 
4. Experimental results 

 
The commercial synthesis tool Synopsys Behavioral 

Compiler (BC) version 2001.08 has been used to judge 
the quality of the optimized specifications given by the 
proposed algorithm. We have synthesized with BC every 
original specification and the one optimized. The 
execution time and area of the implementations 

Figure 2. Fragmentations proposed for the a) LSPs, and b) MSPs of one multiplication. 
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synthesized in both cases have been computed with 
Synopsys Design Compiler (DC). The experimental work 
includes the optimization and subsequent synthesis of 
several classical HLS benchmarks [8], and part of a real 
application.  

The classical benchmarks synthesized are a fifth order 
elliptical wave filter (elliptic), a differential equation 
solver (diffeq), a fourth order IIR filter (iir4), and a 
second order FIR filter (fir2). Table V shows the clock 
cycle duration and the datapath area comparison for 
several different latencies (λ). Performance has been 
improved 74% on average, and reductions of the cycle 
length of up to 88% have been obtained. The datapath 
area has also been reduced in all cases around 14% on 
average. The number of operations in the transformed 
specification is around 36% larger on average.  

Some modules of a real circuit description, the adaptive 
differential pulse-code modulation (ADPCM) encoding 
and decoding algorithms have also been synthesized. The 
set of synthesized modules includes: Inverse Adaptive 
Quantizer (IAQ), Tone & Transition Detector (TTD), 
Output PCM Format Conversion (OPFC), and 
Synchronous Coding Adjustment (SCA). OPFC and SCA 
modules have been synthesized together, and IAQ and 
TTD independently. The latencies used to synthesize the 
original and the optimized specifications are the ones 
selected by BC in the conventional schedule (via the 
command schedule –io_mode free_floating). Table VI 
shows the cycle length of the schedules obtained from 
both specifications. The circuit performance has been 
improved 66% on average.  Additionally, the circuit area 
has been reduced 8% on average. The number of 
operations in the optimized specification has augmented 
less than 1/3. 

The experimental work shows that the increment in the 
number of operations in the optimized specification does 

not complicate the posterior synthesis process and does 
not augment the design time. The reason is that most of 
the new operations are born already scheduled, and the 
mobility of some others has been also reduced.  

 
5. Conclusion 

 
The proposed pre-synthesis optimization method 

improves the results obtained by regular HLS algorithms 
to synthesize DFGs including multiplications and 
additions. It analyzes the critical path at bit-granularity 
and splits some arithmetic operations into sub-words 
fragments. The fragmented multiplications are substituted 
for sets of smaller operations whose types are addition, 
multiplication, TriangleUp, TriangleDown, and 
Rectangle. The last three types have been specially 
defined to reduce the clock cycle duration while 
minimizing the number of new operations split from every 
fragmented multiplication. They also constitute a regular 
pattern that appears in most multiplication fragments in 
order to contribute to increase the HW reuse and reduce 
the circuit area. The optimized specifications become the 
input to any regular high-level synthesis tool to speed up 
circuit-execution times without increasing the datapath 
area. The experimental results carried out show that 
implementations obtained from the optimized 
specification are on average 70% faster and, in most 
cases, substantial area reductions are also achieved. 
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Table V. Synthesis of some classical HLS benchmarks 

 Cycle duration (nanoseconds) 
 λ Original Optimized Saved 

Area 
reduction 

11 51.59 9.52 81.54 % 11.51 % 
6 60.45 18.03 70.17 % 9.7 % 

ell
ip

tic
 

4 68.2 19.4 71.55 % 5.25 % 
6 94.45 33.56 64.46 % 14.85 % 
5 97.56 42.2 56.74 % 19.43 % 

di
ffe

q 

4 101.34 46.43 54.18 % 8.71 % 
6 93.6 11.23 88 % 21.08 % 

iir
4 

5 93.6 16.34 82.54 % 13.25 % 
5 94.57 11.9 87.41 % 17.52% 

fir
2 

3 94.57 17.31 81.69 % 22.24% 

Table VI. Synthesis of some modules of ADPCM decoder 

Cycle duration (nanoseconds) Module λ Original Optimized Saved 
Area 

saved 
IAQ 3 6.96 2.5 64.08 4.71 % 
TTD 5 9.28 3.68 60.34 10.52 % 

OPFC + 12 9.39 2.42 74.22 9.18 % 
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