
Pre-synthesis Optimization of Multiplications to Improve Circuit Performance*

Rafael Ruiz-Sautua, María C. Molina, José M. Mendías, Román Hermida
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid
rsautua@fdi.ucm.es, {cmolinap, mendias, rhermida}@dacya.ucm.es

Abstract
Conventional high-level synthesis uses the worst case
delay to relate all inputs to all outputs of an operation.
This is a very conservative approximation of reality,
especially in arithmetic operations (where some bits are
required later than others and some bits are produced
earlier than others). This paper proposes a pre-synthesis
optimization algorithm that takes advantage of this
feature for more efficient high-level synthesis of data-flow
graphs formed by additions and multiplications. The
presented pre-processor analyzes the critical path at bit-
granularity and splits the arithmetic operations into sub-
words fragments. In particular, some of the specification
multiplications are broken up into several smaller
multiplications, additions, and other operations of three
new types specially defined to reduce the clock cycle
duration. These fragments become the input to any
regular high-level synthesis tool to speed up circuit
execution times. The experimental results carried out
show that implementations obtained from the optimized
specification are on average 70% faster and in most cases
substantial area reductions are also achieved.

1. Introduction

Conventional high-level synthesis (HLS) algorithms

progressively refine a behavioral description to create
equivalent register-transfer level (RTL) hardware (HW)
implementations of the design subject to various goals,
such as performance, area and power consumption. Thus,
a trade-off arises among execution times of circuits
(latency or number of cycles needed to perform a
computation times the clock cycle length), costs of their
HW resources and energy consumed. The synthesis
process is basically performed in two steps: scheduling
(introduces the concept of time and parallelism to set the
cycle where every operation starts its execution); and
allocation (establishes the HW resources adequate to

 * Supported by grant CICYT TIN 2005-5619

execute every operation and store and transmit every
argument).

Scheduling algorithms assume the worst case delay to
relate all inputs to all outputs of an operation. However, in
the execution of arithmetic operations neither every input
bit is required at the same time, nor every output bit is
calculated in parallel. This assumption enormously
restricts the design space, and therefore, the set of
reachable implementations becomes highly conditioned
by the supplied description of the behavior. Traditionally,
it has been softened by adding optimization phases at the
end of the synthesis process to adjust the design decisions
taken [1]-[3]. Furthermore, the increasing complexity of
upcoming systems prevents designers from considering
the overall effect of description styles on the final
implementation. Then, it seems obliged the convenience
of HLS algorithms able to produce implementations
independent of the descriptive style used to define the
behaviors. Until now few design techniques have
somewhat taken advantage of this feature: bit-level
chaining, non-integer multi-cycle and bit-level synthesis.

Bit-level chaining [4]-[5] allows the execution in the
same cycle of several data-dependent operations with
rippling effect (e.g., additions and multiplications) to
exploit their inherent parallelism. Thus, part of these
chained operations can be executed in parallel at the bit-
level. Non-integer multi-cycle [4] allows chaining the
result produced in one cycle by a multi-cycle operator
(that executes one operation across several consecutive
cycles) to the next data-dependent operation. In order to
reduce the execution time, these two techniques let some
bits of several data-dependent operations be computed in
parallel. However, in order to chain several operations in
one clock cycle, both require that all of them finish their
executions in the selected cycle. Moreover, multi-cycle
adds another disadvantage: the execution of one operation
is constrained to consecutive cycles, and the result is
solely available the cycle the operation is completed in
(even if some result bits have already been computed in
prior cycles). Although these two techniques help to
reduce either the circuit latency or the cycle duration, the
implementations synthesized are still excessively
influenced by the description style used in the

3-9810801-0-6/DATE06 © 2006 EDAA

specification. Note, for example, that the clock-cycle
duration equals the execution time of the longest set of
chained operations scheduled in the same cycle.

Bit-level synthesis [6]-[7] aims to minimize the
datapath area by increasing the HW reuse at the bit level.
In order to achieve this goal, every result bit is considered
available (to be used as an input operand) the cycle it is
calculated in, even if the overall execution of the
operation has not finished yet. Thus, one operation can
begin its execution as soon as some bits of its input
operands are available, and continue across several not
necessarily consecutive cycles as well. Bit-level synthesis
algorithms are based on a flow of selective fragmentations
of the specification operations. The selected operations
are substituted for several chained data-dependent
operations whose types and widths may be different from
those in the original operation. And some specification
operations or operation fragments may be executed over
several linked functional units (FUs). Besides, operations
with different types, representations, or widths can share
the same FU to perform the calculi they have in common.
For example, a multiplication comprises several additions
that could be executed over the same adders than other
additions present in the behavioral specification. This
technique overcomes the limitation of conventional
allocation algorithms that prevent the binding of two
operations to the same FU unless they share their same
type, representation and width. However, these bit-level
synthesis transformations are mainly focused on HW-
reuse gain, and therefore, they do not result adequate for
time-constrained synthesis.

This paper presents a pre-synthesis optimization
algorithm specially suited for time-constrained designs. It
includes a novel method to split multiplications into a set
of additions, smaller multiplications, and other operations
of three new types specially defined to reduce the clock-
cycle duration. The new specification becomes then a
better start point for any regular HLS tool to achieve
faster circuits.

2. Motivational example

This section provides with the aid of an example, the

overlook of how the pre-synthesis fragmentation of
multiplications may improve the performance of a circuit
without compromising its area. Fig. 1 a) shows a data-
flow graph (DFG) of a behavioral description formed by
eight operations: four additions and four multiplications.
The cycle length of all the schedules of this behavior
presented in this section have been calculated taking into
account the rippling-effect property of additions and
multiplications, which allow the execution in parallel of
some of their bits.

Table I shows the operation to cycle assignments
synthesized by the commercial tool Synopsys Behavioral
Compiler from the behavioral description in Fig. 1 a) with
a latency equal to three cycles. Three different synthesis
processes have been performed enabling, both separately
and jointly, operation chaining and multi-cycle operators.
Fig. 1 b) and c) illustrates the operation fragmentations
performed to the original specification, and the resultant
optimized specification, respectively. Note that

 Figure 1. a) Behavioural specification, b) operation fragmentations, c) optimized specification.

architecture beh of example is
begin
main:process
…
begin

E := A + B;
F := C + D;
I := E × F;
J := G + H;
Q := N × O;
K1 := TriangleUp(I, J);
K2 := TriangleDown(I(15 downto 1), J(15 downto 1));
K3 := K2 + K1(19 downto 16);
K <= K3 & K1(15 downto 0);

P1 := L(15 downto 0) + M(15 downto 0);
P2 := L(31 downto 16) + M(16 downto 16) + Carry(P1);
P := P2 & P1;

R1 := TriangleUp(P1, Q);
R2 := Rectangle(P(31 downto 1), Q);
R3 := TriangleDown(P(31 downto 17), Q(15 downto 1));
R4 := R2 + R1(19 downto 16);
R5:= R3 + R4(19 downto 16);
R <= R5 & R4(15 downto 0) & R1(15 downto 0);

end process main;
end beh;

a)

b)

J

G H

+

I ×

16 16

16

× FE

C D

+

A B

+8 8 8 8

8 8

16

K
32

× QP

N O

×

L M

+32 32 8 8

32 16

R
48

R = P × Q

16 bits 16 bits

16 bits T3
T4

R1

K = I × J

16 bits

16 bits T1
T2

P = L + M

16 bits 16 bits

c)
architecture beh of example is
begin
main:process
…
begin

E := A + B;
F := C + D;
I := E × F;
J := G + H;
Q := N × O;
K1 := TriangleUp(I, J);
K2 := TriangleDown(I(15 downto 1), J(15 downto 1));
K3 := K2 + K1(19 downto 16);
K <= K3 & K1(15 downto 0);

P1 := L(15 downto 0) + M(15 downto 0);
P2 := L(31 downto 16) + M(16 downto 16) + Carry(P1);
P := P2 & P1;

R1 := TriangleUp(P1, Q);
R2 := Rectangle(P(31 downto 1), Q);
R3 := TriangleDown(P(31 downto 17), Q(15 downto 1));
R4 := R2 + R1(19 downto 16);
R5:= R3 + R4(19 downto 16);
R <= R5 & R4(15 downto 0) & R1(15 downto 0);

end process main;
end beh;

a)

b)

J

G H

+

I ×

16 16

16

× FE

C D

+

A B

+8 8 8 8

8 8

16

K
32

J

G H

+

G H

++

I ×

16 16

16

× FE

C D

+

C DC D

+

A B

+

A BA B

+8 8 8 8

8 8

16

K
32

K
32

× QP

N O

×

L M

+32 32 8 8

32 16

R
48

× QP

N ON O

×

L M

+

L ML M

+32 32 8 8

32 16

R
48

R
48

R = P × Q

16 bits 16 bits

16 bits T3
T4

R1

R = P × Q

16 bits 16 bits

16 bits T3
T4

R1

K = I × J

16 bits

16 bits T1
T2

K = I × J

16 bits

16 bits T1
T2 T2

P = L + M

16 bits 16 bits

P = L + M

16 bits 16 bits 16 bits 16 bits

c)

multiplication K=I×J has been partitioned into two
fragments, and has been substituted in the specification
for two new operations that execute the calculi included in
the triangles marked as T1 and T2 plus one addition to
sum up the two partial results. Besides, multiplication
R=P×Q has been partitioned in a similar way to produce
three fragments, and has been substituted for three new
operations that execute the calculi included in the two
triangles T3 and T4 and the rectangle R1, plus two
additions to sum the partial results. Finally, addition
P=L+M has been also partitioned into two smaller
additions.

These multiplication fragmentations may produce
operations of three new types: TriangleUp that calculates
the portion of the multiplication inside a triangle with its
right angle situated in the upper left corner part in the
figure (triangles T1 and T3), TriangleDown that computes
the portion inside a triangle with its right angle in the
bottom right (triangles T2 and T4), and Rectangle that
calculates the portion inside a rectangle. In order to
synthesize the new specifications, three new components
able to execute the new operations have been designed
and added to the module library. The schedule
synthesized by BC from the optimized specification for
latency three cycles (chaining and multi-cycle enabled) is
shown in Table II.

Table III summarizes the main features of every
implementation. All the values shown have been produced
by Synopsys Design Compiler after logic synthesis, and

include, in all cases, the routing and controller costs. The
execution time of the implementation synthesized from
the optimized specification is up to two times faster and it
is also the smallest one. Not only the partition of slower
operations reduces the cycle length, but also increases the
FU reuse among operation fragments (including the new
modules as well). These results show that the partition of
operations constitutes a great choice to solve the time-
constrained scheduling problem at virtually no additional
cost in terms of area.

3. Pre-synthesis optimization method

The proposed algorithm optimizes behavioral

specifications in order to obtain faster implementations
from conventional synthesis algorithms. This goal is
achieved by decomposing slow operations into several
smaller, and thus, faster ones, that are assigned to
different cycles. The operation types considered are
multiplications and additions. The partitions of additions
performed are quite similar to the ones proposed in [7].
These new transformations take into account the potential
HW reuse as well, in addition to the factors already
considered (circuit latency, execution time and mobility of
every operation, and data dependencies). This contributes
to reduce the circuit area while trying to minimize the
execution time. However, the great novelty of this
optimization algorithm resides in the multiplication
partitioning. Multiplications are decomposed into several
new operations of types: addition, multiplication,
TriangleUp, TriangleDown, and Rectangle. The three new
operation types have been specially defined to obtain the
maximum number of result bits of every multiplication
fragment, while needing the minimum number of operand
bits to be executed. This way, data dependencies among
the fragments of every partitioned multiplication are less
restrictive, and therefore, the searched design space
bigger.

The new algorithm comprises the following phases:
1) Cycle-length estimation. The critical path is identified
and its duration used to estimate the clock-cycle length.
2) Operation partitioning. Some of the operations in the
behavioral description are broken up in order to fulfil the
time constraint imposed in the previous phase.

 Table I. Conventional schedules of behavior in Fig. 1

 Cycle selected to execute the operation

Operation Chaining Multicycle Chaining +
Multicycle

E = A + B 1 1 1
F = C + D 1 1 2
I = E × F 1 2 2
J = G +H 3 2 2
K = I × J 3 3 3

P = L + M 2 1 1
Q = N × O 2 1 1
R = P × Q 2 2 and 3 2 and 3

Table II. Schedule obtained after optimization

 Variables calculated in every cycle
Operation Cycle 1 Cycle 2 Cycle 3
E = A + B E
F = C + D F
I = E × F I
J = G +H J
K = I × J K1 K2, K3

P = L + M P1 P2
Q = N × O Q
R = P × Q R1 R2, R4 R3, R5

Table III. Comparison of implementations

 Execution time
(ns)

Area
(equivalent gates)

Chaining 79,2 11520

Multicycle 53,1 15361

Chaining +
Multicycle 52,3 15213

Optimized
specification 36,3 11196

3.1 Cycle-length estimation

The first step to estimate the cycle length becomes the

identification of the critical path. The critical path of a
behavioral description is the path of the DFG that takes
the longest time to be executed. In the present version of
the optimization algorithm we have considered additive
and multiplicative operations, and the time needed to
execute every DFG path has been measured in number of
1-bit chained additions. The latency of one n-bit addition
has been considered equivalent to n chained additions of 1
bit, and the latency of one m×n multiplication equivalent
to m+n-2 chained additions of 1 bit.

To calculate the time consumed by one path, operations
are crossed from its output to the input. For every
operation crossed, some value is added to the latency of
the last operation (the one that produces the path output).
The value added in each case depends on the type of the
operation crossed, and its successor in the path (the one
crossed previously). Four different situations arise:
1) Addition followed by addition. The second addition
can begin its execution once the least significant bit (LSB)
of the first one is calculated. Then the execution time of
two chained additions sums one to the latency of the
second one.
2) Addition followed by multiplication. The LSB of the
multiplication can be calculated once the LSB of the
addition is available. However, because the time required
to calculate the multiplication LSB is nearly negligible
compared to the delay of 1-bit addition, we can assume
that the calculus of the LSB of both operations can be
performed in the time required to execute 1-bit addition.
The calculus of the second bit of the multiplication result
can begin once the two LSBs of the previous addition are
available, and can be executed in parallel with the third bit
of the addition. Thus, the execution time adds two to the
multiplication latency, and equals the number of bits of
the multiplication output.
3) Multiplication followed by addition. The two LSBs of
the multiplication and the LSB of the addition can be
calculated in the time required to compute 1-bit addition.
The reason is again that the time needed to calculate the
LSB of one multiplication is nearly negligible compared

to the delay of 1-bit addition. Thus, the execution time
coincides with the delay of the addition.
4) Multiplication followed by multiplication. Every result
bit of the second multiplication can be calculated once the
same bit of the previous multiplication is available. Then
two chained multiplications add one to the latency of the
second multiplication.

Once the execution time of every different path in the
DFG is calculated, the one with the biggest delay is
selected as the critical path. Its execution time is used then
to estimate the cycle length (measured in number of 1-bit
chained additions). It becomes the critical path delay
divided by the circuit latency (λ).

3.2 Operation partitioning

The execution time of some specification operations

may take longer than the clock cycle length estimated in
the previous phase. In order to meet the time constraint
imposed, they must be broken up, and their fragments
executed in different cycles. At most, the number of
partitions obtained from every specification operation
equals its latency divided by the estimated cycle length.
The algorithm always breaks up every operation to obtain
this minimum number of fragments, avoiding in this way
an excessive number of operations in the final optimized
specification. Two fragments of the same operation have
small probability to be scheduled in the same cycle.
Therefore the algorithm tries to partition operations into
fragments of similar sizes that can share the same set of
HW resources, contributing in this way to reduce the
implementation area. These fragmentations produce new
data dependencies among operations and operation
fragments. The execution of one fragment requires the
previous execution of the precedent LSB of the same
operation (to use the carry out produced as its carry in),
and also the bits used as input operands.

3.3 Multiplication partitioning

The number of partitions to be obtained from the

fragmentation of one m×n multiplication equals the
division of the multiplication latency, measured in number

Table IV. Features of the modules designed to execute the new operations

 # bits
operand 1

bits
operand 2 # result bits # adders Set of adders widths

TriangleUp
 k k k+1 k-1 { }U

k

i
i

2=

TriangleDown k k  kk log2+ k-1  { }U
1

1
2log

−

=
+

k

i
ii

Rectangle k p  pk log2+ p-1  { }U
1

1
2log

−

=
+

p

i
ik

of 1-bit chained additions (m+n-2) by the estimated cycle
length. All the partitions are obtained from the vertical
fragmentation of the calculus matrix of the multiplication,
such that the execution of every fragment produces some
bits of the multiplication output. The number of result bits
calculated by every fragment is obtained after dividing the
width of the multiplication result by the number of
partitions. If the number of partitions is a divisor of the
width of the multiplication result, then every fragment
produces the same number of bits of the multiplication
output. Otherwise, some fragments can produce one bit
more than others.

The vertical partitions are performed taking into
account the number of output bits calculated by every
fragment. These partitions do not always directly produce
smaller multiplications and additions, and, in most cases,
additional fragmentations are required to obtain new
operations. The operation types considered in these
partitions are: addition, multiplication, TriangleUp,
TriangleDown, and Rectangle. TriangleUp and
TriangleDown operations calculate the multiplication
portion inside a triangle with a right angle in the
upper/lower part of the geometric figure, and Rectangle
operations calculate the multiplication portion inside a
rectangle. These operation types have been specially
defined to avoid the excessive fragmentation that occurs
when partitioning vertically a multiplication to obtain just
new multiplications and additions. They also constitute a
regular pattern that appears in most multiplication
fragments, contributing in this way to increase the HW
reuse and, in consequence, to reduce the circuit area. In

order to take advantage of the definition of these new
operation types, it is necessary to design and add to the
module library new components able to execute them.
Table IV shows some features of these three new
modules: the number of bits of the input operands and the
result, the number of chained adders that compose the
partial results, and their widths.

There are three different partition types, depending on
their situation in the multiplication matrix: the least
significant partition (LSP), central partitions (CPs) and the
most significant partition (MSP). The set of operations
obtained from every partition type depends on the
multiplication and fragments sizes. Fig. 2 a) and 2 b)
shows the different LSPs and MSPs captured from the
vertical partition of one multiplication and the set of
operations given in each case, respectively. The
fragmentations obtained from the CPs partitions can be
calculated in a similar way. Note that, although the
operations shown in the figure are only multiplications,
TriangleUp, TriangleDown, and Rectangle, every
partition also includes a set of additions needed to sum the
partial results.

4. Experimental results

The commercial synthesis tool Synopsys Behavioral

Compiler (BC) version 2001.08 has been used to judge
the quality of the optimized specifications given by the
proposed algorithm. We have synthesized with BC every
original specification and the one optimized. The
execution time and area of the implementations

Figure 2. Fragmentations proposed for the a) LSPs, and b) MSPs of one multiplication.

m bits

p+1
-m

 bits

(p+1-n) ×
(m+n-p-1)

m × (p+1-m)

T_Up

m
+n

-p
-2

p bits

q bitsp-q bits

T_Up

p bits

q×n

p bits

T_Up

a)

b)
p bits

T_Down

m+n-p+1n-1 bits

T_Down

p bits

(m
-p)×n

p bits

T_Down

m × (n-p)

p × (m-p)

T_Up = TriangleUp T_Down = TriangleDown

m bits

p+1
-m

 bits

(p+1-n) ×
(m+n-p-1)

m × (p+1-m)

T_Up

m
+n

-p
-2

p bits

m bits

p+1
-m

 bits

(p+1-n) ×
(m+n-p-1)

m × (p+1-m)

T_Up

m
+n

-p
-2

p bits

q bitsp-q bits

T_Up

p bits

q×n

q bitsp-q bits

T_Up

p bits

q×n

p bits

T_Up

p bits

T_Up

a)

b)
p bits

T_Down

m+n-p+1

p bits

T_Down

m+n-p+1n-1 bits

T_Down

p bits

(m
-p)×n

p bits

T_Down

m × (n-p)

p × (m-p)

p bits

T_Down

m × (n-p)

p × (m-p)

T_Up = TriangleUp T_Down = TriangleDown

synthesized in both cases have been computed with
Synopsys Design Compiler (DC). The experimental work
includes the optimization and subsequent synthesis of
several classical HLS benchmarks [8], and part of a real
application.

The classical benchmarks synthesized are a fifth order
elliptical wave filter (elliptic), a differential equation
solver (diffeq), a fourth order IIR filter (iir4), and a
second order FIR filter (fir2). Table V shows the clock
cycle duration and the datapath area comparison for
several different latencies (λ). Performance has been
improved 74% on average, and reductions of the cycle
length of up to 88% have been obtained. The datapath
area has also been reduced in all cases around 14% on
average. The number of operations in the transformed
specification is around 36% larger on average.

Some modules of a real circuit description, the adaptive
differential pulse-code modulation (ADPCM) encoding
and decoding algorithms have also been synthesized. The
set of synthesized modules includes: Inverse Adaptive
Quantizer (IAQ), Tone & Transition Detector (TTD),
Output PCM Format Conversion (OPFC), and
Synchronous Coding Adjustment (SCA). OPFC and SCA
modules have been synthesized together, and IAQ and
TTD independently. The latencies used to synthesize the
original and the optimized specifications are the ones
selected by BC in the conventional schedule (via the
command schedule –io_mode free_floating). Table VI
shows the cycle length of the schedules obtained from
both specifications. The circuit performance has been
improved 66% on average. Additionally, the circuit area
has been reduced 8% on average. The number of
operations in the optimized specification has augmented
less than 1/3.

The experimental work shows that the increment in the
number of operations in the optimized specification does

not complicate the posterior synthesis process and does
not augment the design time. The reason is that most of
the new operations are born already scheduled, and the
mobility of some others has been also reduced.

5. Conclusion

The proposed pre-synthesis optimization method

improves the results obtained by regular HLS algorithms
to synthesize DFGs including multiplications and
additions. It analyzes the critical path at bit-granularity
and splits some arithmetic operations into sub-words
fragments. The fragmented multiplications are substituted
for sets of smaller operations whose types are addition,
multiplication, TriangleUp, TriangleDown, and
Rectangle. The last three types have been specially
defined to reduce the clock cycle duration while
minimizing the number of new operations split from every
fragmented multiplication. They also constitute a regular
pattern that appears in most multiplication fragments in
order to contribute to increase the HW reuse and reduce
the circuit area. The optimized specifications become the
input to any regular high-level synthesis tool to speed up
circuit-execution times without increasing the datapath
area. The experimental results carried out show that
implementations obtained from the optimized
specification are on average 70% faster and, in most
cases, substantial area reductions are also achieved.

References

[1] Z. Yu, K. Khoo, and A. Wilson, Jr. “The Use of Carry-Save

Representation in Joint Module Selection and Retiming”. In
Proc. of Design Automation Conference, DAC 2000.

[2] V. Raghunathan, S. Ravi, and G. Lakshminarayana.
“Integrating Variable-Latency Components into High-Level
Synthesis”. IEEE Transactions on Computer Aided Design,
October 2000.

[3] J. Zhu, and D.D. Gajski. “Soft Scheduling in High Level
Synthesis”. In Proc. of Design Automation Conference,
DAC 1999.

[4] S. Park, and K. Choi. “Performance-Driven High-Level
Synthesis with Bit-Level Chaining and Clock Selection”.
IEEE Transactions on Computer Aided Design, February
2001.

[5] P. Marwedel, B. Landwehr, and R. Dömer. “Built-in
Chaining: Introducing Complex Components into
Architectural Synthesis”. In Proc. of Asia Pacific Design
Automation Conference, ASPDAC 1997.

[6] M.C. Molina, J.M. Mendías, R. Hermida. “Bit-level
Scheduling of Heterogeneous Behavioural Specifications”.
In Proc. of International Conference on Computer Aided
Design, ICCAD 2002.

[7] R. Ruiz-Sautua, M.C. Molina, J.M. Mendías, R. Hermida.
“Behavioural Transfromation to Improve Circuit
Performance in High-Level Synthesis”. In Proc. of Design
Automation and Test in Europe, DATE 2005.

[8] N. Dutt, “High-level Synthesis Workshop Benchmarks”.
Univ. California, Irvine, CA, Technical Report, 1992.

Table V. Synthesis of some classical HLS benchmarks

 Cycle duration (nanoseconds)
 λ Original Optimized Saved

Area
reduction

11 51.59 9.52 81.54 % 11.51 %
6 60.45 18.03 70.17 % 9.7 %

ell
ip

tic

4 68.2 19.4 71.55 % 5.25 %
6 94.45 33.56 64.46 % 14.85 %
5 97.56 42.2 56.74 % 19.43 %

di
ffe

q

4 101.34 46.43 54.18 % 8.71 %
6 93.6 11.23 88 % 21.08 %

iir
4

5 93.6 16.34 82.54 % 13.25 %
5 94.57 11.9 87.41 % 17.52%

fir
2

3 94.57 17.31 81.69 % 22.24%

Table VI. Synthesis of some modules of ADPCM decoder

Cycle duration (nanoseconds) Module λ Original Optimized Saved
Area

saved
IAQ 3 6.96 2.5 64.08 4.71 %
TTD 5 9.28 3.68 60.34 10.52 %

OPFC + 12 9.39 2.42 74.22 9.18 %

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

