
Efficient Minimization of Fully Testable 2-SPP Networks

Anna Bernasconi Valentina Ciriani
Department of Computer Science Department of Information Technologies
University of Pisa, Italy University of Milano, Italy
annab@di.unipi.it ciriani@dti.unimi.it

Rolf Drechsler Tiziano Villa
Institute of Computer Science DIEGM
University of Bremen, Germany University of Udine, Italy
drechsle@informatik.uni-bremen.de villa@uniud.it

Abstract

The paper presents a heuristic algorithm for the mini-

mization of 2-SPP networks, i.e., three-level EXOR-AND-

OR forms with EXOR gates restricted to fan-in 2. Previous

works had presented exact algorithms for the minimization

of unrestricted SPP networks and of 2-SPP networks. The

exact minimization procedures were formulated as cover-

ing problems as in the minimization of SOP forms and had

worst-case exponential complexity. Extending the expand-

irredundant-reduce paradigm of the ESPRESSO heuristic,
we propose a minimization algorithm for 2-SPP networks

that iterates local minimization and reshape of a solution

until further improvement. We introduce also the notion of

EXOR-irredundant to prove that OR-AND-EXOR irredun-

dant networks are fully testable and guarantee that our al-

gorithm yields OR-AND-EXOR irredundant solutions. We

report a large set of experiments showing impressive high-

quality results with affordable run times, handling also ex-

amples whose exact solutions could not be computed.

1. Introduction

Mainstream logic synthesis concentrates on two ex-
tremes: two-level logic and unrestricted multi-level logic.
The former has been studied in great depth both from
the theoretical and practical viewpoint, resulting in ex-
act and heuristic automatic minimizers of industrial qual-
ity, such as ESPRESSO [2]. For the latter we do not have yet
a complete exact characterization, but a robust theory of al-
gebraic and Boolean division triggered the development of
efficient heuristic tools, such as SIS [13].
In-between there are interesting restricted forms of

multi-level logic, of which three-level logic attracted the at-
tention of many researchers, as surveyed in [4]. Here we

continue the investigation of three-level EXOR-AND-OR
forms, introduced in [9, 4]. They are a direct generalization
of AND-OR forms, obtained generalizing cubes to pseu-
docubes where literals in cubes may be replaced by EXOR
factors in pseudocubes. Pseudocubes have been shown
in [4] to correspond to affine spaces over the Boolean vec-
tor space , . The repeated union of pseu-
docubes yields prime pseudocubes, an extension of primes
for SOP; once prime pseudocubes are computed, exact min-
imization of EXOR-AND-OR forms is reduced to the so-
lution of a covering table, as in case of SOP forms. To be
technologically feasible, EXOR-AND-OR forms are re-
stricted to EXOR factors with at most literals. In this pa-
per we will discuss only forms with , called 2-SPP
forms [5].

Although exact methods for SPP minimization perform
well on many examples [4, 5], they are not affordable for
all industrial benchmarks, therefore we must give up ex-
act minimization for heuristic one, mirroring what has been
done for SOP minimization [11, 2]. In SOP heuristic min-
imization the solution of the covering table is replaced by
the iteration of a sequence of EXPAND, IRREDUNDANT
COVER, REDUCE operations: EXPAND replaces each im-
plicant in the cover with a largest prime containing it and
eventually other cubes of the cover (or parts of them); IR-
REDUNDANT COVER removes a maximal set of redun-
dant implicants; REDUCE replaces each prime implicant
by a smallest implicant that covers all the relatively essen-
tial vertices of the prime implicant (the vertices not con-
tained in any other cube of the given representation). These
operations are performed heuristically, i.e., the order of ex-
panding and reducing implicants matters with respect to the
final quality. The REDUCE operation is an uphill move
which adds literals and enables the optimization process

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



to climb out of a local minimum and move closer to the
global minimum during the next EXPAND and IRREDUN-
DANT steps. Both the EXPAND and IRREDUNDANT op-
erations remove literals or cubes. Iterating the ESPRESSO
loop on a given representation yields a final representation
that satisfies primality and irredundancy and whose cost is
at a local minimum. ESPRESSO guarantees also that the fi-
nal cover is fully testable. This is easy for single-output
functions for which a prime and irredundant cover is fully
testable for all single stuck-at faults. For multi-output func-
tions the result is obtained by applying an iterative pro-
cedure, MAKE SPARSE, that makes each output function
prime and irredundant separately.
In this paper we present a heuristic minimization pro-

cedure for 2-SPP forms based on the iteration of a suite
of operations that generalize the expansion-irredundant-
reduction cycle of heuristic SOP minimization. In particu-
lar we introduce the operations MERGE, EXOR-EXPAND
that are specific to the 2-SPP forms and then we describe the
iterative loop to improve the solution. The proposed pro-
cedure has been implemented with good results on indus-
trial benchmarks, enabling us to minimize 2-SPP forms for
which we cannot afford to compute an exact solution.
Beside synthesis, testability is a major aspect of the de-

sign process. In this paper the testability of the -SPP forms
derived from our heuristics is studied from a theoretical
point of view under the Stuck-At Fault Model (SAFM).
In [6] is shown that a 2-SPP network minimal with re-
spect to the number of literals is fully testable under the
SAFM. The proof of full testability presented in [6] ex-
ploits the properties of a minimal network (i.e., primality,
irredundancy and minimality w.r.t. the number of literals),
where minimal means that it is a 2-SPP network represent-
ing the function with the minimum number of literals (and
there may be more than one with such minimum number
of literals). In this paper we prove that primality and min-
imality are not necessary for guaranteeing full testability.
Indeed weaker properties are sufficient for obtaining fully
testable 2-SPP networks. Therefore we introduce the notion
of AND-irredundancy and EXOR-irredundancy to prove
that our heuristic algorithm yields fully testable solutions
although we cannot guarantee their minimality.

2. Preliminaries

Stuck-at Fault Model (SAFM) Let be any combinational
logic circuit over a fixed library. A fault in the SAFM [3]
causes exactly one input or output pin of a node in to
have a fixed constant value (0 or 1) independently of the val-
ues applied to the primary inputs of the circuit. In the fol-
lowing we simply speak of stuck-at- (s-a- ) and stuck-at-
(s-a- ) faults.

The construction of complete test sets requires the de-
termination of the faults which are not testable (= redun-
dant), even though it is easy to see that in general the detec-
tion of redundancies is coNP-complete. Redundancies have
further unpleasant properties: they may invalidate tests for
testable faults and often correspond to locations of the cir-
cuit where area is wasted [3]. For this, synthesis procedures
which result in non-redundant circuits are desirable.
A node in is called fully testable, if there does not

exist a redundant fault with fault location . If all nodes in
are fully testable, then is fully testable.

2-SPP Networks In this paragraph we recall some basic
definition from [4, 5]. In a Boolean space described
by variables , , , , a -EXOR factor is an EXOR
with at most variables, one of which possibly comple-
mented (an EXOR with just one literal corresponds to the
literal itself). Given two Boolean variables , all the
possible -EXOR factors are essentially , , , ,

and (in fact, ,
and ).
A -pseudoproduct is a product of -EXOR factors;

and a -SPP form is a sum of -pseudoproducts. A -
pseudoproduct of a Boolean function is prime iff no
other -pseudoproduct of exists such that .
Observe that, unlike products, is not always obtained
from by deleting one or more factors (for more de-
tails see [9, 4]). For example, the 2-pseudoproduct

is contained, among others, not
only in , but also in
and .
A set of points whose characteristic function can be rep-

resented as a -pseudoproduct is a -pseudocube. This is a
generalization of the concept of cubes. A SOP form is a par-
ticular -SPP form where each EXOR factor contains only
one literal. In the space the number of different -
EXOR factors with exactly literals is .
Thus in the worst case, -SPP forms require a quadratic
number of different -EXOR gates. The -SPP synthe-
sis problem can be stated as: given a set of points in the
Boolean space , find its minimal cover composed of

-pseudocubes, where a minimal cover is represented by a
sum of -pseudoproducts with the minimum number of lit-
erals or with the minimum number of -pseudoproducts.

Remark 1 In [7] the authors consider a 2-input EXOR
gate as . Thus the cost in literals of a 2-

input EXOR gate is 4, when it is introduced for the first time

in the network, while the cost of new 2-input AND and OR

gates is 2. This is also proportional to the number of tran-

sistors used for the CMOS technology mapping. An EXOR,

AND or OR gate that is already used in the network has no

cost. Each factor of each product costs 1, and each prod-

uct of the cover costs 1.



x3

x4

00

01

11

10

 00  01  11  10

11 0

0

0 00

0

0

1 0 1 0

0

x1 x2

x3 x4

x1

x4

x3

0

1

x1

x2

Figure 1. Karnaugh map of function with a 2-
SPP cover , and the cor-
responding 2-SPP circuit representation.

For example consider the function represented by the
Karnaugh map in Figure 1, the following 2-SPP cover is
a minimal expression with respect to -pseudoproducts:

. The 2-SPP circuit represen-
tation is on the right side of the figure. On the other hand,
a 2-SPP form minimal with respect to the number of liter-
als is . Finally, a minimal SOP form
of such function is . In [5] a -
SPP minimization algorithm is proposed. A minimal -SPP
form is generated by choosing a minimal subset of prime
-pseudoproducts that covers the original function.

3. 2-SPP Fully Testable Networks

A 2-SPP network minimal with respect to the number
of literals is fully testable under the SAFM [6]. The proof
of full testability presented in [6] exploits three proper-
ties of the network: primality, irredundancy and minimal-
ity w.r.t. the number of literals. In this section we prove that
primality and minimality are not necessary for guaranteeing
full testability. Indeed weaker properties are sufficient for
obtaining fully testable 2-SPP networks. Since minimality
is no longer necessary, we can then design testing-oriented
heuristics. Let be a Boolean function. A 2-pseudoproduct
in is AND-irredundant if deleting any factor from it, the
resulting 2-pseudoproduct is no longer contained in . A 2-
SPP cover for is AND-irredundant iff it is composed by
AND-irredundant 2-pseudoproducts.
Note that when a 2-pseudoproduct is indeed a product,

this definition coincides with the notion of primality for
products. As already pointed out in Section 2, the primal-
ity of 2-pseudoproducts is a stronger property than AND-
irredundancy. As for SOP forms, a 2-SPP form is irredun-
dant if deleting any 2-pseudocube from the expression, the
function changes. For SOP forms primality and irredun-
dancy are sufficient for proving the full testability of the ex-
pressions under the SAFM. We will show that the full testa-
bility of 2-SPP forms is guaranteed by AND-irredundancy,
irredundancy and the following additional property.

Definition 1 Let be a Boolean function and be a 2-

SPP covering for . The cover is EXOR-irredundant if
we have

and and and

where and are literals, is a 2-pseudoproduct, and

is the function representing the cover .

We can observe that the AND-irredundancy guarantees
that the deletion of a factor in any 2-pseudoproduct changes
the function, as well as irredundancy guarantees that the
deletion of any 2-pseudoproduct changes the function. In
an analogous way, the EXOR-irredundancy guarantees that
the deletion of any literal in an EXOR factor changes the
function: e.g., suppose on the contrary that

and , then
can be replaced by ,

i.e., literal can deleted without changing the function.
An irredundant, AND-irredundant and EXOR irredun-

dant 2-SPP form is called OR-AND-EXOR-irredundant. Fi-
nally we have the following results (see [1] for the proofs):

Theorem 1 OR-AND-EXOR-irredundant 2-SPP forms are
fully testable.

Theorem 2 2-SPP forms minimal w.r.t. the number of liter-
als are OR-AND-EXOR irredundant.

4. 2-SPP Heuristics

The major problem with 2-SPP forms is the huge min-
imization time required for their exact synthesis (see Sec-
tion 5). To overcome this problem, in this section we de-
scribe a heuristic algorithm for the synthesis of OR-AND-
EXOR-irredundant 2-SPP forms. In this way we sacrifice
the minimality of the forms to obtain reduced synthesis
time, but experiments show that the overhead is very small,
and theoretical results show that we still obtain fully testable
networks. The basic operations used by our minimization
algorithm are direct generalizations of classical two-level
heuristic minimization (see [2, 8, 12]). Our basic operations
are listed below. While some are straightforward general-
izations from previous approaches, the new operators are
described in detail in the following sections.

MERGE replaces two adjacent 2-pseudoproducts, con-
tained in the cover, by their union.

EXPAND tries to remove each literal of a 2-
pseudoproduct in order to obtain a smaller cover
of the function.

EXOR-EXPAND tries to remove each EXOR fac-
tor of a 2-pseudoproduct in
order to obtain a smaller cover of the function. Oth-
erwise it tries to replace with , ,



, or . Observe that the cover obtained with EX-
PAND and EXOR-EXPAND is EXOR-irredundant
and AND-irredundant but not necessarily prime.

IRREDUNDANT deletes redundant 2-pseudoproducts
from a given cover. This operation guarantees the irre-
dundancy of the cover.

REDUCE takes a 2-pseudoproduct and reduces the set
it represents by adding some literal to .

It is easy to see that the EXPAND and EXOR-EXPAND
operations guarantee the AND-irredundancy of the ob-
tained expression, while IRREDUNDANT guarantees
the irredundancy. We will later explicitly show that the
EXOR-EXPAND operation also guarantees the EXOR-
irredundancy.

4.1. MERGE

MERGE intuitively replaces two adjacent 2-
pseudoproducts of the same cover by their union. To
implement MERGE we need the notion of adjacency of
2-pseudoproducts.We first recall some definitions.
The structure of a 2-pseudoproduct is the 2-

pseudoproduct without complementation. Given a 2-
pseudoproduct we call literal part of the product of
single literals in it, while the EXOR part is the remain-
ing product of 2-EXORs. For example the structure of the
2-pseudoproduct is

, its literal part is
and its EXOR part is .

Definition 2 Two 2-pseudoproducts with the same struc-
ture are adjacent (1) if their EXOR parts are identical, or
(2) if their literal parts are identical and the EXOR parts

differ in complementation only on some EXOR factors all

having a variable in common.

Example 1 Consider the following 2-pseudoproducts hav-
ing the same structure:

The 2-pseudoproducts and are adjacent since they

have the same EXOR part; and are adjacent since

they have the same literal part and differ in the EXOR parts

only on EXORs having in common the variable ; and

are not adjacent since they differ in EXORs without a

common variable.

We can always merge two adjacent 2-pseudoproducts
and as follows:

Case 1: and differ in their literal parts. Let
be the variable with the lowest index that has differ-
ent complementation in and , and let be the 2-
pseudoproduct where is complemented. The union
of and is obtained from by deleting , and sub-
stituting each literal , having different complementa-
tion in and , with .

Case 2: and differ in their EXOR parts. Let be
the common variable in the EXOR factors with differ-
ent complementation, and let , , be the vari-
able with the lowest index in these EXOR factors. Let
be the 2-pseudoproduct where is comple-
mented. The union of and is obtained from by
deleting , and substituting each EXOR fac-
tor , having different complementation in
and , with .

For example consider the 2-pseudoproducts of Example 1.
The union of and is given by

The union of and is
Observe that in the first

case the union has less factors, but its EXOR part increases,
while in the second case some EXOR factors change, but
their number decreases.
Since in many technologies EXOR gates are expensive,

the union is not always convenient. By counting the number
of literals as explained in Remark 1, we can state:

Theorem 3 Let be a 2-SPP cover for a function , let

and be two adjacent 2-pseudoproducts in , and let be

their union. The cost of the cover is

less than the cost of if

1. if and differ on their literal

part (case 1);
2. if and differ on their

EXOR part (case 2);

where

denotes the number of factors in , or ,

is the number of new EXORs in the union of and

introduced for the first time in the network, and

is the number of EXOR factors in and , which are

not factors of the union of and and of any other

pseudoproduct in the network.

Our heuristic algorithm performs the union only when
it is convenient according to the previous considerations. It
is important to notice that the choice of not merging two
2-pseudoproducts does not change the testability of the ob-
tained network.

4.2. EXOR-EXPAND

The operation EXOR-EXPAND tries to remove each
EXOR factor of a 2-pseudoproduct
in order to obtain an AND-irredundant (and smaller) cover



of the function. If an EXOR factor can not be
removed without changing the function, EXOR-EXPAND
tries to replace with , , , or
in order to guarantee the EXOR-irredundancy of the 2-
pseudoproduct. Note that EXOR-EXPAND does not sub-
sume the EXPAND operation. For example, consider the
2-SPP cover of the func-
tion in Figure 1. Since we cannot remove
from the 2-pseudoproduct without chang-
ing the function, we try to replace it with , , , or .
Observe that we can replace with
without changing the function. The resulting 2-SPP form

is now EXOR-irredundant. In gen-
eral, if cannot be changed with , , , or
, without changing the function, it means that

is EXOR-irredundant, as stated in in the following

Proposition 1 After the application of EXOR-EXPAND the
resulting 2-SPP is EXOR-irredundant.

4.3. Heuristic Algorithm

We now present a simple heuristic algorithm based
on the previous operators. The input to the algorithm
is a cover of the function. The loop consists of succes-
sive calls to MERGE, EXPAND, EXOR-EXPAND and IR-
REDUNDANT. The cost is measured after the cover
is made irredundant. A new cycle tries to further min-
imize the cover calling first the REDUCE operator
in order to escape from a local minimum. The over-
all structure of our heuristic algorithm is shown in Fig-
ure 2. Observe that the successive calls to the operators
MERGE, EXPAND, EXOR-EXPAND and IRREDUN-
DANT guarantee the EXOR-AND-OR-irredundancy of
the resulting cover. Therefore, by Theorem 1, we can con-
clude that the 2-SPP forms minimized with our heuristics
are fully testable.
Finally, note that the cycle EXPAND, EXOR-EXPAND

and IRREDUNDANT is sufficient for the synthesis of 2-
SPP networks. The MERGE operator is a useful local op-
timization to replace pair of adjacent 2-pseudoproducts in
the cover with their more cost-advantageous union.We have
implemented the heuristic algorithm, and the experimental
results are shown in the next section.

5. Experimental Results

In this section experimental results for the 2-SPP syn-
thesis heuristics are reported. The methods described
above have been implemented in C, using the CUDD li-
brary for BDDs and ZDDs [10]. In particular, we have
used BDDs to represent Boolean functions and per-
form the Boolean operations required by the EXPAND,
EXOR-EXPAND and IRREDUNDANT procedures. We

C = input cover;
C = MERGE(C);
C = EXPAND(C);
C = EXOR-EXPAND(C);
C = IRREDUNDANT(C);
do

= cost of C;
C = REDUCE(C);
C = MERGE(C);
C = EXPAND(C);
C = EXOR-EXPAND(C);
C = IRREDUNDANT(C);
= cost of C;

while ( );

Figure 2. Heuristic Algorithm for 2-SPP minimiza-
tion

have used ZDDs to represent 2-SPP covers. The exper-
iments have been run on a Pentium III MHz CPU
with MByte of main memory. The input benchmarks
are PLAs taken from LGSynth93 [14]. We have com-
pared the performances of our heuristics with those of the
exact algorithms for 2-SPP and SOP synthesis. The ex-
act 2-SPP forms have been optimized using the tools
described in [5], while the SOP forms have been de-
rived using ESPRESSO EXACT. The comparison of syn-
thesis times and network costs are shown in Table 1.
The cost is measured according to the CMOS metric de-
scribed in Remark 1. As expected, the cost of our heuris-
tic solution is still smaller than the SOP costs, but larger
than the cost of the optimal exact 2-SPP forms. How-
ever the synthesis time is widely reduced with respect to the
exact 2-SPP minimization time on average. We have no-
ticed that the synthesis time of the heuristic algorithm
is larger than the exact synthesis time only for func-
tions easy to minimize in the 2-SPP framework.
Our main experimental result consists in the synthesis of

new difficult benchmarks in 2-SPP form. This is shown in
Table 2, where we compare area, delay and synthesis time
of 2-SPP and SOP forms for some benchmarks whose ex-
act 2-SPP form is not known. To this aim we have run our
experiments using the SIS system with the MCNC library
for technology mapping. Note how areas and delays of the
2-SPP networks are always smaller than those of the corre-
sponding SOP networks, with the exception of al2 for the
delay. From the last row of Table 2 we can observe that the
total area of the 2-SPP circuits is about one half of the total
area of the SOP forms. On the other hand, since two-level
minimization is easier than multilevel synthesis the com-
putational time for the synthesis of SOP forms is much less
than the one for the synthesis of 2-SPP forms. To save space
we only report costs in Table 1 and mapped areas in Table 2,
as reliable indicators of our experiments.
We have finally conducted a testability analysis, under



2-SPP Exact 2-SPP Exact SOP
Name Cost Time Cost Time Cost Time
9sym 471 29.50 168 93.97 588 3.29
addm4 1126 138.90 694 2928.53 1407 0.02
adr4 174 15.74 105 14.88 415 0.06
clip 651 51.28 402 745.73 769 0.21
dist 749 40.31 471 688.87 879 0.08
f51m 304 30.75 232 26.86 402 0.13
life 293 33.64 180 166.61 756 0.02
m4 1087 81.04 735 561.56 1214 0.39

max512 987 133.70 620 1242.45 1032 0.30
mlp4 665 42.62 500 211.98 869 0.95

newcond 186 18.77 161 520.99 239 0.01
radd 192 7.39 105 17.95 415 0.03
rd53 72 0.50 64 0.10 175 0.01
rd73 272 7.03 212 23.36 903 0.02
root 370 26.47 281 156.05 376 0.05

squar5 106 0.68 101 0.23 120 0.01
xor5 24 0.29 24 0.05 96 0.01
z4 109 4.02 91 2.80 311 0.02

Total 7838 662.63 5146 7402.97 10966 5.61

Table 1. Synthesis times and network costs of 2-
SPP, exact 2-SPP and exact SOP forms

the SAFM, of the 2-SPP networks obtainedwith our heuris-
tic, using SIS [13]. As already predicted by our theoretical
results, the synthesized 2-SPP networks have no redundan-
cies.

6. Conclusions

We presented a heuristic minimization procedure for 2-
SPP forms based on the iteration of a suite of operations
that generalize to 2-SPP forms the expansion-irredundant-
reduction cycle of heuristic SOP minimization, generating
by construction a cover that is fully testable for single stuck-
at faults. Future work includes addition of new techniques to
escape from local mimina, an extension to multiple-output
functions, and the investigation of multi-fault testability.
Acknowledgments We are in debt to our studentMarco Bor-
digoni who implemented the heuristic algorithm and carried
out the experiments.

References

[1] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa. Effi-
cient Minimization of Fully Testable 2-SPP Networks. Tech-
nical Report TR-05-23, University of Pisa, 2005.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Syn-
thesis. Kluwer Academic Publishers, 1984.

[3] M. Breuer and A. Friedman. Diagnosis & Reliable Design
of Digital Systems. Computer Science Press, 1976.

[4] V. Ciriani. Synthesis of SPP Three-Level Logic Net-
works using Affine Spaces. IEEE Transactions on TCAD,
22(10):1310–1323, 2003.

2-SPP SOP
Name Area Delay Time Area Delay Time
al2 252 15.3 347.03 340 15.1 14.34
alu2 169 16.1 30.75 176 16.4 0.15
alu3 155 13.3 30.87 187 16.8 0.16
apla 289 17.7 69.09 299 24.5 0.07

bench1 1337 46.2 150.47 1670* 55.6* 0.33*
dk17 140 15.2 44.27 204 18.3 0.04
dk27 48 12.3 10.68 79 12.7 0.03

max1024 1052 39.1 478.60 1690* 53.7* 1.32*
p3 266 22.1 18.83 447 26.7 0.16

prom1 9671 160.0 874.35 19828 399.6 81.67
tial 2294 64.3 1677.19 2376 68.7 14.42
Total 15673 421.6 3732.13 27296 708.1 112.69

Table 2. Area, delay and synthesis time of 2-SPP
and SOP forms for benchmarks whose exact 2-
SPP form is not known. (A star indicates that the
SOP form has been derived with ESPRESSO instead
of ESPRESSO EXACT.)

[5] V. Ciriani and A. Bernasconi. 2-SPP: a Practical Trade-Off
between SP and SPP Synthesis. In 5th International Work-
shop on Boolean Problems (IWSBP2002), pages 133–140,
2002.

[6] V. Ciriani, A. Bernasconi, and R. Drechsler. Testability of
SPP Three-Level Logic Networks. In IFIP 12-th Interna-
tional Conference on Very Large Scale Integration, (VLSI-

SOC), pages 331–336, 2003.
[7] G. Hachtel and F. Somenzi. Logic Synthesis and Verification
Algorithms. Kluwer Academy Publishers, 1996.

[8] T. Kozlowski, E. L. Dagless, and J. M. Saul. An Enhanced
Algorithm for the Minimization of Exclusive-Or Sum-Of-
Products for Incompletely Specified Functions. In The Pro-
ceedings of the International Conference on Computer De-

sign, pages 244–249, 1995.
[9] F. Luccio and L. Pagli. On a New Boolean Function with
Applications. IEEE Transactions on Computers, 48(3):296–
310, 1999.

[10] S. Minato. Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems. In ACM/IEEE 30th Design Au-
tomation Conference (DAC), pages 272–277, 1993.

[11] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued
minimization for PLA optimization. IEEE Transactions on
Computer-Aided Design, CAD-6:727–750, Sept. 1987.

[12] T. Sasao. EXMIN2: A Simplification Algorithm for
Exclusive-OR-Sum-of Products Expressions for Multiple-
Valued-Input Two-Valued-Output Functions. IEEE Trans-
actions on Computer-Aided Design, 12:621–632, 1993.

[13] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A System for Sequential
Circuit Synthesis. Technical report, University of Berkeley,
1992.

[14] S. Yang. Synthesis on Optimization Benchmarks. User
guide, Microelectronic Center, 1991.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



