
Proven correct monitors from PSL specifications

Katell Morin-Allory, Dominique Borrione
Tima Laboratory, 46 avenue Félix Viallet 38031 Grenoble Cedex, France

katell.morin@imag.fr, dominique.borrione@imag.fr

Abstract

We developed an original method to synthesize monitors
from declarative specifications written in the PSL standard.
Monitors observe sequences of values on their input signals,
and check their conformance to a specified temporal expres-
sion. Our method implements both the weak and strong
versions of PSL FL operators, and has been proven cor-
rect using the PVS theorem prover. This paper discusses the
salient aspects of the proof of our prototype implementation
for on-line design verification

1. Introduction
The design of VLSI Systems on a Chip increasingly

involves the use and interconnection of large pre-existing
components that are provided and validated by separate
groups of engineers. In this context, assertion-based de-
sign [10] can be viewed as a unifying methodology across
design teams and design description levels [12].

Assertions state functional and temporal properties about
a component’s interface elements and/or state variables.
Written in declarative form, they can be adapted to the syn-
tax of various design description languages without any im-
pact on their semantics (this is the approch taken by Accel-
era with PSL) [3]. The advantage is that asserted properties
can be carried along the design steps, and serve a wide range
of usages: specify the constaints for correctly using an IP,
specify the result delivered by an IP, specify the expected
correct behavior from the design at hand, generate and con-
trol test data, etc.

As a design property that is declared to be true, an as-
sertion can be evaluated by one or more techniques among
simulation, emulation or formal verification. An assertion
can also be seen as a high level functional specification for
a circuit primarily intended for snooping on events over
time. Whether intended for design validation or for on-
line embedded testing, a common technique can be applied:
synthesize from the assertion a property monitor under the
form of a RTL sequential circuit, and interconnect the de-
sign and the monitor via the monitored variables. This pa-
per describes our method for providing efficient and proven
correct property monitors for a formally defined yet user-
understandable assertion language.

Our mechanism applies to a subset of PSL very close to
what is referred to as its ”simple subset” [3]. Intuitively,

we only accept properties that can be evaluated “on the fly”
by fixed size monitors during simulation or execution. A
formal characterization of the largest PSL subset that sat-
isfies this constraint still remains to be done. We initially
selected this language for its clean and formal trace seman-
tics. The method is based on a library of primitive digital
components, and a technique to interconnect them. The re-
sulting digital module can be properly connected to the sig-
nals of interest in the system under scrutiny, it runs concur-
rently with it, and notifies its environment when the prop-
erty checking is terminated with a value true or false, or
whether the property is still being evaluated. Both the weak
and strong version of the PSL operators are covered. This
paper discusses how we proved the correctness of monitors.
To the knowledge of the authors, the implementation and
the proof of a solution for the strong version of the PSL
operators has not been published before.
Related works PSL originates from the Sugar input lan-
guage to the RuleBase [6] symbolic model checker from
IBM. M. Gordon played an essential role in the validation of
the semantic definition. He performed a ”deep embedding”
of PSL in the HOL proof assistant, and used this mecha-
nized system to demonstrate theorems about the semantics,
and derive correct-by-construction mathematical observers
for PSL properties [11]. Building on this seminal work,
Türk translated a small unclocked subset of PSL FL ex-
pressions to LTL, still using HOL [15]; the interest of this
work is only theoretical, as the resulting automata suffer
from combinational explosion. Claessen and Martensson
proposed an operational semantic definition guided by the
structure of the PSL formula [8]; they exhibited some incon-
sistencies in the interpretation of a special class of regular
expressions, and their work was useful for understanding.
The published work only covered weak operators.

In automata-theoretic approaches, the transformation of
PSL assertions to automata is exponential in the number
of operators. Hardware design approachs are more usable
in practice, as they construct a sequential machine whose
memories encode rather than enumerate its reachable states.
Using IBM’s FoCs [2] triggered our interest in the gener-
ation of monitors. From a PSL assertion, FoCs produces
a source HDL process that acts as an internal monitor to
the design under verification (DUV); the presence of error
reporting statements makes FoCs output better fit for ver-
ification than for emulation and synthesis. Safelogic Ver-
ifier (now part of JasperGold) was another formal verifi-

1

3-9810801-0-6/DATE06 © 2006 EDAA

cation tool taking a large subset of PSL as input. In both
cases, weak operators only are recognized, and the formal
method underlying the model extraction from PSL was not
published.

Many more products are publicized to support PSL for
model checking, simulation waveform generation, emula-
tion and debug; many plug-in products add assertion sup-
port to pre-existing verification tools (see [1,5,9] for a list).
To our knowledge, in most tools, the coverage of PSL prim-
itives is very restricted, and the majority of companies ad-
vertize no formal guarantee that the PSL semantics are cor-
rectly supported. In contrast, this paper discloses a proven
correct technology.

2. Principles of the FL Monitors Construction
In the PSL terminology, a property satisfaction level, on

a finite execution path, may be one of:

• Holds strongly: No bad states have been seen. All fu-
ture obligations have been met. The property will hold
on any extension of the path

• Holds (but does not hold strongly): Same as above
except that the property may or may not hold on any
given extension of the path

• Pending: No bad states have been seen. Future obliga-
tions have not been met. The property may or may not
hold on any given extension of the path

• Fail: A bad state has been seen. The property will not
hold on any extension of the path.

The main temporal operators of the ”foundation lan-
guage” (FL operators) have a strong and weak version. Intu-
itively, a property built on weak operators that is still pend-
ing at the end of a finite trace is considered satisfied. Con-
versely a terminating condition should have happened be-
fore the end of the trace (the property should at least hold)
for strong operators.

The monitors we build reflect these definitions. When
implemented in hardware, the monitor outputs display the
property satisfaction level, and the indication that the an-
swer is no longer pending may be used as an interrupt to
trigger further actions. For technical reasons, the validity
result is latched, and thus available on the output one clock
cycle after is it known. This small delay is acceptable for all
practical purposes. Note that a property satisfaction is not
binary, and the negation of a strong operator is weak. Con-
sequently, FL expressions may not be negated or “ored” in
our subset (but they may be “anded”).

A monitor for a property P is built as a module that takes
as inputs the reset, the synchronization signals (clock, hand-
shake, etc.), a signal Start that triggers the evaluation, and
the signals of the DUV that are operands of the FL operators
in P (see Figure 4). The three monitor outputs have the
following significance:

• Checking : a 1 indicates that output Valid is effective
at the next synchronization time;

• Valid : provides the evaluation result (1 means absence
of error, 0 means error);

• Pending : a 1 indicates that the monitor has been
started and that the satisfaction result is pending; this
is significant for strong operators.

Start

Reset

Clk

Operands

Checking

Valid

Pending

Figure 1. Interface of a monitor

The ”weak” version of the PSL operators are a simplified
subcase of the ”strong” version, so we shall only discuss
the construction and the proof of monitors for the strong
operators. In the following, we use the VHDL flavor of
PSL, but the principles apply to other syntax as well. In the
text and the figures, 0 and 1 are used both for bits ’0’ and
’1’, and for Booleans False and True.

Example 1 Assume we are interested in the behavior of
signals A, B, C in a design synchronized by the rising
edges of its master clock Clk . We want to observe that sig-
nals A, B, C satisfy property P , expressed as:

Property P is always (A -> next![2] (B before! C))
@ rising_edge(clk);

P is an invariant, which states that whenever A is 1,
starting from two cycles later, it must be the case that B
takes the value 1 before C takes the value 1.

outputs
monitor

Checking
Valid

Start

0 1 2 3 4 5 6 7 8 9

holds

A

B

C

0 1 2 4 6 7 83 5

B

C

A

Start

Valid
Checking

Fails outputs
monitor

Pending

Pending

Figure 2. Waveforms for signals A, B, C

Figure 2 gives two possible sequences of values observed
on signals A, B, C. The vertical dotted lines represent the
successive rising edges of Clk , which have been numbered
for the purpose of this explanation. Start , Checking , Valid

2

reset_n

start

expr valid

reset_n

start

expr valid

cond

reset_n

start

expr

reset_n

start

expr valid

cond

checking checking checking checking

reset_n
Init_cycle

reset−n

clk

ImplAlways

gen_init

valid

Next! Before!

Pending

Valid

Checking

B
CA

clk clk clk clk

clk

pending pending

Start

∨

Figure 3. Property monitor for P

and Pending are the input-outputs of the monitor for P , as
explained above.

Top waveform: At Clk edge �1, A takes value 1, and re-
mains 1 until edge �6. Thus, property P holds (on the finite
trace ending edge �8) if starting from edge �3, B eventu-
ally holds and takes value 1 before C. P fails at edge �5.
According to the design of our monitors, output Checking
takes value 1 at this same edge, and the value of output
Valid is significant one cycle later.

Bottom waveform: At Clk edge �2, A takes value 1, and
remains 1 for one clock cycle. Thus, P holds if starting at
Clk edge �4, B eventually holds and takes value 1 before C.
On the waveform, P holds at Clk edge �6, and the outputs
Valid and Pending take the values 1 and 0, meaning that
the property holds. Note that if the waveform had stopped at
Clk edge �5, Pending would still have been 1, and property
P would not have hold on the trace, in accordance to the fact
that the first operand of before! would have remained 0.

Figure 3 shows the monitor for P . The overall moni-
tor takes as inputs the master Clk and Reset n signals, and
the observed signals A, B, C. It is built as the structural
interconnection of primitive monitors, one for each tempo-
ral operator in property P : always, impl (for ’→’), next!,
before!. An additional primitive module called gen init
starts the global monitoring process.

Structure of a primitive monitor One primitive monitor
has been hand crafted for each FL operator of PSL. Opera-
tors that take one or two integer parameters, such as next or
next a, have corresponding generic monitors with the same
parameters. All primitive monitors share a common basic
structure, in which two main blocks can be identified.
• The Checking Window Block generates the tempo-

ral window for the evaluation of the operands, and
sets output Pending and an internal Check en signal
based on the evaluation requirement (Start input sig-
nal) and the semantics of the operator. A shift register
is included for the operators that allow an overlap of
evaluation windows.

• The Evaluation Block checks the operands when
Check en is 1, and output Valid represents the result.
When Check en is 0, execution is stopped, and output
Valid stays in its default value 1. When reset is active,
the monitor stays in its reset state.

Construction of complex monitors by interconnection of
primitive components For complex properties, primitive
single operator monitors are interconnected to construct a
complex monitor. The method is based on the syntax tree
of the property, where a node represents a PSL operator, a
leaf represents a basic operand (signal or constant value),
the edges connect an operator with its operands. Some op-
erators have two operands, some have only one.

• Operators: For each node in the tree structure of a
property, a corresponding operator monitor is needed.

• Operands of Boolean and Temporal operators: The re-
sult of a simple Boolean expression (not a, a or b,. . .)
is directly connected to the corresponding operand in-
put of the operator monitor. If the operand is a FL for-
mula composed of other temporal operators, connect
value 1 to the corresponding input of the monitor to
disable the evaluation function within the monitor (it
is done by other monitors).

• Connection of consecutive FL operators: For two op-
erators N1 and N2 such that N2 is an operand of N1,
the two monitors are connected in the following way
(Fig. 3).
– Output Checking of N1 is fed to input ”start” of N2.
– Output Valid of N1 is useless, and unconnected.
– The clock and reset are shared by N1 and N2.

• Initial State Generation: A module “gen init” is
added to generate the initial state signal “init cycle”
one cycle after power up reset. This signal triggers the
evaluation of the whole property, and is fed into input
start of the root monitor.

• Primary outputs: Checking and Valid are those of
the rightmost FL operator, Pending is the ”or” of the
Pending outputs of all the ”strong” monitors.

In terms of post synthesis area, this solution is efficient
for complex temporal properties [7], a significant advantage
for online monitoring of embedded systems, specially on
FPGA.

3. Principles of the proof of Correctness
The proof of correctness of both the library components

and the interconnection method, with respect to the formal
semantics of the PSL reference manual was done with the

3

PVS [14] system. PVS provides an integrated environment
for the development and analysis of formal verification. It
consists of a specification language, a number of predefined
theories, a theorem prover. It is based on a higher order
typed logic. The choice of PVS was motivated by the fact
that the PSL semantics are expressed in second-order logic
and thus directly represented by the PVS input formalism.
In addition, many proof strategies are automated.

3.1. Monitors modeling

Symbolic
Simulator into PVS format

Translation

PSL Semantics

Proof Checker:

PVS

into PVS format
Translation

synthesizable

VHDL

Theorems
Specification

Figure 4. Proof process

The primitive monitors are written in the RTL synthesiz-
able subset of VHDL. To prove each monitor correct, we
first extract the finite state machine (FSM) model for the
component, and translate it in the PVS input formalism.
This process has been automated, with the help of symbolic
simulation (see Figure 4).

We use THEOSIM [4] that takes as input a clock syn-
chronized sequential circuit, and computes the state transi-
tion functions and output functions in a normalized condi-
tional format. This tool performs a static stabilization of
combinational circuits between clock edges (provided there
is no combinational loop). This simulator defines the sym-
bolic value of a signal as a function of the previous symbolic
value of all signals of its cone of influence. Since bit-vectors
are handled globally (i.e. represented by only one symbol),
we can handle parameterized bit-vectors.

The translation of the symbolic expressions computed by
the symbolic simulator into PVS input syntax is fully auto-
mated. It is essentially a simple transcription, except that
VHDL objects are considered functions in the PVS model,
both in their structural and temporal dimensions. More pre-
cisely, signals are modelled by time functions: they are rep-
resented by a mapping from N to their type. Since vectors
are modelled by functions too, a bit vector is a mapping
from N × [i, j] (where i, j are the first and last index of the
bit-vector) to Boolean.

Then, the PSL semantics are represented in PVS, and we
generate automatically several theorems for each operator.
All theorems are proved with PVS (Figure 4).

Example 2 The following VHDL text (left of Figure 5)
is an excerpt from a primitive monitor RTL description.
The output Valid is combinationally connected to an
internal signal Valid t (first line). The rest of the code is
a sequential process that computes Valid t at each rising
edge of Clk , as a function of signals Reset n , Check en
and some expression expr . The evaluate expr process and
the assignment of Valid are concurrent, and require two
simulation iterations to stabilize at each rising clock edge.
The right part of Figure 5 gives the representation in PVS

of signal Valid .

valid <= valid_t;
evaluate_expr: process(clk)
begin
if clk’event and clk=’1’ then
if reset_n=’0’
then valid_t <= ’1’;
else
if check_en = ’1’
then valid_t <= expr;
else valid_t <= ’1’;
end if;

end if;
end if;

end process;

VALID(t:nat): boolean =
(IF t=0
THEN TRUE
ELSE

IF NOT RESET_N_(t-1)
THEN True
ELSE
IF CHECK_EN(t-1)
THEN EXPR_(t-1)
ELSE True
ENDIF

ENDIF
ENDIF)

Figure 5. VHDL excerpt and translation into PVS

3.2. Modeling the PSL semantics in PVS
The semantics of PSL are defined on the traces of all the

observed signals on a time range [t0, T]. Let FL denote
the set of FL expressions. Semantics are modelled by a
mapping Sem from FL × N × N to Boolean. Let ϕ be
a FL expression, then Sem(ϕ, t0, T) is inductively defined
on the syntactic tree of ϕ on the time range [t0, T]: for each
operator Ω, we define a function SemΩ implementing the
semantics of Ω and depending on function Sem. Functions
Sem and SemΩ are mutually dependent. When ϕ is only a
Boolean, Sem(ϕ, t0, T) is defined by the value of ϕ at t0.

Example 3 (Semantic function of next e) The next![i]
operator is a strong operator. It specifies that there is a next
cycle, i.e., that the length of the trace on which the signal
are observed is greater than i + 1, and that the property
holds on cycle i + 1.

The modeling of this operator semantics in PVS gives us:

Semnext(ϕ, k, t0, T) ={
(T − t0) >= 0 ∧ Sem(ϕ, t0, T) if k = 0
Semnext(ϕ, k − 1, t0 + 1, T) if k >= 1

The next e![i, j](ϕ) operator specify that there is at least
one cycle within the subrange [i, j] of next cycles on which
ϕ holds. This operator is based on a rewriting of the next
operator. Its modeling in PVS is given by:

Semnext e(ϕ, i, j, t0, T) = ∃k ∈ [i, j],Semnext(ϕ, k, t0, T)

3.3 Equivalence modeling
Let M be the monitor implementing a FL property ϕ.

The equivalence deals on the one hand with Sem(ϕ, t0, T),
on the other hand with the output signals of M : CheckingM
and ValidM (relevant one cycle after CheckingM takes
value 1) and PendingM . More formally, the equivalence
can be modelled by the following expression:

∀ϕ,∀t0 ∈ N,∀T ≥ t0,H(ϕ, t0, T) =⇒
(S(ϕ, t0, T) ⇐⇒ (V (ϕ, t0, T) ∧ P (ϕ, t0, T)) (1)

where S(ϕ, t0, T) denotes an expression dealing with
Sem, V (ϕ, t0, T) an expression dealing with ValidM

4

and CheckingM , P (ϕ, t0, T) an expression dealing with
PendingM and H(ϕ, t0, T), the hypothesis under which
the equivalence can be proved.

Let us define formally these four expressions. The value
of the semantics of expression ϕ is relevant only if StartM

was true at time t0. As a first approximation, assume that
S(ϕ, t0, T) is defined by StartM (t0) =⇒ Sem(ϕ, t0, T).

Expression of V Expression V specifies that no bad
states have been seen. By definition of monitors, the rel-
evance of ValidM is given by an active CheckingM at the
previous cycle. Since CheckingM just represents the signal
computed by the checking window, and since ValidM is de-
fined by True when this signal is not active, for all cycles t
and for all monitors CheckingM (t) =⇒ ValidM (t + 1)
is equivalent to ValidM (t + 1). This property is generated
and verified for each monitor in PVS.

If S(ϕ, t0, T) is verified, signal ValidM must be verified
during some cycles. But we cannot know a priori when
CheckingM (and therefore ValidM) is active. For some
operators, it depends only on a parameter (e.g. next with
delay), for others it depends on the activity of an event (e.g.
next event). To unify our modeling on all properties, we
look at Valid on the whole time range [t0, T].

V (ϕ, t0, T) = ∀t ∈ [t0, T],ValidM (t + 1) (2)

Expression of P Signal Pending is 1 when some future
obligations have not been met. If Property ϕ should hold
(or hold strongly) then at the end of the trace, all the future
obligations must have been met. Since the computation of
Pending is delayed by one cycle, P (ϕ, t0, T) is defined by:

P (ϕ, t0, T) = ¬Pending(T + 1) (3)

Expression of S On [t0, T], ValidM can depend on
several active StartM . In our first approximation of
S(ϕ, t0, T), the semantics took into account only one ac-
tive StartM at t0. We generalize this definition to the oc-
currence of several active StartM on the studied range. We
thus give the following definition:

S(ϕ, t0, T) = ∀t ∈ [t0, T + 1],
StartM (t) =⇒ Sem(ϕ, t, T) (4)

Expression of H The two previous paragraphs give us the
expression of the equivalence between the operator seman-
tics and the monitor output valuations. Let us now examine
the hypothesis under which this equivalence is verified.

• Signals Checking and Valid are active only when sig-
nal ResetM is not active, i.e. ResetM is 1. We need
ResetM to be not active on [t0, T].

• The second hypothesis deals with Start . On [t0, T],
ValidM might depend on an active StartM occurring
before t0; in that case, the equivalence would not be
verified. To exclude this irrelevant case, we may either
assume that StartM was never active before t0 (this is
too strong an assumption), or assume that StartM was
never active since the last active ResetM . We use the
second assumption.

These two hypotheses give us:

H(ϕ, t0, T) = ∃t′ ∈ [0, t0],¬ResetM (t′)
∧ ∀t1 ∈ [t′, T],ResetM (t1)
∧ ∀t2 ∈ [t′ + 1, t0],¬StartM (t2)

(5)

3.4. Proof of Correctness
In this section, we break up the main lines of the proof

of equivalence between the PSL formal operator semantics
and the results delivered by their associated monitor. A
complete proof can be found in [13]. It is is done by in-
duction on the depth of Formula (1), whatever FL opera-
tor is considered. Let Ω1, . . . ,Ωn be n FL operators, and
ϕn = Ωn . . . Ω1op1 . . . opn a FL expression where opi is a
list of operands for Ωi. Parameter n represents the depth of
the formula (denoted |ϕn|).

Let M be the monitor implementing ϕn. It is com-
posed of n basic monitors M1, . . . Mn(cf. Fig. 3). We
denote Start i, Checking i, Valid i and Pending i the input
and outputs of Mi. Input StartM is input Startn. Sim-
ilarly output ValidM is output Valid1. The Reset input
of all monitors are connected to the global ResetM in-
put. In Formula (1), the terms H(ϕn, t0, T), S(ϕn, t0, T),
V (ϕn, t0, T) and P (ϕn, t0, T) can be rewritten into:

Hn(ϕn, t0, T) = ∃t′ ∈ [0, t0],¬ResetM (t′)
∧ ∀t1 ∈ [t′, T],ResetM (t1)
∧ ∀t2 ∈ [t′ + 1, t0 − 1],¬Startn(t2)

Vn(ϕn, t0, T) = ∀t ∈ [t0, T],Valid1(t + 1)
Sn(ϕn, t0, T) = ∀t ∈ [t0, T + 1],

Startn(t) =⇒ Sem(ϕn, t, T)
Pn(ϕn, t0, T) = ∀t ∈ [t0, T], Pn−1(ϕn−1, t0, T)

∧ ¬Pendingn(T + 1)

Our induction hypothesis is given by:

I(n) =
{ ∀|ϕn| = n,∀t0 ∈ N,∀T ≥ t0,H(ϕn, t0, T) =⇒

(S(ϕn, t0, T) ⇐⇒ (V (ϕn, t0, T) ∧ P (ϕn, t0, T)))

Base Case: The first step is the proof of I(1). The ex-
pression ϕ1 has only one operator, the operands of which
are Boolean: we deal with a primitive monitor. Since the
induction is done whatever ϕn, we must prove I(1) for all
FL operators. We thus generate and prove in PVS a theo-
rem corresponding to expression I(1) for each operator and
its primitive library monitor.
Inductive Case Assuming I(n − 1), we want to prove
I(n). The proof of this implication is based on two facts:

• First, due to the interconnection method, Checkingn is
equal to Startn−1.

• Second, we can rewrite expression ϕn into:

ϕn = Ωn(ϕn−1, opn)

By definition of Sem, we have

Sem(ϕn, t0, T) = SemΩn
(ϕn−1, opn, t0, T)

5

In the function defining SemΩn
, ϕn−1 is always used

as a parameter of the Sem function. Furthermore,
operand ϕn−1 of SemΩn

can be a Boolean expression.
It may be substituted by λt.Sem(ϕn−1, t, T). This
lambda term is a Boolean function, and is generalized
to any Boolean function.

These two rewritings are the salient aspects of the in-
ductive proof. For each operator, we simplify the proof in
two equivalences, the conjunction of which is stronger than
I(n − 1) =⇒ I(n).

3.5. Results
To gain experience, we first proved the weak version of

the primitive monitor library, then extended the model to the
strong version of the FL operators and performed the proof
of the strong monitors. No errors were found in the weak
library. For one strong operator, next e, the base case proof
lead to an error in the proof of I(1). Since the weak version
of this monitor was correct, the error had to come from the
implementation of the Pending signal: this signal was not
significant at cycle T +1 the end of the trace, but at T +j−i
(where j and i are parameters of this operator). This error
was corrected and the new correctness proof succeeded.

For each operator, we defined a theory in which we spec-
ify several theorems. It represents approximately 270 lines
of code. Then this theory is automatically type checked:
this generates roughly 100 typed proof obligations. The
length of the proof is quite variable. As an example, for
next a, we used 10 instructions: from the catch-all strat-
egy “grind” that automatically completes a proof branch by
installing rewritings and simplifications, to the “inst” that
instantiates a quantified variable by a given expression or
the use of an intermediate lemma. For next event, we use
a thousand instructions. For a family of operators, the in-
termediate lemmas and proof strategies could largely be
reused.

4. Conclusion and current works
In this paper, we proved a methodology to generate mon-

itors from PSL assertions. The technology is based on a li-
brary of primitive components that implement the weak and
strong FL operators of PSL. Monitors for complex expres-
sions are built by structurally interconnecting these basic
blocks. Thanks to the use of theorem proving techniques,
we obtain a proof that is independent of the valuation of
the temporal parameters (number of cycles, or time inter-
val) present in many operators.

A prototype implementation automatically synthesizes a
monitor from a PSL property, as a RT-level VHDL com-
ponent net-list. One or more monitors can be linked to the
DUV, for formal verification, simulation, emulation, or on-
line testing. Recent improvements to the prototype have in-
cluded a user interface to help identify these interconnects,
and the instrumentation of the synthesis on a FPGA plat-
form with several software modules. The history of the
observed signals can be saved, extracted, and viewed as
waveforms, to help debug the DUV when a monitor outputs

a property failure. Systematic experiments and measure-
ments, reported in [7], show that the area of our monitors
increases gracefully with the number of nested PSL opera-
tors, and the upper bound of the observation window of the
(next, next event) operators.

Future works in this area aim at applying the same prin-
ciples on designs described at a more abstract level. The
difficulty lies in correctly connecting synthesizable moni-
tors with asynchronous communication mechanisms.

Acknowledgements The authors thank Y. Wolfsthal, E.
Zarpas and G. Shapir from the IBM Haifa Research Labo-
ratory for their interest and for giving them free access to
RuleBase and FoCs. Miao Liu was the main author of the
primitive monitors library.

References
[1] http://www.haifa.il.ibm.com/projects/verification/

RB Homepage/publications.html�sugar.
[2] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and

Y. Wolfsthal. FoCs: Automatic Generation of Simulation
Checkers from Formal Specifications. In Computer Aided
Verification, LNCS. Springer-Verlag, 2000.

[3] Accellera. Property Specification Language Reference Man-
ual, Version 1.1, 2004.

[4] G. Al Sammane. Simulation symbolique des circuits décrits
au niveau algorithmique. PhD thesis, Université Joseph
Fourier, July 18, 2005. (in French).

[5] A. K. B. Cohen, S. Venkataramanan. Using PSL/Sugar for
Formal and Dynamic Verification. VhdlCohen Publishing,
2nd edition, 2004.

[6] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model
checking at IBM. Form. Methods Syst. Des., 22(2):101–108,
2003.

[7] D. Borrione, M. Liu, P. Ostier, and L. Fesquet. PSL-based
online monitoring of digital systems. In Forum on specifica-
tion & Design Languages (FDL’05), Sep 2005.

[8] K. Claessen and J. Mårtensson. An Operational Semantics
for Weak PSL. In A. J. Hu and A. K. Martin, editors, Formal
Methods in Computer-Aided Design (FMCAD’04), volume
3312. LNCS, Springer, 2004.

[9] Formal Methods Group. Guide to Sugar Formal Specifica-
tion language. IBM Haifa Research Laboratory, Nov. 2000.
Version 1.3.1.

[10] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based De-
sign. Kluwer Academic Publishers, Jun. 2003.

[11] M. Gordon, J. Hurd, and K. Slind. Executing the formal
semantics of the Accellera Property Specification Language
by mechanised theorem proving. In D. Geist and E. Tronci,
editors, Correct Hardware Design and Verification Methods
(CHARME’03), volume 2860. LNCS , Springer, Oct. 2003.

[12] E. Marschner, B. Deadman, and G. Martin. IP reuse harden-
ing via embedded Sugar assertions. In IP Based SoC Design
2002, Oct. 2002.

[13] K. Morin-Allory and D. Borrione. A proof of correctness
for the construction of property monitors. In IEEE Intl. High
Level Design Validation and Test Workshop, Dec. 2005.

[14] N. Shankar, S. Owre, J. Rushby, and D. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, 2001.

[15] T. Türk and K. Schneider. From PSL to LTL: A formal vali-
dation in HOL. In J. Hurd and T. Melham, editors, Theorem
Proving in Higher Order Logics, LNCS, Aug. 2005.

6

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

