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Abstract

We introduce collapsed flushing, a new flushing-based
refinement map for automatically verifying safety and live-
ness properties of term-level pipelined machine models. We
also present a new method for handling liveness that is
both simpler to define and easier to verify than previous
approaches. To empirically validate collapsed flushing, we
ran extensive experiments which show more than an order-
of-magnitude improvement in verification times over stan-
dard flushing. Furthermore, by combining collapsed flush-
ing with commitment refinement maps, we can monolithi-
cally verify complex pipelined machine models with deep
pipelines—a salient feature of state-of-the-art microproces-
sor designs—that previous approaches cannot handle.

1. Introduction

We verify pipelined machine models by showing that
they refine their instruction set architecture (ISA). The no-
tion of refinement we use is based on stuttering bisimula-
tion. It guarantees that the pipelined machine and its ISA
satisfy the same safety and liveness properties and that they
have the same infinite visible executions, up to stuttering.
The refinement theorems we prove are parameterized by re-
finement maps: functions that map pipelined machine states
to ISA states. One of the most commonly used refinement
maps is the flushing refinement map: given a pipelined ma-
chine state, it returns an ISA state by completing the par-
tially executed instructions in the pipeline, without fetching
any new instructions, and then projecting out the ISA vis-
ible components. In general, refinement maps are complex
functions, but necessarily so, as they relate machines with
multiple instructions in various stages of completion to ma-
chines in which instructions complete atomically. A con-
sequence is that refinement maps have a profound impact
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on verification times, which makes finding efficiently veri-
fiable refinement maps of crucial importance.

In this paper, we introduce collapsed flushing, a vari-
ant of flushing that, as our extensive empirical evaluation
shows, leads to drastically faster verification times than is
possible with standard flushing. We also show how to com-
bine collapsed flushing with commitment, another well-
known refinement map that can be thought of as the dual
of flushing, as partially executed instructions are invali-
dated instead of being completed. We show that the result-
ing refinement map can be used to efficiently reason about
complex machine models with deep pipelines. This is an
important problem, as recent state-of-the-art microproces-
sor designs have very deep pipelines, e.g., Intel’s R© hyper-
pipelined technology appearing in the Pentium 4 processor
has a pipeline with 31 stages [7].

The refinement proofs are verified automatically using
the UCLID system [1], which implements a decision pro-
cedure for the logic of Counter arithmetic with Lambda ex-
pressions and Uninterpreted functions (CLU). In order to
use UCLID, the pipelined machine models we use are de-
fined at the term-level: the data path is abstracted away
using integers, and combinational circuit blocks, such as
the ALU, are abstracted away using uninterpreted func-
tions. The advantage of term-level models is that they can
be compiled to CLU expressions. Another issue is that
the refinement-based correctness statements cannot be ex-
pressed in CLU. Fortunately, we can express the main
“core” of the correctness statements in CLU. The core cor-
rectness statements are given to the UCLID system, which
compiles them to propositional formulas in CNF format.
These formulas are then checked using a SAT solver. We
use the Siege SAT solver [16], but any SAT solver will do.

The rest of the paper is organized as follows. We start in
Section 2 by providing a brief overview of the refinement-
based notion of correctness we use. We then turn our atten-
tion to refinement maps and describe the commitment re-
finement map (in Section 3) and the standard and collapsed
flushing refinement maps (in Section 4). We show how to
combine the commitment and flushing refinement maps in
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Section 5. In Section 6, empirical evaluations show that we
obtain over an order-of-magnitude improvement in verifica-
tion times when using collapsed flushing instead of standard
flushing. Related work is briefly discussed in Section 7, and
we conclude in Section 8.

2. Refinement

We prove that pipelined machines (MA) are correct by
showing that they refine their instruction set architecture
(ISA). A refinement proof is relative to a refinement map, r,
a function from MA states to ISA states. Our notion of re-
finement is based on stuttering bisimulation: for every pair
of states w, s such that w is an MA state and s = r(w),
we have that for every infinite path σ starting at s, there
is a “matching” infinite path δ starting at w, and conversely.
That σ and δ “match” implies that applying r to the states
in δ results in a sequence that is equivalent to σ up to fi-
nite stuttering (repetition of states). Stuttering is a common
phenomenon when comparing systems at different levels of
abstraction, e.g., if the pipeline is empty, MA will require
several steps to complete an instruction, whereas ISA com-
pletes an instruction during every step. Of course, reason-
ing about infinite paths is difficult to automate, and in [10],
WEB-refinement, an equivalent formulation is given that re-
quires only local reasoning, involving only MA states, the
ISA states they map to under the refinement map, and their
successor states.

In [11], it is shown how to automate proofs of WEB-
refinement in the context of pipelined machine verifica-
tion. The idea is to strengthen, thereby simplifying, the
WEB-refinement proof obligation. The result is the follow-
ing CLU-expressible formula.

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)
=⇒ s = r(v) ∧ rank(v) < rank(w)〉

In the formula above ISA-step is the function that steps
the ISA machine once, MA-step is the function that steps
the MA machine once, and rank is a function that maps
pipelined machine states to the natural numbers. The proof
obligation relating s and v can be thought of as the safety
component, and the proof obligation that rank(v) < rank(w)
can be thought of as the liveness component.

3. Commitment

In this section, we give an overview of the commitment
refinement map. The idea is to invalidate the partially ex-
ecuted instructions in the pipeline and to undo any effects
these instructions had on the programmer visible compo-
nents. This is accomplished with the use of history vari-
ables, variables that record past values of state components.

The rank function is defined as the number of steps required
to commit an instruction, which is the length from the end
of the pipeline to the first valid pipeline latch.

The commitment approach requires an invariant that
characterizes the set of reachable states. Two methods of
doing this have been investigated: the “Good MA” invari-
ant, and, more recently, the Greatest Fixpoint (GFP) invari-
ant. The GFP invariant is easier to use and gives rise to
drastic reductions in verification times over the “Good MA”
approach [13]. The GFP invariant characterizes the set of
states that are n steps away from an arbitrary state, where n
is the number of steps required to replace all partially exe-
cuted instructions in the pipeline with new instructions from
the instruction memory. For the pipelined machines we con-
sider, n is the number of steps required to flush the pipeline.
The GFP invariant is an invariant by definition and does not
require an invariant proof. In contrast, the “Good MA” ap-
proach requires establishing an invariant, which accounts
for about 98% of the total verification time.

4. Collapsed Flushing

In this section, we describe collapsed flushing, an im-
plementation of the flushing refinement map that leads to
faster verification times over previous methods. The use of
flushing as a refinement map was proposed by Burch and
Dill [3]. As mentioned previously, flushing can be thought
of as the dual of commitment, as partially executed instruc-
tions in the pipeline are completed (without fetching any
new instructions) instead of being invalidated.

In Figure 1(a) we represent the refinement theorem based
on standard flushing as a graph we call the refinement graph.
The nodes of the graph are variables whose names match the
ones given in Section 2; the edges correspond to symbolic
simulation steps, flushing steps, or projections. Pipelined
machine state w is flushed for n steps, resulting in flushed
state w f , where n is the number of steps required to inval-
idate all of w’s pipeline latches. The ISA state returned by
the flushing refinement map is s, the state obtained by pro-
jecting out the ISA components of w f . State u is obtained by
stepping state s, and state v is obtained by stepping w. Flush-
ing state v gives us state vf , and projecting out the ISA com-
ponents gives us state r(v). The safety component of the re-
finement theorem compares r(v) with s and u. The liveness
component depends on the ranks of w and v. Thus, the re-
finement theorem depends only on states w, v, s, u, and r(v),
nodes depicted with a solid circle in Figure 1.

The verification times for the flushing method depend on
two factors. The first factor is number of symbolic simula-
tion steps required to reach u from w. We call this factor
the flushing length. If n is the number of symbolic simu-
lation steps required to flush the pipelined machine, then
the flushing length is n + 1, as can be seen from the refine-
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Figure 1. Implementation of standard and col-
lapsed flushing refinement maps.

ment graph in Figure 1(a). The number of steps required to
flush the pipelined machine depends on the pipelined ma-
chine under consideration, and it is an inherent parameter
of the flushing refinement map. Therefore, there is no way
to reduce the flushing length without abandoning the use of
the flushing refinement map.

The second factor is the state distance, the number of
symbolic simulation steps separating u from r(v). This is
approximately the length of the shortest path between u
and r(v) in the refinement graph, when viewed as an undi-
rected graph. As can be seen from Figure 1(a), the state dis-
tance for standard flushing is 2n+2. The intuition as to why
this metric is related to verification times is that the state-
ments u = r(v) and s = r(v) are quite complex, each requir-
ing about 2n symbolic simulation steps to state.

We now describe collapsed flushing, depicted in Fig-
ure 1(b). The insight is that we can reduce the state dis-
tance from 2n + 2 to 2. Consider the state ŵf , obtained by
stepping w once, to obtain v, and then flushing v for n− 1
steps. If no new instruction is fetched during the initial step
(as is the case during a stall or a branch mispredict) then ŵf
is exactly w f . Otherwise, we can obtain wf from ŵf by us-
ing history variables to factor out any effect that the instruc-
tion fetched from the transition to v has on the programmer
visible components. That is, wf can be obtained by slightly
modifying the process of computing vf . This allows us to
collapse the two flushing computations arising in the imple-
mentation of the standard flushing refinement map into one,
which is why we name this method collapsed flushing. Fig-
ure 1(b) shows that the state distance is 2, improving upon
the 2n+2 value for standard flushing. We validate these in-
tuitions in Section 6, where we show empirically that col-
lapsed flushing leads to much faster verification times and
scales better than standard flushing.

History variables are used with collapsed flushing as fol-
lows. If a new instruction is fetched during the transition
from w to v, a tag is attached to it that follows it through
the pipeline. In addition, every programmer visible compo-
nent in the pipelined machine has a history variable asso-
ciated with it. While non-history variables are updated nor-
mally, history variables are updated only by instructions that
are not tagged. Thus, the history variables in ŵf contain the
values we would have obtained had the step from w to v
been a flush step, which allows us to determine wf , which
in turn is used to obtain state s.

In the standard flushing method, the rank of a pipelined
machine state is defined as the number of steps required to
fetch an instruction that eventually completes. For the col-
lapsed flushing method, we use an alternate rank function
that can be easily implemented and that leads to faster veri-
fication times. The new rank function is defined as the num-
ber of steps required to flush a pipelined machine state. To
compute this for v, we simply determine how many flush-
ing steps are needed before all pipelined latches are invalid.
Since we step w before flushing it (see Figure 1(b)), the rank
of w is the number of steps required before all pipelined
latches are either invalid or contain a tagged instruction
(only the step from w to v can lead to a tagged instruction).

5. Intermediate Refinement Maps

In this section, we give a brief description of intermedi-
ate refinement maps (IRs) and explain how we use collapsed
flushing to define IRs. Intermediate refinement maps (IRs)
are a relatively new class of refinement maps, obtained by
combining flushing and commitment [15]. An IR is defined
by choosing a reference point (a stage in the pipelined ma-
chine), and committing all the pipeline latches before the
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Figure 2. A comparison of standard and col-
lapsed flushing based on verification times.

reference point and flushing all the pipeline latches after the
reference point. IRs result in drastic reductions in verifica-
tion times over both flushing and commitment as they give
rise to two simpler problems, each roughly half the com-
plexity of the original. The first verification problem corre-
sponds to the part of the pipeline being committed, and the
second verification problem corresponds to the part of the
pipeline being flushed. The best choice of reference point is
one that leads to roughly the same complexity for the two
resulting problems. Thus, the reference point is usually cho-
sen to be close to the middle of the pipeline. The rank func-
tion of an IR (used for checking liveness) is defined as a pair
of natural numbers computed by functions rankif for the
flushing component and rankic for the commitment com-
ponent. The functions rankif and rankic are essentially
the ranks for flushing and commitment, respectively. The
less-than ordering for the rank of the IR is defined as the
lexicographic ordering with priority given to rankif.

We describe how to define the IR obtained by combining
GFP-based commitment with collapsed flushing. In the fol-
lowing discussion, we refer to the pipeline latches that are
committed and flushed as the commit latches and the flush
latches, respectively. We require an invariant for the com-
mit latches and it is based on the GFP invariant: starting
from an arbitrary state, we step the machine for the num-
ber of steps required to flush the commit latches. The flush
latches are also stepped, as the commit latches depend on
the flush latches, but once this process is finished, we as-
sign arbitrary values to the flush latches. This defines the IR
invariant.

Now, let w be an arbitrary state satisfying the IR invari-
ant. We proceed by essentially applying the collapsed flush-
ing refinement map. The states ŵf and vf are computed by
applying n − 1 and n flushing steps to the flush latches,
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Figure 3. A comparison of standard and col-
lapsed flushing based on the number of CNF
variables generated.

where, n is the number of steps required to flush the flush
latches. During the flushing sequence, the commit latches
are modified only when there is a branch mispredict. Com-
mitting the commit latches and applying the corresponding
projection functions to ŵf and vf results in ISA states s and
r(v), respectively. Just as before, u is obtained by stepping
the ISA machine from state s.

6. Experimental Results

In this section, we present our empirical evaluation of
collapsed flushing, which is based on an extensive set of
experiments. To summarize, we found that using collapsed
flushing gives an order-of-magnitude improvement in verifi-
cation time when compared with standard flushing. We also
show that the CNF files generated when using collapsed
flushing are much smaller than when using standard flush-
ing. Both observations validate our analysis of collapsed
flushing in Section 4. In the second set of experiments, we
show that by using intermediate refinement maps based on
the combination of collapsed flushing with GFP-based com-
mitment, we can monolithically verify pipelines that are too
deep to verify with the best previously known monolithic
approach, which uses intermediate refinement maps based
on standard flushing and GFP-based commitment.

For the experiments, we used and extended the pipelined
machine models described in [14]. These models con-
tain branch prediction mechanisms, instruction caches, data
caches, write buffers, and instruction queues. They were
formally verified using the UCLID decision procedure
(Version 1.0) along with the Siege SAT Solver [16] (vari-
ant 4), using a 3.06 GHz Intel Xeon with an L2 cache size
of 512 KB.

Figure 2 compares collapsed flushing with standard
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Figure 4. A comparison of verification times
for collapsed flushing and GFP-based com-
mitment.

flushing using a benchmark suite consisting of 42 pipelined
machine models, where the number of stages ranges from
6 to 10. Notice that both the x and y axes use a logarith-
mic scale. When using standard flushing, Siege fails on 9 of
the benchmarks by reporting that the problem is too com-
plex to handle and immediately quiting; this is denoted in
the figure as “Standard flushing fails.” However, when col-
lapsed flushing is used, Siege can handle all of the bench-
mark problems.

Our analysis in Section 4 shows that the complexity of
pipelined machine verification problems is greatly reduced
when standard flushing is replaced by collapsed flushing,
because of the differences in state distance. As a metric of
the complexity of these problems, we use the number of
CNF variables generated. In Figure 3, we plot the number
of CNF variables generated when verifying pipelined ma-
chines of varying length for both standard and collapsed
flushing. Recall, that for the machine models we consider,
the number of flushing steps required to define either stan-
dard or collapsed flushing is the same and is directly propor-
tional to the length of the pipeline. From the figure, it can
be seen that as the length of the pipeline increases, the CNF
variables generated for standard flushing rapidly increase,
whereas the increase for collapsed flushing is more mod-
est. The reason for this, as explained in Section 4, is that the
state distance for standard flushing depends linearly on the
number of steps required to flush the machine, but remains a
constant for collapsed flushing. Therefore, collapsed flush-
ing scales much better than standard flushing as the length
of the pipeline increases, and it can even handle problems
that standard flushing cannot.

In Figure 4, we compare collapsed flushing with GFP-
based commitment on the same 42 pipelined machine mod-
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Figure 5. A comparison of verification times
for CIR5 and SIR5, defined using collapsed
and standard flushing, respectively.

els used in Figure 2. As can be seen from the scatter plot,
the two approaches are comparable.

A major benefit of collapsed flushing can be seen when it
is combined with commitment (GFP) to define intermediate
refinement maps (IRs) as shown in Figure 5, where we com-
pare IRs defined using commitment (GFP) and collapsed
flushing (CIRs) with IRs defined using commitment (GFP)
and standard flushing (SIRs). IRs are effective for handling
problems that are beyond the scope of pure flushing or com-
mitment refinement maps, such as deep pipelines. For the
experiments, we use IR5, which is the IR obtained by com-
mitting the first 5 pipeline latches and flushing all other
pipeline latches. The x-axis shows pipelined machine mod-
els obtained by increasing the number of stages from 10 to
16 for a machine containing features such as a branch pre-
diction mechanism, instruction and data caches, and write
buffers. Notice that the y-axis is a logarithmic scale. From
the figure, it can be seen that SIR5 is not able to han-
dle machine models with pipelines that have more than 13
stages. For these models, we have extrapolated the verifi-
cation times using the average slope of the SIR5 models
that could be verified. CIR5 scales better as we increase the
number of pipeline stages and is able to handle pipelines
with 16 stages (and beyond). We note that some modern
microprocessors have very deep pipelines, e.g., Intel’s Pen-
tium 4 processor, with hyper-pipelined technology, has 31
stages [7].

7. Related Work

We briefly review previous work on pipelined machine
verification that is directly related to our work. Burch and
Dill introduced flushing and gave a decision procedure for
the logic consisting of boolean connectives, equality, and



uninterpreted functions [3]. Several variants of flushing
have been previously considered. One example is controlled
flushing, an implementation of the flushing refinement map
that uses a fixed stalling and flushing pattern, leading to sim-
pler formulas and faster verification times [2]. A second ex-
ample is incremental flushing, which uses an inductive ar-
gument, making it difficult to apply, e.g., the authors con-
clude that the effort required to deductively justify the proof
decompositions offsets the benefits obtained [8]. Also note
that neither of these approaches deals with liveness. Re-
cent work on compositional methods [12] can handle deep
pipelines, but several verification steps are required. There
are also theorem proving methods [17, 6] that can be used
to verify deep pipelines, but they often require extensive ex-
pert user guidance.

A complimentary approach to extending the complex-
ity of pipelined machines that can be handled automatically
has focused on decision procedures. This includes the work
on UCLID [9], but we expect recent advances in decision
procedures to provide even more significant improvements
(e.g., see [5, 4]).

8. Conclusion

We have introduced collapsed flushing, a new refinement
map based on flushing that results in about an order-of-
magnitude improvement in verification times over standard
flushing. We also presented a new, simpler, and easier-to-
verify rank function, which is used for handling liveness.
We showed how to obtain intermediate refinement maps
by combining collapsed flushing with GFP-based commit-
ment. These maps allowed us to extend the reach of mono-
lithic pipelined machine verification, enabling the verifi-
cation of deep pipelines. The utility of collapsed flushing
was empirically validated with an extensive set of experi-
ments on a benchmark suite containing a large number of
pipelined machines.
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