
Automatic Generation of Operation Tables for Fast
Exploration of Bypasses in Embedded Processors

Sanghyun Park§ Aviral Shrivastava† Nikil Dutt†
shparkid@compiler.snu.ac.kr aviral@ics.uci.edu dutt@ics.uci.edu

Eugene Earlie‡ Alex Nicolau† Yunheung Paek§
eugene.earlie@intel.com nicolau@ics.uci.edu ypaek@ee.snu.ac.kr

ACES Lab, CECS† SO&R Labs§ Strategic CAD Labs‡
School of ICS, Department of EE, Intel Corporation,

UC Irvine, CA 92697 SNU Seoul, South Korea Hudson, MA, 01749

ABSTRACT
Customizing the bypasses in an embedded processor uncov-
ers valuable trade-offs between the power, performance and
the cost of the processor. Meaningful exploration of bypasses
requires bypass-sensitive compiler. Operation Tables (OTs)
have been proposed to perform bypass-sensitive compilation.
However, due to lack of automated methods to generate OTs,
OTs are currently manually specified by the designer. Man-
ual specification of OTs is not only an extremely time con-
suming task, but is also highly error-prone. In this paper,
we present AutoOT, an algorithm to automatically gener-
ate OTs from a high-level processor description. Our experi-
ments on the Intel XScale processor model running MiBench
benchmarks demonstrate that AutoOT greatly reduces the
time and effort of specification. Automatic generation of
OTs makes it feasible to perform full bypass exploration on
the Intel XScale and thus discover interesting alternate by-
pass configurations in a reasonable time. To further reduce
the compile-time overhead of OT generation, we propose an-
other novel algorithm, AutoOTDB. AutoOTDB is able to
cut the compile-time overhead of OT generation by half.

1. INTRODUCTION
Modern embedded processors are deeply pipelined and

employ extensive bypassing to improve performance. By-
passing improves the performance of a pipelined processor
by eliminating certain data hazards. However, extensive
bypassing may have significant impact on the cycle time,
wiring congestion, power consumption, area and the overall
chip complexity [1]. Embedded processor systems have strict
multi-dimensional constraints, like power, performance, cost
etc. In order to be able to meet all the design constraints
in-chorus, embedded systems need to customize bypassing.

Customization of bypassing implies keeping only the “most
benficial” bypasses and removing the “less needed” ones.
Owing to the lack of bypass-sensitive compilation techniques,
this decision is primarily based on designers intuition and/or
a simulation-only exploration. In a simulation-only explo-
ration, the same binary is executed (simulated) on several
processor models, and the best performing processor model
is chosen. However, the presence/absence of bypasses ef-
fects the pipeline hazards that occur on a given schedule

of instructions. The significance of this effect can lead to
incorrect performance and power estimations and result in
sub-optimal design decisions [11]. To perform meaningful
exploration of bypasses, a bypass-sensitive compilation tech-
nique is required. Recently a bypass-sensitive instruction
scheduling technique has been presented by Shrivastava et
al.[12]. The key idea of the proposed technique is to use
Operation Tables (OTs) to detect all pipeline hazards in a
given schedule. The Operation Table, OT of an operation
specifies the processor resources and registers the operation
will use during its execution. Meaningful bypass exploration
can be performed by generating bypass-sensitive code for the
set of bypasses present in the processor, and then executing
(simulating) it on the processor model (with the same set
of bypasses). Such an exploration is called Compiler-in-the-
Loop (CIL) exploration. In a CIL exploration, architecture-
sensitive compilation has to be performed in order to eval-
uate each design point. OT-based Compiler-in-the-Loop
(CIL) exploration is therefore a must for meaningful Design
Space Exploration (DSE) of bypasses in pipelined embedded
processors.

Goodness

Description
Processor

ADL

SimulatorCompilerApplication

Figure 1: ADL based CIL DSE

Another important characteristic of embedded systems
is the short time-to-market. Short time-to-market makes
it imperative to employ automated DSE methodologies in
embedded processor development. Architecture Description
Language (ADL) based techniques are a popular means of
performing top-down and automated DSE of processors. As
shown in Figure 1, in the ADL-based CIL DSE framework,
the processor architecture is described in an ADL, and a
cycle-accurate simulator, and an optimizing compiler are pa-
rameterized over the processor description in ADL. An ar-
chitectural modification can be evaluated by compiling the
application using the architecture-sensitive compiler and ex-
ecuting the resulting binary on the generated cycle-accurate
simulator.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



Currently OT-based CIL DSE is performed by manually
specifying the OTs of the operations in a processor. How-
ever, even moderately complex embedded processor cores
like the Intel XScale may have a large number of OTs. Man-
ually specifying all the OTs is not only tedious and time
consuming, but is an extremely error-prone task. Further-
more, during DSE, OTs may need to change as a result of a
change in the processor architecture, e.g., adding/removing
pipeline. In the absence of automated methods of generat-
ing OTs, such situations need to be manually identified and
the appropriate modifications be done to the OTs. Manually
specifying OTs is therefore a major bottleneck in automated
DSE of bypasses.

In this paper, we present AutoOT, an algorithm to
Automatically generate Operation Tables from a high-level
processor description (in an ADL). Instead of creating OTs
by hand, designer now only has to specify a high-level pro-
cessor description. Our experiments on the Intel XScale pro-
cessor demonstrate that AutoOT can reduce the specifica-
tion effort by 3X. Additionally, the high-level processor spec-
ification may be used for several other purposes, like verifica-
tion, simulation etc. In addition to the reduction of the first
time specification effort, AutoOT reduces the specification
effort in each step of architectural exploration by approxi-
mately 300X. Thus for long-runs of DSE, AutoOT is indis-
pensable. AutoOT generates OTs on-demand and therefore
has high compile-time overhead. To reduce this overhead,
we propose another novel technique AutoOTDB, which
pre-generates partial OTs and stores them in a database.
At compile-time, minimal data-dependent effort is required
to create the OTs, cutting the compile-time overhead by
half.

2. RELATED WORK
Several approaches have been proposed for Architecture

Description Language (ADL) based Design Space Explo-
ration (DSE) [15, 4, 6, 7, 13, 10, 8]. Several of the newer
ADLs have focused on Compiler-in-the-Loop (CIL) explo-
ration of processors.

Many ADLs and the corresponding “retargetable compil-
ers” of CIL ADLs use Reservation Tables (RTs) to detect
and avoid resource conflicts while scheduling. The concept
of RTs to represent the resources used by individual instruc-
tions in each stage of pipeline was developed in [2, 3]. Re-
source conflicts between instructions are identified by adding
their RTs. ADLs capture resource hazards between instruc-
tions by either specifying explicit RTs on a per instruction
basis [6], or as an attributed grammar that allowing only
legal combinations [4], or only non-legal combinations [7].
However it was realized that manual specification of RTs
introduces redundancy in the processor description. In ad-
dition, during DSE, structural changes to the processor ar-
chitecture may propagate through the description, requiring
the user to manually update the changes in the RT section
also, especially if these changes are not obvious.

Manual specification of the conflicts was recognized as a
tedious and error-prone task, especially for the complex and
long-pipeline processors. RTGen [5] was the first attempt
to automatically generate Reservation Tables from high-
level structural processor description in EXPRESSION [8].
PIPEGEN [9] is another approach to automatically generate
RTs from an even lower-level description of the processor.

However, owing to the recent advances in process technol-

C1 C2 C3 C4

C5

p1 p2

p3 p4

p5

p6 p7

p9

p8

OR

EX

LS

XWB

LWB

RF

F D

Figure 2: Example Pipeline

ogy, silicon resources becoming cheap, and the rising pro-
cessor clock, the share of resource conflicts in modern pro-
cessors is reducing. The balance is shifting more towards
data hazards. Data hazards (e.g. Read After Write hazard)
are a result of linear execution semantics of most existing
functional programming languages on pipelined execution
of instructions. This imposes a partial order in which the
operands of instructions can be read or written. This order
is enforced in most processors by stalling in the presence of
data hazards.

Traditional data hazard detection techniques employed in
the retargetable compilers break down in the presence of
partial bypassing. Operation Tables (OTs) can detect and
avoid data hazards in a retargetable compiler. In addition
OTs integrate the detection and avoidance of both data and
resource hazards in such processors. However, to perform
automated design space exploration, there is a need to gen-
erate OTs automatically from the processor description in
ADL.

In this paper we present techniques to automatically gen-
erate OTs from high-level processor structure description in
the EXPRESSION ADL.

3. PROCESSOR MODEL
In this section, we define the processor model. We will

then define operations on this processor model, and then
describe the automatic generation of Operation Tables for
an operation on the processor model.

3.1 Pipeline Model
A pipelined processor can be divided into pipeline units

by the pipeline registers. The processor pipeline can be rep-
resented as a Directed Acyclic Graph (DAG) of the pipeline
units, ui ∈ U which represent the nodes of the DAG, and
a directed edge (ui, uj) represents that operations may flow
from unit ui to unit uj . There is a unique ”source node”,
u0, to which there are no incoming edges. This unit gen-
erates operations. Further, some nodes are ”sink nodes”,
which do not have any outgoing edges. These nodes repre-
sent writeback units. In the pipeline shown in Figure 2, F is
the source unit and XWB and LWB are the writeback units.
The operations flow along the block arrows.

3.2 Operation Model
Each operation oi ∈ O supported by the processor is de-

fined using an opcode oi.opcode and a list of source and desti-
nation operands, oi.sourceOperands and oi.destOperands.
The opcode defines the path of the operation in the proces-
sor pipeline. Each source or destination operand, operand



is defined by a 3-tuple, <arg, rf, rn>, where arg is the ar-
gument of the operand, rf is the register file it belongs to,
(or IMM for immediate operands), and rn is the register
number (or immediate value for immediate operands). The
operand argument describes how to read/write the operand.
Thus the operation, ADD R1 R2 5, has opcode ADD, and
has one destination operand and two source operands. The
destination operand is represented by <D 1, RF, 1>. The
first source operand is represented as <S 1, RF, 2>, and
the third as <S 2, IMM, 5>.

3.3 Pipeline Path of Operation
The pipeline path of an operation oi is the ordered list

of units that an operation flows through, starting from the
unique source unit u0, to at least one of the writeback units.
Each unit ui ∈ U contains a list of operations that it sup-
ports, ui.opcodes. The add operation, ADD R1 R2 5 has
opcode ADD, and the pipeline units F, D, OR, EX and
XWB have the ADD operation in the list of opcodes they
support.

3.4 Register File
We define a register file as a group of registers that share

the read/write circuitry. A processor may have multiple
register files. The processor in Figure 2 has a register file
named RF.

3.5 Ports in Register File
A register file contains read ports and write ports to en-

able reading and writing of registers from and to the register
file. Register operands can be read from a register file rf via
read ports, rf.readPorts, and can be written in rf via write
ports, rf.writePorts. Register operands can be transferred
via ports through register connections. The register file RF
in the processor in Figure 2, has two read ports (p6 and p7)
and two write ports (p8 and p9).

3.6 Ports in Pipeline Units
A pipeline unit, ui can read register source operands via

its read ports, ui.readPorts, write result operands via its
write ports, ui.writePorts, and bypass results via its by-
pass ports, ui.bypassPorts. Each port in a unit is associ-
ated with an argument arg, which defines the operands that
it can transfer. For example a readPort of a unit with ar-
gument S 1 can only read operands of argument S 1. In the
processor in Figure 2, pipeline unit OR has 2 read ports,
p1 and p2 with arguments, S 1 and S 2 respectively. The
units, XWB and LWB have write ports p4 and p5 respec-
tively with arguments D 1, and D 2 respectively while EX
has a bypass port p3 with argument D 1.

3.7 Register Connection
A register connection rc facilitates register transfer from

a source port rc.srcPort to destination port rc.destPort. In
the processor diagram in Figure 2, the pipeline unit OR can
read two register source operands, first from the register file
RF (via connection C1), and second from RF (via connection
C2) as well as from EX (via connection C5). The register
connection C5 denotes a bypass.

3.8 Register Transfer Path
Register transfers can happen from a register file to a unit

(register read), from a unit to a register file (a writeback

Operation Table Definition
OperationTable := { otCycle }
otCycle := unit ros wos bos dos
ros := ReadOperands { operand }
wos := WriteOperands { operand }
bos := BypassOperands { operand }
dos := DestOperands { regNo }
operand := regNo { path }
path := port regConn port regFile

Table 1: Operation Table Definition

operation), and even between units (register bypass). The
register transfers in our processor are modeled explicitly via
ports. A register transfer path is the list of all the resources
used in a register transfer, i.e., the source port, the register
connection, the destination port, and the destination regis-
ter file or unit.

4. OPERATION TABLE
An Operation Table (OT) describes the execution of an

operation in the processor. OT is a DAG of OTCycles;
each OTcycle describes what happens in each execution cy-
cle, while the directed edges between OTCycles represent
the time-order of OTCycles. Each OTCycle describes the
unit in which the operation is, and the operands it is reading
ros, writing wos and bypassing bos in the execution cycle.
The destination operands dos are used to indicate the des-
tination registers, and are required to model the dynamic
scheduling algorithms in the processor. Each operand that
is transferred (i.e., read, written, or bypassed) is defined in
terms of the register number, regNo, and all the possible
paths to transfer it. A path is descibed in terms of the
ports, register connections and the register file involved in
the transfer of the operand.

Table 2 shows the OT of the add operation, ADD R1 R2
5. In the absence of any hazards, the add operation executes
in 5 cycles, therefore the OT of the add operation contains 5
otCycles. In the first cycle of its execution, the add operation
needs the F pipeline stage, and in the second cycle it needs D
pipeline stage. In the third cycle, the add operation occupies
OR pipeline stage and needs to read its source operands R2
and 5. All the paths to read each readOperand are listed.
The first readOperand, R2 can be read only from the RF via

Operation Table of ADD R1 R2 5
1 F
2 D
3 OR

ReadOperands
R2

p1, C1, p6, RF
DestOperands

R1, RF
4 EX

BypassOperands
R1

p3, C5, p2, OR
5 WB

WriteOperands
R1

p4, C3, p8, RF

Table 2: Operation Table of ADD R1 R2 5



Architecture
Processor

EXPRESSION description

Operation

OT-based Compiler

AutoOT OT

Figure 3: AutoOT Flow

connection C1. The second operand is immediate and no
resources are required to read it. Since the sources are read
in this cycle, the destOperands are listed. In the fourth cycle
the add operation is executed and needs EX pipeline stage.
The result of the operation R1 is bypassed via connection
C5. It can be read as the second operand of the operation
occupying the OR unit. WB pipeline stage is needed in the
fifth cycle. In the otCycle the result of the add operation
R1 is written back to RF via connection C3.

5. AUTOMATIC GENERATION OF OT
Figure 3 shows the interface of our automatic OT gener-

ation algorithm AutoOT with the compiler. AutoOT takes
the high-level description of the processor as an input and
generates OTs on-demand for the compiler. Figure 4 out-
lines the algorithm to automatically generate the OT of an
operation from a high-level processor description (e.g. an
ADL). First the pipeline path of the operation is discovered
recursively starting from the unique source unit u0. An ot-
Cycle is generated for each execution cycle of the operation,
and the OT is formed by appending them as per the flow of
the operation in the processor pipeline DAG.

The function CreateOTCycle described in Figure 5 creates
otCycle for each cycle of execution of an operation. A read-
Operand of an operation can be read only if there are ports
in the unit, which can read the operand (line 04). A port can
read an operand, if they share the same argument. When
an operand can be read, all the possible paths to read the
operand are discovered (lines 08-15), and listed in the OT.
An operand can be read from all the register connections
to the port, that have the same source register file as that
of the operand (line 10). It can also be read from register
connections that have a unit as a source (that means it is a
bypass) (line 13). Similarly all the paths for writing (lines
21-28) and bypassing (lines 29-36) operands are discovered
and listed in the OT. In the cycles when the operands are
read, the destination operands are also listed (lines 37-40).

GenerateOT(Operation op)
01: processorP ipeline = (U, E)
02: u0 = processorP ipeline.root()
03: otCycle = GenerateOTCycle(op, u0)
04: return otCycle

GenerateOTCycle(Operation op, Unit u)
01: otCycle = createOTCycle(op, u)
02: foreach (c ∈ U : (u, c) ∈ E)
03: if (op.opcode ∈ c.opcodes())
04: childOT = generateOTCycle(op, c)
05: otCycle.addChildOT (childOT )
06: return otCycle

Figure 4: GenerateOT

CreateOTCycle(Operation op, Unit unit)
01: otCycle = new OTCycle(unit)
02: foreach (opnd ∈ op.sourceOperands)
03: < arg, rf, rn > = opnd
04: if (unit.reads(arg))
05: if (rf �= IMM)
06: ro = new OperandInfo(rn)
07: rp = unit.getReadPort(arg)
08: foreach (rc ∈ rp.registerConnections())
09: if (rc.srcPort.inRF ())
10: ro.addPath(rp, rc, rc.srcPort, rc.srcPort.RF ())
11: else // (rc.srcPort.inUnit())
12: endIf
13: ro.addPath(rp, rc, rc.srcPort, rc.srcPort.Unit())
14: otCycle.addReadOperand(ro)
15: endFor
16: endIf
17: endIf
18: endFor

19: foreach (opnd ∈ op.writeOperands)
20: < arg, rf, rn > = opnd
21: if (unit.writes(arg))
22: wo = new OperandInfo(rn)
23: wp = unit.getWritePort(arg)
24: foreach (rc ∈ wp.registerConnections())
25: wo.addPath(wp, rc, rc.destPort, rc.destPort.RF ())
26: otCycle.addWriteOperand(wo)
27: endFor
28: endIf
29: if (unit.bypasses(arg))
30: bo = new OperandInfo(rn)
31: bp = unit.getBypassPort(arg)
32: foreach (rc ∈ bp.registerConnections())
33: wo.addPath(bp, rc.conn, rc.destPort, rc.destPort.unit)
34: otCycle.addBypassOperand(bo)
35: endFor
36: endIf
37: if (unit.isReadUnit())
38: do = new OperandInfo(rn, rf)
39: otCycle.addDestOperand(do)
40: endIf
41: endFor
42: return otCycle

Figure 5: Create otCycle

6. OT GENERATION WITH DATABASE
The algorithm AutoOT generates OTs on-demand. This

may cause an increase in compile-time. To reduce this im-
pact we note that large parts of OTs can be generated stati-
cally. In fact, all data independent portions of the OT can be
generated statically, if all the static information is provided
in the high-level processor description file. At compile-time,
just the data-dependent modifications need to be made to
create the OT.

We specify all the possible operation formats in the high-
level processor description. An operation format of of an
operation o is just like the operation, but it does not have
the opcode and the register number fields set. It should be
noted that the operation format of different add operations
which differ in register numbers is the same. Furthermore,
even different operations may share the same operation for-
mats. For example add and sub instructions share the same
formats. In fact there are a very small number of operation
formats for a given architecture. Thus only a few instruc-
tion formats need to be specified. For each operation format,
AutoOTDB1 pre-generates the OT format and stores them
in a database. OT format similarly is an OT with the op-
code and register number fields not set. At compile-time,



OT for each
operation format

Database
EXPRESSION description

Architecture
Processor

Formats
Operation

AutoOTDB1

Operation

OT-based Compiler

AutoOTDB2 OT

Figure 6: AutoOTDB Flow

when AutoOTDB2 gets the operation, it finds its format,
and looks up for the OT format in the database. The OT
format is then decorated with the opcode and register num-
ber and returned to the compiler.Thus only minimal amount
of dynamic work is done at compile-time to generate OTs
to reduce the impact on the compile-time.

7. MICRO-OPERATIONS
In many processors, complex operation break down into

simpler micro-operations before execution. The break-down
of the complex operation may be statically determinable or
data dependent. We specify the break down of a complex
operation into micro-operations in the pipeline unit in which
the operation breaks down. The OT for the operations is
only from the start to the unit in which it breaks down.
Then the OTs for the micro-operations are generated. If
the break-down of the operation is statically determinable,
the OT of the operation can be completely generated by
adding the OTs of the micro-operations as child of the main
OT. However, in the case when the operation break-down
is data-dependent, the complete OT cannot be fully gen-
erated. The OTs for the micro-operations are generated
and are stored separately in the database. At compile-time,
they are stitched together according to the data-dependent
breaking mechanism, decorated with the register numbers
and returned to the compiler.

8. EXPERIMENTS
We have modeled the popular Intel XScale embedded pro-

cessor using Operation Tables. We perform several experi-
ments to demonstrate the need and usefulness of automatic
OT generation.

8.1 OTs vs. RTs
Reservation Tables (RTs) have long been used in retar-

getable compilers to detect resources hazards in a given
schedule. Although RTs are not defined to handle the com-
plexities of modern processors, like register bypassing, and
micro-operations, we extend their definition for comparison
purposes. For the Intel XScale processor pipeline there will
be 15,592 RTs. In contrast, the number of Operation Tables
(OTs) is only 59. Thus even simple architectures with not-
so-long pipelines (7-stages) and not-so-many bypasses (up
to 21) can have thousands of RTs. Furthermore, RTs can
detect only resource hazards while OTs can detect both re-
source and data hazards. Therefore using OTs is a superior
choice than using RTs.

8.2 Reduction in Specification
Although there are only 59 OTs for the Intel XScale pipeline,

they comprise about 2000 lines of specification. Their spec-
ification has a lot of redundancy, which makes it highly er-
ror prone to manually specify all the OTs. On the other

hand, AutoOT requires us to specify the high-level proces-
sor description, which is only 500 lines; reducing the time
and effort required in manual specification. Note that while
OTs can be used for scheduling only, the high-level proces-
sor description has been shown to be useful in simulation,
verification of the processor.

However the true reduction in specification is achieved
during design space exploration. Consider a common ar-
chitectural modification that designers might be interested
in; the impact of adding/removing a pipeline unit. If we
remove the a pipeline unit in the integer pipeline of the In-
tel XScale, 21 (36%) OTs (300 lines) need to be modified,
and it will take approximately 2 days to do it manually. In
contrast, only (18 lines) need to be modified in the proces-
sor description, and it takes only 5 minutes. Thus there is
a huge time and effort savings in each exploration step by
using automatic generation of OTs.

8.3 Compile-time Overhead

OT Generation Time (AutoOT)

0

5000

10000

15000

20000

25000

30000

bitc
ount

su
sa

n

dijk
st

ra

st
rin

gse
ar

ch

blo
wfis

h

rij
ndae

l
sh

a
cr

c3
2

Benchmarks

ti
m

e 
(u

s)

Figure 7: OT Generation Time in AutoOT

AutoOT generates OTs for the compiler to enable bypass-
sensitive scheduling. Automated OT generation is the key
enabler of fast Compiler-in-the-Loop exploration of proces-
sor architecture. However on-demand generation of OTs re-
sults in an increase in the compile time. Figure 7 plots the
time for OT generation using the AutoOT algorithm. The
OT generation time of a benchmark is the total time re-
quired to generate the OT for each instruction of the bench-
mark. The OT generation speed is approximately 750 OTs
per second. For most applications, the OT generation takes
less than 5 seconds.

AutoOTDB reduces the impact of OT generation on the
compile-time by pre-generating parts of OTs and storing
them in a database. At compile-time, OT is generated by
stitching partial OTs together and decorating it with dy-
namic parameters. Figure 8 shows that AutoOTDB is able
to reduce the compile-time overhead of OT generation by
50% while using only 20 KB of memory. Thus AutoOTDB
is able to effectively trade-off significant compile-time over-
head for a marginal memory requirement.

8.4 Bypass Exploration
Owing to the increased productivity due to automatic gen-

eration of OTs, we were able to perform full exploration of
bypasses in the Intel XScale processor for the bitcount bench-
mark. Figure 9 plots the performance of the processor and
the energy consumption of the bypass control logic for each
bypass configuration. Since seven pipeline units generate



OT generation time saved by AutoOTDB over AutoOT

0%

20%

40%

60%

80%

100%

bitc
ount

su
sa

n

dijk
st

ra

st
rin

gse
ar

ch

blo
wfis

h

rij
ndae

l
sh

a
cr

c3
2

Benchmarks

%
 O

T
 g

en
er

at
io

n
 t

im
e 

sa
ve

d

Figure 8: Percentage savings of OT generation time

bypasses, and there are three source operands, 27×3 = 128
bypass configurations are possible. For each bypass config-
uration, the bypass-control logic was automatically synthe-
sized, and the power was estimated using synopsys design
compiler and synopsys power estimate [14] respectively. The
configuration at (100%, 100%) represents the performance
of the processor and power consumption of the bypass con-
trol logic with all the bypasses present. The performance
and energy consumption of all bypass configurations are re-
ported relative to this configuration. The performance of
any other configuration is therefore less than the full con-
figuration. The exploration discovered interesting bypass
configurations. For example, configuration 1, trades of 2%
performance for 14% less energy consumption. Similarly,
configuration 2 has 16% less power consumption at 6% loss
of performance. Using AutoOT we were able to perform
this exploration in 2 days. We estimate that exploration via
manual specification and modification of OTs could have
taken several months to complete. To conclude, automatic
OT generation capability empowers designers to perform full
exploration fast, and discover interesting alternate bypass
configurations.

Performance Energy Trade-off

70%

75%

80%

85%

90%

95%

100%

105%

100% 105% 110% 115% 120% 125% 130%

Execution cycles compared to full bypassing

E
n

er
g

y 
co

m
p

ar
ed

 t
o

 f
u

ll
b

yp
as

si
n

g

1
2

Figure 9: Performance Energy Exploration

9. SUMMARY
Customizing bypasses in processors is an effective way to

perform performance-energy-complexity trade-offs. This is
especially important for embedded processors, which have
strict multi-dimensional constraints. However to perform
meaningful exploration a bypass-sensitive compiler is re-
quired. Operation Tables are used to perform bypass-sensitive
compilation. Owing to the lack of automated methods to
generate OTs, currently thet are specified by hand. How-
ever, manual specification of OTs is not only a time consum-
ing process, but is also highly error-prone. In this paper we

presented AutoOT, an algorithm to automatically generate
OTs from a high-level processor description. Our experi-
ments on the Intel XScale processor and benchmarks from
MiBench demonstrate that AutoOT can greatly reduce the
time and effort required for specification. Further, to reduce
the compile-time overhead of OT generation, we presented
another novel algorithm, AutoOTDB. AutoOTDB can re-
duce the compile-time overhead of OT-generation by 50%.
Our experimental results show that automatic OT genera-
tion makes it possible to perform full bypass exploration on
the Intel XScale in reasonable time and discover interesting
alternate bypass configurations.

10. ACKNOWLEDGEMENTS
This work was partially funded by Intel Corporation, UC Mi-

cro (03-028), SRC (Contract 2003-HJ-1111), and NSF (Grants
CCR-0203813 and CCR-0205712), MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Inofrma-
tion Technology Research Center) support program supervised by
the IITA(Institute of Information Technology Assessment) (IITA-
2005-C1090-0502-0031), KRF contract D00191, Korea Ministry
of Information and Communication under Grant A1100-0501-
0004.

11. REFERENCES
[1] P. Ahuja, D. W. Clark, and A. Rogers. The performance

impact of incomplete bypassing in processor pipelines. In Proc.
of Symposium on Microarchitecture MICRO-28, 1995.

[2] E. S. Davidson. The design and control of pipelined function
generators. Int. IEEE Conf. on Systems Networks and
Computers, pages 19–21, 1971.

[3] E. S. Davidson. Effective control for pipelined processors. IEEE
COMPCON, pages 181–184, 1975.

[4] M. Freericks. The nML machine description formalism. T.U.
Berlin, Fachbereich Informatik, Berlin, 1991.

[5] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. Rtgen: an
algorithm for automatic generation of reservation tables from
architectural descriptions. IEEE Trans. Very Large Scale
Integr. Syst., 11(4):731–737, 2003.

[6] J. C. Gyllenhaal, W. mei W. Hwu, and B. R. Rau.
Optimization of machine descriptions for efficient use. In
MICRO 29, pages 349–358, Washington, DC, USA, 1996. IEEE
Computer Society.

[7] G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: an
instruction set description language for retargetability. In DAC
’97, pages 299–302, New York, NY, USA, 1997.

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. In
Proceedings of Design Automation and Test in Europe, 1999.

[9] C. W. Milner and J. W. Davidson. Quick piping: a fast,
high-level model for describing processor pipelines. In
LCTES/SCOPES ’02, pages 175–184, New York, NY, USA,
2002. ACM Press.

[10] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. Lisa -
machine description language for cycle-accurate models of
programmable dsp architectures. In DAC ’99, pages 933–938,
New York, NY, USA, 1999. ACM Press.

[11] A. Shrivastava, N. D. Dutt, A. Nicolau, and E. Earlie.
PBExplore: A framework for compiler-in-the-loop exploration
of partial bypassing in embedded processors. In DATE, pages
1264–1269, 2005.

[12] A. Shrivastava, E. Earlie, N. Dutt, and A. Nicolau. Operation
tables for scheduling in the presence of incomplete bypassing.
In CODES+ISSS ’04, pages 194–199, New York, NY, USA,
2004. ACM Press.

[13] C. Siska. A processor desription language supporting
retargetable multi-pipeline dsp program development tools. In
ISSS ’98, pages 31–36, Washington, DC, USA, 1998. IEEE
Computer Society.

[14] Synopsys Inc., http://www.synopsys.com/products/logic/
design compiler.html. Synopsys Design Compiler, 2001.

[15] G. Zimmermann. The mimola design system a computer aided
digital processor design method. In DAC ’79, pages 53–58,
Piscataway, NJ, USA, 1979. IEEE Press.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



