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Abstract

Entering the nanometer era, a major challenge to current design
methodologies and tools is to effectively address the high defect den-
sities projected for nanotechnologies. To this end, we proposed a
reconfiguration-based defect-avoidance methodology for defect-prone
nanofabrics. It judiciously architects the nanofabric, using proba-
bilistic considerations, such that a very large number of alternative
implementations can be mapped into it, enabling defects to be cir-
cumvented at configuration time in a scalable way. Building on this
foundation, in this paper we propose a synthesis framework aimed
at implementing this new design paradigm. A key novelty of our ap-
proach with respect to traditional high level synthesis is that, rather
than carefully optimizing a single (‘deterministic’) solution, our goal
is to simultaneously synthesize a large family of alternative solutions,
so as to meet the required probability of successful configuration, or
yield, while maximizing the family’s average performance. Experi-
mental results generated for a set of representative benchmark ker-
nels, assuming different defect regimes and target yields, empirically
show that our proposed algorithms can effectively explore the com-
plex probabilistic design space associated with this new class of high
level synthesis problems.

1. Introduction
Emerging nanotechnologies have seen significant advances in recent
years [1, 2, 3, 4], and it is predicted that the manufacturing of com-
puting nanosystems is likely to become practical within 10-15 years
[5]. Besides the inevitable challenges in terms of complexity and
scalability, the ability to handle defective devices will be a critical el-
ement of any future architecture, since defect rates are expected to be
much higher than current values [3, 5, 6]. Building on the success
of the TERAMAC experiment, Heath et. al. identified the possibil-
ity of utilizing reconfiguration to achieve defect tolerance in systems
targeted at emerging nanotechnologies [6]. Since then, several nanos-
tructures well suited to creating reconfigurable computational fabrics
have been successfully demonstrated, see e.g., [1, 2, 4]. Yet, design
approaches implementing defect tolerance via reconfiguration have to
contend with a major scalability challenge - defect mapping and con-
figuration must be performed on a per chip basis [6, 4, 7, 8]. Recently,
we proposed in [9, 10] a probabilistic design paradigm aimed at en-
abling both such complex tasks to be performed on chip, relying on
the processing power of the fabric itself – a critical step towards en-
suring scalability. It is based on structuring designs as hierarchies of
carefully dimensioned (re)configurable fabric regions, while decom-
posing and assigning functional flows to each region – by restricting
the functionality preassigned to a specific nanofabric region, we ef-
fectively limit the scope and complexity of the associated defect map-
ping and configuration tasks, see details in Section 2.

Beyond providing a promising foundation towards addressing the
scalability challenge of reconfiguration-based defect-avoidance tech-
niques, the approach in [9, 10] gives also a framework in which to

∗This work is supported in part by SRC Grant CRS 1152.001 and NSF Grant CCR
0310119.

explore critical new tradeoffs among performance, yield, and com-
plexity – as will be seen, the probabilistic nature of these tradeoffs
makes this new class of ‘reliability-aware’ high-level synthesis (HLS)
problems quite unique. In particular, rather than carefully optimizing
a single (‘deterministic’) solution, as done in traditional HLS [12], the
reliability-aware HLS problem requires the joint synthesis and opti-
mization of a sufficiently large family of alternative solutions, so as to
enable actual defects to be circumvented at configuration time - criti-
cal towards meeting the target probability of successful configuration,
or yield. The need to provide ‘redundant’ (or ‘extra’) configuration
capacity, so as to enable such multiple solutions [9, 10], is inexistent
in traditional HLS, and fundamentally impacts system performance,
thus leading to a substantial departure on the way the design space
should be explored. For example, judiciously increasing the ‘size’
of the behavioral flows (or ‘instructions’) to be atomically executed
on application-specific functional units, usually critical to achieving
high performance in traditional HLS, may actually hurt expected per-
formance in this new context. This is so because ‘larger’ flows may
require substantially more redundant configuration capacity to meet
the target yield, thus decreasing the degree of locality of a design, see
[9, 10].

Due to those key differences with respect to traditional HLS, this
new class of problems requires the definition of a new HLS frame-
work and associated support algorithms, appropriately exploring the
design space. This is the topic of this paper. Specifically, we propose
a Reliability-Aware Synthesis framework for reconfigurable NANOfab-
rics (RAS-NANO), aimed at systematically solving the reliability-
aware HLS problem defined in [9, 10]. The broad goal of RAS-
NANO is to generate designs that achieve the specified target yield
with best-expected performance, for a given application kernel.

We start by introducing RAS-NANO’s main synthesis flow and
then discuss in some detail the algorithms implementing its various
phases. Then, relying on extensive experimental data generated for
a set of representative benchmark kernels, assuming different defect
regimes and target yields, we empirically show that the proposed
framework can effectively explore the complex probabilistic design
space defined by this new class of HLS problems. When highly dense
yet defect-prone nanofabrics are considered, reconfiguration-based
defect-avoidance techniques provide a promising direction towards
enhancing yield [6, 7, 4, 8], thus the relevance of the form of HLS
addressed in this paper.

The paper is organized as follows. In Section 2 we briefly review
the architecture of our target nanofabric. An overview of RAS-NANO
is given in Section 3, and Sections 4, 5 and 6 discuss in detail the var-
ious algorithms implemented in the framework. Experimental results
are presented in Section 7. Finally, Section 8 concludes the paper.

2. Background on target nanofabric architecture
The three levels of design abstraction implemented on the programmable
nanofabric proposed in [9] are illustrated in Fig.1. The basic config-
uration unit of the nanofabric, called a region, is a grid comprised of
eight processing elements (PEs) and eight switching elements (SEs).
The PEs perform standard 8-bit arithmetic/logic operations, while the
SEs support up to two routing channels among adjacent PEs. Each re-
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Figure 1. Hierarchy of design abstractions.

gion of the nanofabric can be configured to execute a small behavioral
segment, or ‘complex instruction’, called a basic flow – see bottom
part of Fig.1. In order to enhance the probability of successful con-
figuration when defects are present in the target region, basic flows
must contain less than eight operations/nodes – for example, the basic
flow shown on the bottom frame of Fig.1 has only four operations. In
order to further increase such probability in a scalable way, the fab-
ric architecture provides an additional hierarchical level, comprised
of mapping units (MUs) – see middle part of Fig.1. Namely, m ba-
sic flows, i.e., a flow cluster, can be instantiated in an MU containing
n regions, where m is less than or equal to n – the middle frame of
Fig.1, for example, shows a flow cluster with three basic flows be-
ing mapped to an MU with four regions.1 Finally, MUs are grouped
together to form a component of the nanofabric, implementing an ap-
plication kernel, e.g., the auto-regression filter shown on the top of
Fig.1 is comprised of two MUs – for more details, see [9, 10].

3. Overview of reliability-aware synthesis flow
Given an application kernel, the goal is to generate a design with
‘best-expected’ performance meeting the specified probability of suc-
cessful configuration, or yield. Fig. 2 shows the overall synthesis
flow implemented in RAS-NANO – for simplicity, the target yield
for intra- and inter-MU communication resources is specified sepa-
rately from the yield for the component’s transformational resources,
comprising the actual regions instantiated within its MUs.

As shown in Fig. 2, the main steps of RAS-NANO’s synthesis flow
are:
(1) RAS-BehavBounds: decide on the maximum number of opera-
tions (or nodes) allowed on each basic flow (‘instruction size’), and
on the maximum number of basic flows possible to map into a single
mapping unit (MU) – discussed in Section 4.
(2) RAS-Allocation: decide on the number of MUs instantiated in the
component, and on the number of regions within each such MU – dis-
cussed in Section 4.
(3) RAS-InstructionSelection: generate a flow cover for the kernel’s
dataflow graph (DFG) using basic flows with no more than the al-
lowed number of nodes – discussed in Section 5.
(4) RAS-Binding: cluster and assign basic flows to MUs, subject to
convexity constraints (unlike conventional HLS, this is a many-to-
many binding) – discussed in Section 5.
(5) RAS-Routing: specify the communication structure, i.e., the num-
ber of intra- and inter-MU tracks instantiated in the nanofabric – dis-
cussed in Section 6.

The decisions made in steps RAS-BehavBounds and RAS-Allocation
are based on rough, preliminary yield estimates – Section 4 discusses

1As discussed in [9], the mapping unit abstraction creates a second level of redun-
dancy while retaining the original simplicity of the region based defect mapping and
configuration.
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Figure 2. RAS-NANO: overall high-level synthesis flow.

how such estimates are generated. Once all design details are fully
defined, one still needs to check if the actual yield meets the target
value. As shown in Fig. 2, if it does not, the level of redundant con-
figuration capacity provided on the design needs to be increased (in
RAS-AdjustCapacity) and then a new design cycle is initiated.

Final Configuration Step. Once the design is finished and a cor-
responding batch of programmable nanofabric chips are fabricated,
those chips still need to be configured. Namely, the defects on each
chip need to be first individually mapped (using the TMR-tile based
group testing method described in [11]) and then, based on such re-
sults, an exact placement of each basic flow onto a region of the ap-
propriated MU is determined, such that the identified defective re-
sources are avoided – this topic was extensively addressed in [9, 10]
and is beyond the scope of this paper.

4. RAS-BehavBounds and RAS-Allocation

The first two steps of RAS-NANO’s synthesis flow define the level of
‘redundant’ configuration capacity should be provided in the nanofab-
ric, so as to achieve the target yield. Specifically, they define the
‘size’ of the behavioral abstractions (basic flows and clusters of flows)
and the ‘size’ of the corresponding structural abstractions (number of
MUs and number of regions per MU), as discussed below.

4.1. Algorithm to determine configuration capacity
In order to enhance a component’s yield, one should increase its level
of ‘redundant’ configuration capacity, by: 1) instantiating more re-
gions in its MUs; 2) using a kernel cover with smaller basic flows;
and/or 3) instantiating more MUs and assigning fewer basic flows to
each MU.[9, 10] The previous alternatives are listed in increasing or-
der of their impact on yield and expected component latency – see
experimental results in [9, 10]. Accordingly, since our goal is to meet
the yield constraint with best expected performance, we have devel-
oped a greedy algorithm that increases configuration capacity, in that
order, until the target yield is met.

The pseudo-code of our algorithm is shown in Fig.3. Its inputs are:
nG – number of nodes in kernel’s DFG G; and Ptt – target yield for the
component’s transformational resources. The algorithm’s outputs are:
nmax – maximum number of operations allowed on any basic flow;2

fmax – maximum number of basic flows that can be mapped into one
MU; nMU – number of MUs to be instantiated in the component; and
nreg – number of regions in each MU.3 As shown in Fig.3, the algo-
rithm starts by using the least possible number of MUs, the largest

2As mentioned before, nmax ≤ MaxNodesPerFlow = 7.
3To control routing complexity, nreg ≤ MaxRegionsPerMU = 9, see [9].



Algorithm RAS-BehavBounds&Allocation:
1. nMU = max(1,(nG/MaxRegionsPerMU)/MaxNodesPerF low));
2. while(nMU ≤ nG) {
3. nmax = MaxNodesPerFlow;
4. while(nmax ≥ 1) {
5. fmax = max(1,(nG/nMU )/nmax); //estimate # of flows per MU
6. nreg = fmax; //# of regions starts with # of flows per MU
7. while(nreg ≤ MaxRegionsPerMU) {
8. estimate component yield P;
9. if P < Ptt

10. nreg = nreg +1; //increase configuration capacity 1)
11. else
12. return (nmax, fmax,nMU ,nreg); //found the solution
13. }
14. nmax = nmax −1; //increase configuration capacity 2)
15. }
16. nMU = nMU +1; //increase configuration capacity 3)
17. }
18. return error; //no feasible solution found

Figure 3. Algorithm for RAS-BehavBounds and RAS-
Allocation.

possible basic flows, and the minimum number of regions within an
MU, and then gradually increases configuration capacity, following
the order specified above, until the target yield is met, or unfeasibility
is detected. As one would expect, the same order is also used for in-
cremental increases in configuration capacity across design cycles or
iterations, within step RAS-AdjustCapacity.

4.2. Yield estimation
Preliminary Yield Estimation. The algorithm in Fig.3 requires es-
timating the component yield P (see line 8) – we solve this hier-
archically, by estimating the yield at each level of the design hier-
archy. First, similarly to [9, 10], we estimate basic flow yield at
the region level using Monte Carlo simulation, for a specific defect
regime (Pe,Pa,Pc), where Pe,Pa,Pc denote the probabilities of fail-
ure for PEs; PEs operating as arbiters; and connections, respectively.
Specifically, we generate a large number of defect realizations on a
region (so as to achieve an adequate confidence level), and then use
the TMR-based group testing method described in [9, 10] to obtain a
(partial) defect map for each such region instance. We then use a sim-
ple table-look-up algorithm to find if a feasible configuration for the
basic flow mapped into that region instance exists – the probability
of successful configuration, or yield, of the basic flow is given by the
actual fraction of region instances for which a feasible configuration
has been found.

We run such Monte Carlo simulations for essentially all possible
basic flows of various sizes, considering different defect regimes. Fig.
4 shows a sample of our results – namely, minimum and maximum
basic flow yields, for basic flows containing one to seven nodes, as-
suming defect regime (Pe,Pa,Pc) = (10,5,1)%. As one would ex-
pect, basic flow yield decreases as the number of nodes in the basic
flow increases, yet there is some variation for basic flows of identical
size, caused by their distinct connectivity requirements. When ini-
tially estimating the yield for a basic flow of a given size, one may
select more or less conservative values, depending on how aggressive
one may wish to optimize performance, knowing that by choosing
less conservative values one may need to iterate over several design
cycles.

Yield at the next level of hierarchy, i.e., MU level, is roughly es-
timated assuming that all basic flows have the same size.4 For this
special case of fmax identical basic flows being mapped into nreg re-
gions, the MU level yield is directly given by:

PMU =
nreg

∑
i= fmax

( nreg
i )Pi

r(1−Pr)nreg−i (1)

4As before, we assume an independent distribution of defects across regions.
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where Pr is the estimated yield for the particular basic flow being
considered, obtained as discussed before.

Finally, the yield estimate at the component level P, is given by

P =
nMU

∏
i=1

PMUi (2)

where PMUi is the yield of the component’s ith MU.
Final yield estimation. The procedure used to estimate the yield

of a detailed component design is very similar to that used during the
preliminary phase, except that for the former we know the exact flow
cover and resource allocation and assignment decisions implemented
in the design, and can thus be more accurate. Also, at the MU level,
we need now to consider the more generic case of mapping different
basic flows to an MU – we have developed a set of dominance rules to
enable a more efficient estimation process for those cases, yet space
limitations preclude us from presenting those rules here.

5. RAS-InstructionSelection and RAS-Binding
In the two subsequent steps of RAS-NANO’s synthesis flow – also
called ‘clustering’ phase – a flow cover for the kernel’s data flow
graph (DFG) is generated (RAS-InstructionSelection), and then an
assignment of the resulting basic flows to MUs is performed (RAS-
Binding), satisfying the yield related behavioral bounds nmax and fmax,
and attempting to minimize expected (or average) latency. Further-
more, as discussed in [9], the sets of basic flows (or ‘flow clusters’)
assigned to the various MUs must also satisfy convexity constraints,
that is, there cannot be ‘circular’ (input/output) data dependencies
among them.

Fig. 5 illustrates the results of the two clustering steps – the out-
put of the RAS-InstructionSelection step is a node-clustered DFG,
denoted G f (see basic flows f1, f2, f3 and f4 in Fig. 5(b)), and the
output of the RAS-Binding step is a flow-clustered DFG, denoted G f c
(see flow clusters C1 and C2 in Fig. 5(c)), where each flow cluster is
assigned to an MU. Note that G f c has three types of edges: intra-flow
edges, inter-flow edges, and inter-flow-cluster edges. As discussed in
[9], the intra-flow edges do not cause extra delay, while the inter-flow
and inter-flow-cluster edges do incur data transfer delays, correspond-
ing to moving data between regions belonging to the same or to dif-
ferent MUs. Note finally that the delay incurred by such data transfers
may vary among different component instances, since the mapping of
basic flows to regions is not fixed, and depends upon the actual de-
fect distributions on each chip. Accordingly, our clustering algorithm
uses average values for such delays, derived using a combination of
analysis and simulation, for different structural scenarios.



Algorithm RAS-Init:
1. for each node v in G following the ranking order {
2. for each candidate basic flow f {
3. if cluster(v) = f satisfies size and convexity constraints
4. calculate trcost(v, f );
5. else
6. mark cluster(v) = f inadmissible;
7. }
8. select cluster(v) = f minimizing trcost(v, f );
9. if no admissible clustering of v can be found {
10. find the first clustered node vb that satisfies the conditions:
11. a) cluster(vb) = f such that cluster(v) = f is non-convex;
12. b) ∃ a vb’s successor s such that cluster(s) �= cluster(vb);
13. c) vb has not been backtracked before;
14. re-cluster vb such that cluster(vb) = cluster(s);
15. go back to line 1 and loop restarts from the node after vb;
16. if such backtrack node vb cannot be found
17. create a new basic flow for v to be clustered;
18. } }

Figure 6. Algorithm for initial reliability-aware clustering.

5.1. Algorithm for clustering phase: RAS-TPC
RAS-NANO’s clustering phase bears considerable resemblance to
clustering problems defined in the context of traditional HLS and
compilers, see e.g., [15, 16, 13, 14]. In fact, we were able to suc-
cessfully adapt TPC (Two-Phase Clustering), a well-known state-of-
the-art algorithm proposed by Lapinskii et. al.[15], to address our
clustering phase. As discussed in the sequel, our ‘reliability-aware’
version of the algorithm, denoted RAS-TPC, is used in both the node
clustering and the flow clustering phases of RAS-NANO.5.

5.1.1. Node clustering step: RAS-InstructionSelection
Similarly to TPC, RAS-TPC starts by performing a fast greedy clus-
tering, and then iteratively improves on that initial solution – both
phases of the algorithm are briefly discussed below.

1) Initial Clustering Phase. The greedy algorithm that generates
the initial clustering is shown in Fig.6 – lines in bold represent our ad-
ditions/enhancements to the original TPC. The order in which nodes
are considered for clustering (line 1) is determined by a ranking func-
tion identical to that proposed in [15], which considers the as-late-
as-possible (ALAP) value of the candidate operation/node, and its
mobility and number of successors (see [15] for more details). Then,
for the selected node v, we evaluate each possible alternative cluster-
ing to a basic flow f (cluster(v) = f ), using cost function trcost(v, f )
(line 4), which similarly to [15], is defined as follows:

trcost(v, f ) = trcostdd(v, f )+ trcostcc(v, f ) (3)

where the ‘direct data dependency’ component trcostdd(v, f ) favors
solutions that place consumer and producer operations into the same
basic flow, and the ‘common consumer’ component trcostcc(v, f ) fa-
vors solutions that place multiple producers to a common consumer
into the same basic flow – for more details see [15].

However, differently from the original TPC, we perform a convex-
ity constraint check during the node clustering step (line 3). Note
first that non-convex data dependencies among basic flows assigned
to the same MU are allowed, in order to preserve fine-grain paral-
lelism [9]. That is, convexity constraints need to be enforced only
across MUs. However, the joint consideration of nmax and fmax does
limit the maximum number of nodes that can be mapped into a single
MU – to nmax · fmax. Therefore, although allowing non-convex data
dependencies during this phase, we need to make sure that the total
number of nodes in basic flows exhibiting ‘circular’ data dependen-
cies does not exceed that limit, so as to enable all such basic flows to

5We have also developed a reliability-aware version of HP’s Partial Component Clus-
tering (PCC) algorithm [16], denoted RAS-PCC, yet our version of RAS-TPC consis-
tently outperformed RAS-PCC, and thus we only present results for the former.
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Figure 7. Backtracking during initial clustering.

be later mapped to a single MU – otherwise, convexity constraints at
the MU level would be violated.

We use the depth-first search based algorithm [17] to check for con-
vexity constraints’ violations. If one such violation is detected, it must
be eliminated. Meeting convexity constraints with a greedy clustering
algorithm is somewhat challenging, since convexity is a global con-
straint, while our algorithm makes clustering decisions greedily/locally.
In [13] and [14], convexity constraints are considered during instruc-
tion selection, yet both algorithms have worst-case exponential com-
puting complexity, in contrast to our low cost heuristic. We have thus
developed a simple backtracking strategy to tackle the issue (see line
9 - 15), which has performed quite effective in practice. Fig.7 is used
to illustrate the heuristic. Consider a DFG G containing 4 nodes, and
assume nmax = 2, fmax = 1. After clustering node 1 to basic flow 1,
node 2 to basic flow 2, and node 3 to basic flow 1, when the algo-
rithm tries to cluster node 4, no admissible clustering can be found,
since clustering it to basic flow 1 violates the flow size constraint, and
clustering it to basic flow 2 violates convexity constraints at the MU
level. In order to handle the problem, our algorithm starts by back-
tracking to a previously clustered node, selected as specified in lines
11 to 13. Specifically, following backwards the ranking order for the
previously clustered nodes, the algorithm backtracks to the first node
vb that meets the following three conditions: 1)vb was clustered to a
basic flow that the current node cannot be clustered to, without violat-
ing convexity constraints ; 2) at least one of vb’s successors, denoted
s, was clustered to a basic flow different from its own; 3) vb was not
backtracked to before. Once the backtracking node vb is selected,
the algorithm re-clusters it to the basic flow of its successor s, and
then restarts the regular greedy algorithm from the next node in the
ranking order. For the example in Fig.7, node 2 would be the first
one to satisfy the three conditions, and hence would be selected to be
the backtracking node. Node 2 would then be re-clustered to basic
flow 1, and the normal clustering process would resume with node 3,
eventually generating the solution shown in Fig.7.

Of course, there is always the possibility that the backtracking
heuristic cannot generate a feasible solution – either because a con-
vex clustering (at the MU level) does not actually exist or because the
heuristic has failed. If this happens, as shown in line 16 and 17, we
cluster the problematic node to a new basic flow, in order to avoid size
and convexity constraint violations. Of course, this might adversely
impact performance, since the use of ‘smaller’ basic flows results in
more inter-flow data transfer delays. Still, our heuristic has so far
proven to be quite effective in identifying those clustering decisions
that may have caused a constraint violation – specifically, for all of
our experiments, it has failed to backtrack successfully only once (for
one of the DCT-DIT experiments, see Section 7), resulting in one
more basic flow than expected for that case, with insignificant impact
on performance.

2) Iterative Improvement Phase. Although our initial cluster-
ing algorithm performs pretty well (see Section 7), improvement is
in general still possible. To take advantage of these opportunities,
similarly to [15], we have developed a relatively low-cost iterative
improvement algorithm – see Fig.8, where lines in bold represent our
enhancements to the original TPC algorithm.

The iterative improvement algorithm is based on boundary per-
mutations [15]. The boundary nodes (line 5) comprise those nodes



Algorithm RAS-IterativeImprovement:
1. progress = 0; iteration = 0;
2. compute the initial clustering cost;
3. do {
4. iteration++;
5. for each boundary node v in G {
6. for each node p ∈ ad j(v) and cluster(p) �= cluster(v) {
7. temporarily move v to cluster(p);
8. makes a chain of temporary moves of boundary nodes

until target flow contains no more than nmax nodes;
9. }
10. if the temporary clustering satisfies convexity constraint {
11. compute the new clustering cost;
12. if the clustering cost improves {
13. commit the chain of moves and update the clustering;
14. progress = 1; }
15. } }
16. } while (progress == 1)and(iteration <= iterationmax);

Figure 8. Algorithm of reliability-aware iterative improve-
ment for clustering.

that have either predecessors or successors clustered to different ba-
sic flows – those nodes will be moved around different basic flows,
providing opportunities for eliminating or collapsing associated inter-
flow data transfers. Differently from the original TPC algorithm,
though, our boundary permutations need to satisfy constraint nmax, as
well as convexity constraints. Namely, after moving a boundary node
to a different basic flow, the latter may contain more than nmax nodes,
and hence we need to make sure that it will also export a boundary
node to another basic flow – such chain of moves should continue un-
til the last basic flow to receive a boundary node still contains no more
than nmax nodes – see lines 7 and 8 in Fig.8. Note also that, at any
step of the chain, if there are multiple options, the one minimizing
cost function (4) (discussed below) is selected.

After completing one such chain of moves, we obtain a new tem-
porary clustering solution and evaluate it using a suitable cost func-
tion (line 11) – if the resulting cost improves, we accept the chain of
moves and update the current clustering solution. The algorithm ter-
minates when all possible chains of moves fail to improve cost or an
upper bound on the number of iterations is reached. The following
cost function is used in RAS-TPC:

Ccost = (LGf ,Nm,Mb) (4)

where LGf is the ASAP schedule latency of the node-clustered DFG
G f , Nm is the number of inter-flow edges, and Mb is the solution’s mo-
bility balance. To compare two clustering solutions, the three com-
ponents of the cost function are compared in lexicographical order.
LGf and Nm aim at minimizing average latency. Mb aims at discour-
aging the clustering of nodes with large mobility differences into the
same basic flow, since this will likely decrease the exposed instruc-
tion level parallelism, and thus potentially harm performance as well6

– it is defined as the sum of mobility differences over all flows, i.e.,

Mb = ∑
∀ f∈Gf

µ f ,max −µf ,min (5)

where µf ,max and µf ,min denote the maximum and minimum mobility
associated to the nodes in basic flow f , respectively.

5.1.2. Flow clustering step: RAS-Binding
After clustering the original DFG G into basic flows, as discussed
above, we contract each resulting basic flow to a node vc, and con-
struct a corresponding contracted graph Gc.7 When there is a ‘circu-
lar’ data dependency among basic flows (this is possible since non-
convexity is allowed at the node clustering phase), we further contract

6Since an MU cannot start execution until all of its input data is ready[9], nodes with
high mobility will have to wait until the data for the low mobility nodes arrives, if such
data is produced by a different MU.

7There is an edge between two nodes in Gc if there is a data dependency between any
pair of nodes in the corresponding two basic flows.

all the flows contained in the ‘circular’ dependency path into a single
node (such that all such basic flows will necessarily be mapped to a
single MU), and the contracted graph Gc becomes acyclic. (Recall
that, as discussed in Section 5.1.1, the actual number of basic flows
contained in each such contracted node will necessarily satisfy fmax.)
After generating the acyclic contracted graph Gc, we simply re-apply
the RAS-TPC algorithm (used in the previous step) to Gc, so as to
derive the set of basic flows (or flow clusters) to be assigned to each
MU, where cluster size is now limited by fmax (rather than nmax).

6. RAS-Routing
After decisions on MU allocation and binding are made, we still need
to determine how many routing tracks are needed to support intra- and
inter-MU data transfers, assuming a target nanofabric with uniform
routing channels [9, 10], i.e., with the same number of tracks on all
channels, and considering a given probability of a track being defec-
tive (Pet). Note that, differently from previous approaches, the exact
placement of basic flows into the internal regions of a component’s
MUs is not known – our goal is to actually determine the number of
tracks required to support all potential alternative solutions. In or-
der to do so, we consider a number of distinct basic flow placements,
aimed at exposing different forms of ‘congestion’, namely: 1) ‘com-
pact’ placement – the basic flows are mapped to regions all located at
one corner of the corresponding MU; 2) ‘spread’ placement – the ba-
sic flows are mapped to regions as far from each other as possible on
the appropriated MU; and 3) random placements – the basic flows are
randomly mapped to regions of the appropriated MU. For each such
placement, we start by assuming that all routing tracks are defect-free,
thus reducing our problem to the so called ‘symmetrical FPGA array
routing’.[18] We then execute the well-known Pathfinder congestion
negotiation routing algorithm, used in VPR [18], to obtain the num-
ber of tracks required by that particular solution. Once the process
is repeated for all alternative placements, we select the highest num-
ber of defect-free routing tracks required by any such solution. Then,
given Pet and the target yield for communication resources Ptc, we
use a binomial distribution (assuming that all tracks are probabilisti-
cally independent from a standpoint of faults) to estimate the number
of tracks required in the presence of defects.

7. Experimental validation
Table 1 shows the characteristics of the benchmarks used in our ex-
periments. They include an auto-regression filter (AR), an avenhous
filter (AF), a finite impulse response filter (FIR) and its unrolled ver-
sion (FIRu), an elliptic wave filter (EWF), a version of the fast fourier
transform (FFT) used in [15], and various discrete-cosine transform
(DCT) algorithms [15].

Table 1. Characteristics of benchmark kernels.

Kernels #nodes #nodes in critical path #connected components
AR 28 8 1
AF 18 7 1
FIR 16 9 1
FIRu 32 11 1
EWF 34 14 1
FFT 38 4 3
DCT-LEE 49 9 2
DCT-DIF 41 7 2
DCT-DIT 48 7 1

Table 2 shows a sample of the results generated by RAS-NANO
for each kernel, for various values of Ptt and Ptc, and assuming defect
regime (Pe,Pa,Pc) = (10,5,1)% (Results for other defect regimes ex-
hibit similar trends and are omitted due to space limitations.) For
each design, nmax, fmax,nMU and nreg are shown in columns 3 to 6,
respectively.8 The design’s average latency is given in column 9 – this

8Recall that those denote the maximum basic flow size, maximum number of flows



value is computed assuming a two cycle operation delay[9, 10], and
average inter-flow and inter-flow-cluster data transfer delays of two
and four cycles, respectively. The number of required routing tracks
(to support inter- and intra-MU data transfers) is given in columns 7
and 8, where the former (ReqTracks) is the defect free value (worst
case among 8 different basic flow placement scenarios, as described
in Section 6), and the latter (ActualTracks) is the total number of
tracks required to meet the target yield Ptc, assuming the probabil-
ity of a track being defective Pet = 1%.

Table 2. Results for benchmarks when (Pe,Pa,Pc) =
(10,5,1)%.

Kernel Ptt (=Ptc) nmax fmax nMU nreg ReqTracks ActualTracks AvgLatency
AR 1−10−5 6 3 2 8 5 8 22

1−10−10 4 3 3 9 4 9 26
1−10−15 3 2 5 9 3 11 30

AF 1−10−5 6 3 1 8 6 9 16
1−10−10 4 3 2 9 5 11 22
1−10−15 3 2 3 9 3 11 26

FIR 1−10−5 6 3 1 8 4 7 22
1−10−10 4 2 2 7 3 8 26
1−10−15 3 2 3 9 3 11 30

FIRu 1−10−5 6 3 2 8 6 9 30
1−10−10 4 3 3 9 4 9 34
1−10−15 3 2 6 9 4 12 44

EWF 1−10−5 6 3 2 8 6 9 34
1−10−10 4 3 3 9 6 12 38
1−10−15 3 2 6 9 4 12 44

FFT 1−10−5 5 4 2 9 7 10 16
1−10−10 4 3 4 9 5 11 22
1−10−15 3 2 7 9 4 12 30

DCT-LEE 1−10−5 6 3 3 9 6 9 32
1−10−10 4 3 5 9 5 11 40
1−10−15 3 2 9 9 3 11 52

DCT-DIF 1−10−5 4 6 2 9 7 10 28
1−10−10 4 3 4 9 5 11 34
1−10−15 3 2 7 9 4 12 48

DCT-DIT 1−10−5 4 6 2 9 9 12 24
1−10−10 4 3 4 9 6 12 38
1−10−15 3 2 8 9 4 12 50

The results presented in Table 2 empirically show that the RAS-
NANO framework can effectively explore the complex probabilis-
tic design space defined by the reliability-aware HLS problem ad-
dressed in this paper. Namely, as it can be seen, average component
latency increases with increases in target yield – this is exactly what
one would expect, since increases in redundant configuration capac-
ity are needed to achieve the higher yield, but they have a deleterious
effect on locality. Note also that the number of defect free tracks
decreases with increases in yield, since increasing redundant config-
uration capacity leads to less congested designs. However, when we
simultaneously (and more realistically) consider the presence of de-
fective routing tracks, again the number of tracks tends to increase as
the target yield increases.

RAS-NANO’s execution time is essentially determined by its clus-
tering phase. Thus, to assess the effectiveness of the somewhat costly
iterative improvement step of RAS-TPC, we considered the complete
algorithm as well as the version without iterative improvement, i.e.,
RAS-INIT. For each kernel, we report the execution time of both al-
gorithms, as well as the average latency of their corresponding design
solutions. Fig.9 shows samples of our results, generated for target
yield Ptt of 1− 10−15. The execution time in milliseconds was ob-
tained on a SparcV9 750MHz processor. In average over all our ex-
periments, RAS-TPC achieves 17% improvement in average latency
with respect to RAS-INIT, with roughly 4 times increased execution
time. Accordingly, in the current version of RAS-NANO, design-
ers can select to enable iterative improvement or not, based on their
specific applications, optimization goal, and sensitivity to execution
time.
mapped to one MU, the number of MUs, and the number of regions per MU, for the
particular design.
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Figure 9. Results for benchmarks with target yield Ptt =
1−10−15 when (Pe,Pa,Pc) = (10,5,1)%: (a) Average latency;
(b) Algorithm execution time in milliseconds.

8. Conclusions
In this paper, we have proposed a reliability-aware high-level syn-
thesis (HLS) framework, RAS-NANO, aimed at synthesizing a suffi-
ciently large family of alternative solutions, to be mapped on defect-
prone but reconfigurable nanofabrics, so as to meet the specified yield
with best expected performance. Experimental results generated for
a set of representative benchmark kernels, assuming different defect
regimes and target yields, empirically show that this synthesis frame-
work can effectively explore the complex design space induced by the
new class of reliability-aware HLS problems.
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