

A Concurrent Testing Method for NoC Switches

Mohammad Hosseinabady, Abbas Banaiyan, Mahdi Nazm Bojnordi, Zainalabedin Navabi
Electrical and Computer Engineering, University of Tehran14399 Tehran, Iran

 mohammad@cad.ece.ut.ac.ir, {a.banaiyan, m.bojnordi}@ece.ut.ac.ir, navabi@ece.neu.edu

Abstract
This paper proposes reuse of on-chip networks for

testing switches in Network on Chips (NoCs). The
proposed algorithm broadcasts test vectors of switches
through the on-chip networks and detects faults by
comparing output responses of switches with each other.
This algorithm alleviates the need for: (1) external
comparison of the output response of the circuit-under-test
with the response of a fault free circuit stored on a tester
(2) on-chip signature analysis (3) a dedicated test-bus to
reach test vectors and collect their responses.
Experimental results on a few test benches compare the
proposed algorithm with traditional System on Chip (SoC)
test methods.

1. Introduction
RECENT advances in IC design methods and

manufacturing technologies allow designers to integrate the
complete system on a single chip. This so-called SoC
product class is a yet-evolving design style that integrates
technology and design elements from other system driver
classes into a wide range of high-complexity, high-value
semiconductor products [1]. Even though commercial
products currently exhibit only a few integrated cores [2],
in the next few years, technology will allow the integration
of thousands of cores, making a large computational power
available.

Today’s System on Chip (SoC) technology can achieve
unprecedented computing speed that is shifting the IC
design bottleneck from computation capacity to
communication bandwidth and flexibility [3]. Also, since
communication buses between the cores are not
sufficiently scalable, bus-based SoCs (the common type of
SoCs) cannot handle this high volume of communication
between the cores in the SoCs. In addition, these SoCs
cannot be used for high speed serial communications.
Moreover, as volume of the data communication on the
chip increases, the power consumption increases.
Therefore, a scalable communication infrastructure that
better supports the trend of state-of-the-art SoC
integrations is required. Thus, recent researchers use
packet-switched micro-network on a chip, so called NoC,
as a scalable communication media. The basic idea is
borrowed from traditional large-scale multi-processors and
the wide-area network domains.

It is important that SoC designers consider a test
methodology for their new SoC architectures. Like other
SoCs, an NoC has to be tested for manufacturing defects.
One of the main problems for testing an SoC is the access
to the cores during the test process [4]. A number of
solutions have been presented in the literature [5] [6] to
solve this problem while minimizing test costs, mainly pin
count and test time. Most methods rely on scalable and
easy-to-design test access mechanisms (TAMs) to reduce
design time. For those methods, bus-based TAMs are
usually chosen. Since the NoCs consist of functional cores,
switch cores and interfaces, test methodologies should be
performed on each of these three parts.

This paper proposes a novel concurrent test
methodology for testing the switches of an NoC. The rest
of the paper is organized as follows. Related works on
testing the SoC and NoC are reviewed in Section 2. Section
3 introduces some preliminaries and definitions. Our
proposed algorithm is discussed in Section 4. In our
proposed algorithm, a wrapper architecture is proposed for
the switches and this is discussed in Section 5. In Section 6
test time calculation will be described. The proposed
switch architecture will be discussed in Section 7. Finally
the paper ends with experimental results and conclusions.

2. Related Works
A packet switching communication-based TAM for an

SoC has been proposed in [7]. The proposed TAM model
is called NIMA, and it is defined for the test task. Thus,
routing and addressing strategies are defined considering
only the test requirements of each system. Test and
verification challenges for system chips that utilize on-chip
network has been presented in [8]. In [8] an NoC has been
exemplified by Philips’ ÆTHEREAL NoC architecture. It
shows the particular advantages of using an NoC for both
testing and verifying the network components, and testing
and verifying the other components of the SoC. The reuse
of functional connections during test has been suggested in
the literature [9] [10]- [13] to reduce test costs in terms of
area and pin overhead. For those methods, a core-to-core
connection model is assumed. The impact of the reuse of
an on-chip network for the test of core-based systems is
described in [14], [15]. These references formalize a reuse
strategy aiming at minimizing the system test costs. A
network-based embedded core testing architecture using

3-9810801-0-6/DATE06 © 2006 EDAA

the star-connected OCN has been proposed in [16]. This
architecture provides the scalability and configurability for
system integration and core-based test approach. All of
these test architectures need the following methods of fault
detection: (1) external comparison of the output response
of the circuit-under-test with the response of a fault free
circuit stored on a tester, (2) on-chip signature analysis and
(3) a dedicated test-bus to reach test vectors and collect
their responses. Each of these methods has certain
shortcomings that are alleviated by using output
comparison for identical circuits. The external comparison
method has the memory overhead of storing fault free
responses. Signature analysis may suffer from aliasing, or
error masking, that may cause a fault to go undetected even
if it is propagated to an output of the circuit-under-test.
Dedicated test bus which currently adds to the SoC has
area and power overhead.

3. Preliminaries
NoCs can be defined as a set of structured routers and

point-to-point channels interconnecting the processing
cores of an SoC, in order to support communication among
them. An NoC consists of two parts: switches and core
interfaces. A network of the switches provides
interconnection between cores. NoCs typically use the
message-passing communication model, and the processing
cores, attached to the network, communicate by sending
and receiving request and response messages. These
messages are called packets. Each packet is composed of a
header, a payload and a trailer.

A topology can be represented as an undirected

connected graph G(V,E), where V={v1,v2,…vn} is the set of
vertices or nodes and E={e1,e2, …em} is the set of edges or
links in the corresponding network. We use N(v) to denote
the set of neighbors of node v∈V. Also, we denote by δ(v)
= |N(v)| the number of such neighbors. Some examples of
topologies include regular tile-based topologies: grid,
torus, hypercube, ring, multi-stage and fat-tree which are
suitable for interconnecting homogeneous cores in a
multiprocessor chip, and irregular topologies which are

suitable for heterogeneous cores on the SoC having varied
functionality [2].

A topological centre of graph G(V,E) is defined as node
v∈V that is closest to any other node in the network graph,
i.e., node v which minimizes maxu∈V d(v,u), where d(v,u) is
the distance between nodes v and u.

Figure 1 shows an SoC implementation of an MPEG4
decoder, using an NoC for its on-chip communication. In
the MPEG4 design, many of the cores communicate with
each other through the shared SDRAM. So a large switch
(S1_1) is used to connect the SDRAM, while smaller
switches are instantiated for the other cores [2]. Large
switches can be built by wiring smaller switches which
means that we can have a fixed type switch and use it for
all switch sizes. Therefore each NoC can be restructured as
an NoC with identical switches. Even though,
reconstructing the NoC to an identical-switch-based NoC
may cause more area overhead for the NoC, but it may
distribute network traffic and alleviate communication load
over the switches. Reconstructing the NoC by the identical
switches should be performed according to the design
requirements and constraints.

4. Proposed Work
We propose a novel concurrent test methodology for

testing the switches of an NoC. As mentioned above, we
assume that all switches in the NoC are identical. So these
identical blocks can reuse the same set of test vectors. Our
approach broadcasts these test vectors through the network
to be applied to these identical blocks. The proposed
scheme helps obtain good reliability of switches, since
switches are tested in a real integrated platform. Fault
detection based on comparison of output responses of
identical circuits reusing existing connections alleviates the
need for each of the traditional inefficient methods of fault
detection mentioned in the section on related works.

Our test algorithm follows the scan-based methodology
for testing the switches in the NoC. Since in our NoC
architecture, all switches are identical, broadcasting the test
vectors, in the form of packets, through the network is
sufficient for testing them. The most immediate switch (es)
connected to the source of test data is (are) called Test
Access Switch(es), (TAS). From TAS all test data are
broadcasted.

We assume a test source, connected to TAS, generates
the test vectors serially and provides them to the TAS. TAS
not only delivers the obtained test vector to its neighboring
switches but also feeds them into its own scan-chain,
simultaneously. After shifting a test vector into the scan-
chain of the switch is finished, the switch captures the
results of its combinational part in the scan-chain in one
clock cycle (capture cycle). Because all switches should
generate the same result for a specific test vector, the Test
Access Switch broadcasts its result to its neighbors for
comparing them with the corresponding results of their
switches. This way, we are able to detect possible faults.

DDR
SDRAM

iDCT,
etc

Audio

Up
Samp

BAB
Calc

SRAM

RISC
CPU

Media
CPU

SRAM
Raster

izerau vu

S2_4S2_3S2_2S2_1

S1_1

S1_2

s3

Figure 1. MPEG Decoder

Other switches, in addition to this comparison, perform
the same function as the TAS in sending the received test
vector and their captured results to their neighbors. This
excludes the boundary switches. A boundary switch is a
switch in the NoC that has at most one switch in its
neighborhood. Such a switch does not send test vectors and
corresponding results to its neighbors. When a switch
detects a discrepancy between the received and its captured
results, it notifies the existence of a fault through a signal
to its feeding switch. This signal is passed through the
network until it reaches the TAS. Then TAS reports the
existence of the fault in the NoC to the outside of SoC.

For example, Figure 2 shows a network of switches and
communication links among the switches of an NoC. This
network consists of four nodes (switches) and three edges
(channels). As depicted here, Switch 2 (shaded switch) is
chosen as the Test Access Switch and receives test vectors
from a test source.

Suppose the length of each test vector is four; so, four
clock cycles are needed to shift the test vector into the scan
chain of a switch. Also, assume the length of the result of
the switch to the test vector is five; therefore, five clock
cycles are needed to shift out the result.

Figure 3 illustrates the timing details of broadcasting test

vectors through the switches of Figure 2. In this figure,
Row 1 shows shifting a test vector from the test source into
the Test Access Switch (TAS) (S2) and its capture cycle
(CapCycle). Row 2 shows broadcasting the test vector to
Switches 1 and 3. Furthermore, this row shows that TAS
broadcasts its result to its neighbors after an idle clock

cycle, which is needed to synchronize TAS with its
neighbors.

Row 3 and 4 show shifting a test vector from the source
into Switches 1 and 3 (S1, S3), respectively and their
capture cycles. After the capture cycles, these switches
compare the received result from the source point switch
with their own results. If a switch detects a discrepancy
during this comparison, it stops its test process and issues a
fail signal to its predecessor switch to notify the existence
of a fault in the NoC. Rows 5 and 6 are similar to Rows 2
and 3, respectively. Switches 1 and 4 are the boundary
switches, so they do not broadcast test vectors.

In this example, 12 clock cycles are required to test all
switches in the NoC by applying a test vector. Using our
method, as shown in this example; the switches are tested
concurrently in the test mode.

Finding the TAS and the broadcasting tree impacts the
test application time and power consumption in the NoC
during the test session. In broadcasting test data, the main
objective is to minimize usage of the resources by sending
test data from one or more source points to multiple
destinations. Examples of resources which are desired to be
minimized include bandwidth, time and connection costs.
Minimizing usage of the resources decreases the test
application time for NoC elements.

Our method broadcasts test vectors through the NoC in
the form of packets, called test packets. The most basic
way of sending test vectors through a network graph is
using flooding [17]. With this technique, a node that
receives a test vector sends packets to its adjacent nodes
through all its adjacent links. If node v receives packet p
from node u for which it is not the destination, then v first
checks if p was received before. If this is true, the packet
does not need to be sent again. Otherwise, node v just re-
sends the packet to all other adjacent nodes (excluding u).
It is clear that after at most n such steps (where n is the
number of nodes in the network), a test packet will reach
all nodes, including the destinations. Thus, the algorithm is
correct. The number of messages sent by each node is at
most n. The number of messages received by v is at most
nδG(V).

S2

S1

S4S3

Test Source

Figure 2. Network Graph of Figure 1

clock

t0 t1 CapCycle

t0
t1 r2,0 r2,1 r2,3

t0 t1

r2,0 r2,1

r3,0 r3,1 r3,3

idle

idle

Comparing
incoming

result with
captured

result

t0
t1 CapCycle r3,0 r3,1 r3,3

t2 t3

t2 t3

t2 t3

t2 t3

r2,2 r2,4

r2,2 r2,3 r2,4

r3,2 r3,4

r3,2
r3,4

S2
input

output
t0

t1 t3 CapCyclet2

S3
input

output

S4
input

output

t0 t1 CapCycle r2,0 r2,1t2 t3
r2,2 r2,3 r2,4S1

input

output

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3. Timing diagram of broadcasting test vectors through NoC of Figure 2

This method of packet routing (flooding) is simple, but
very inefficient. The first reason is that it uses more
bandwidth than required, since many nodes that are not in
the path to the destination will end up receiving a sent
packet. Second, each node in the network must keep a list
of all packets that it sends, in order to avoid loops. This
makes the use of flooding prohibitive for all but very small
networks.

For solving the problem of the flooding algorithm, test
vectors are inserted at the topological center of the
network. This is a switch with a minimum distance from
other switches. The inserted test vector is multicast from
this point through a minimum multicast tree. In this tree a
node that receives the test vector forwards it to its
neighbors in the tree. For minimizing the test application
time, we find the topological center of the network graph
and then find the minimum spanning tree rooted at this
topological center of graph.

The topological center of a graph can be computed
easily if all shortest paths among nodes are known. Using
Dijkstra’s algorithm [17], the shortest paths between nodes
is obtained. To find the optimum broadcast routing
(minimum broadcast tree), we use the Reverse Path
Forwarding algorithm [18] statically.

5. Proposed Wrapper for Switches
Test vectors are broadcast in the form of packets. There

are two types of packets: data packet, and test packet. One
bit in the packet distinguishes between these types. Data
packets are used during normal mode of the NoC to
perform the communication among the NoC. Test packets
are used during test mode of the NoC to test the switches.
The test packet consists of two parts: test vector and
response (Figure 3).

In order to apply our proposed method to an NoC, the
NoC switches must be equipped with certain features. As
mentioned above, each switch in the test mode should
receive test vectors from one of its neighbors, shift the test
vector into its scan chain and send this test vector and its
response to the next switch. Furthermore, each switch of
the network, except the switch at the access point, should
be able to compare the received result from its neighbor
with its own.

A wrapper circuit surrounding the switch performs the
above said task. The wrapper has no effect on the switch
functionality during the NoC normal mode of operation.
Figure 4 illustrates the structure of our proposed wrapper.
This wrapper comprises a controller, two scan chains for
inputs and outputs of the switch, an XOR to compare the
results, and some multiplexers to direct the output stream.

The wrapper controller checks the first bit of all newly
arrived packets. Once, a test packet is detected at an input
port, the controller sets the test mode for the switch. In this
mode, the switch scan becomes active. The two scan chains
of the wrapper concatenate the inputs and outputs of the
switch to the internal scan chain of the switch. At the same

time that a switch scan is active its controller sends the
same test data to some of its neighbors. The neighbors to
which test is sent are decided by the Minimum
Broadcasting Tree algorithm. The implementation of this
algorithm requires extra hardware in the switch that will be
discussed in Section 7. After shifting a test vector into the
scan chain is completed, the controller captures the
response of the switch in the scan chain (capture cycle).
This is an idle cycle.

In each test packet, the test vector is followed by the

response of the Test Access Switch (response part). After
the capture cycle, the response part of the input packet is
compared with the responses in scan chain, serially. Once,
the controller detects a discrepancy between these two
streams, a fault signal is returned back to the predecessor
switch to report the fault. Each switch that is notified of the
existence of a fault also notifies its predecessor switch of
the fault. Finally, the test access switch indicates that the
chip is faulty.

6. Test Time Calculation
Let N be the number of test vectors for a switch and nl,

ni, and no be the length of internal scan chain, number of
inputs, and number of outputs, respectively. Furthermore,
let d be the depth of a minimum broadcast tree.

Switches at the same distance to Test Access Switch are
tested simultaneously. Each switch under test gives the test
packet to its successor neighbor switches in the minimum
broadcasting tree only by one clock delay. Thus, the test
application time of an NoC, for one test vector, is equal to
the test application time of a switch, for that test vector,
plus the depth of the minimum broadcasting tree.

Therefore, the total test application time for an NoC can
be written as:

()() NdnnnTestTime oil *1,max +++=

7. A Proposed Switch
The same as switches in wide-area networks, switches in

the NoC consist of I/O ports, buffers and a switch core. In
order to implement our test scheme, a simple switch has
been designed. Figure 5 shows part of this switch that
routes an incoming packet to one of its output ports. Switch

Figure 4. Wrapper Structure

buffers are placed at the output ports and a distributed
crossbar routing architecture is used in the input ports as
the switch core.

Packet routing in our proposed NoC is performed by
source routing. When a packet arrives at an input port of
the switch, beginning k(=2) bits of the packet (header) are
removed and used as the address for determining the
outgoing port to the destination core on the SoC. A
controller module in the switch controls operation of its
different parts. A 4x4 switch based on this architecture is
shown in Figure.6. For testability, two flags MTF (Master
Test Flag) and STF (Slave Test Flag) are added to each IO
port of the switch that must be configured before testing.
Using these flags, the desired spanning tree is specified in
the on-chip network structure. Using these two flags, the
switch recognizes broadcasting test packets (incoming
packets from the port whose MTF is ON) and sends them
to the ports that their STF flags are ON. If the packet is
received at a port whose STF is ON, the packet contains
the result of a test and should be routed to the TAS.

8. Experimental Results
For experimental results, five switches with 3, 4, 5, and

6 ports are designed, synthesized, and their test vectors are
generated using ATALANTA [19] (a public domain
combinational test generator tool). Table 1 contains
information about these switches. The first and second
columns show the buffer size and the number of switch
ports, respectively. The number of gates for each switch

after synthesis is shown in the third column. The fourth
column shows area overhead of the wrapper and the
required modification for testability on each switch. Other
columns contain test statistics of switches. Test power and
test coverage are calculated by simulation, based on the
number of transitions that take place while testing the gate
level model of the circuit. In this table, experimental results
are summarized for switches of different packet sizes. For
all of these switches port size of 4 is considered in testing.
Also other port sizes are considered just for the switch with
16-bit packet size.

To qualify efficiency of our method in an sample NoC,

we have considered four different topologies of NoCs that
have been proposed in [20]. Figure 7 shows two different
topologies for the Video Object Plane Decoder; also Figure
8 shows two different topologies for the MPEG4 Decoder.
The dashed switches are added to the original topologies in
order to reconstruct them only by identical 4x4 switches.
The bold links in these figures indicate the minimum
broadcasting tree of each topology. The test access

Figure 8. Different topologies for MPEG4 Decoder

Figure 7. Different topologies for Video Object Plane
Decoder

Figure 5. In Port and Out Port modules in the switch

Table 1. Switches statistics and their test results

Figure.6. The 4x4 multi-purpose switch

switches are shown by shaded nodes.
For comparing our method with a traditional SoC test

method, a bus-based test architecture for the NoCs in
Figure 7 and Figure 8 is implemented. For each SoC
design, a bus is considered to feed the test vectors to the
switches. In order to reduce extra hardware overhead in
this method, we have also considered comparing output
responses of the identical switches for the test result.

Table 2 compares test time (number of clock cycles
needed for testing) and power consumption (number of
transitions) of our method with the results obtained by
applying the bus-based SoC test method. As shown in this
table, our proposed algorithm has improved test application
time and power consumption of up to 37.9% and 4.8%,
respectively. This table also shows the area overhead as
compared to the original NoC architecture. In some cases
the modified architecture has less area rather than the
original architecture. This is due to reconstruction of the
original architecture using the identity switches.

Our proposed algorithm has some advantages over the

bus-based testing methods. The algorithm uses existing
connections between switches while bus-based testing
algorithms need to add buses to the original design. In
contrast with the proposed algorithm, the bus-based
algorithm imposes more area and delay overhead to the
original design. Also, our proposed method is more
flexible and extendible to large NoCs.

9. Conclusions
To meet the requirements of high speed testing for

network on chip components, a new algorithm for testing
NoC switches has been developed. High speed testing has
been achieved by broadcasting test packets to switches
through the existing on-chip networks. To detect faults,
output responses of identity switches are considered to be
compared with each other. The algorithm eliminates the
main drawbacks of the previous bus-based NoC testing
methods. According to the experimental results, by use of
the proposed testing method, about 38% improvement in
test time and up to 5% reduction in power consumption is
gained.

References

[1] D. Edenfeld, A.B. Kahng, M. Rodgers and Y. Zorian, “2003

technology roadmap for semiconductors,” Computer, vol. 37, no.1,
pp. 47-56, 2004.

[2] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture
for gigascale systems-on-chip,” IEEE Circuits and Systems
Magazine, vol. 4, no. 2, pp. 18–31, 2004.

[3] A. Bona, V. Zaccaria, and R, Zafalon, “System level power
modeling and simulation of high-end industrial network-on-chip,”
Design, Automation and Test in Europe, pp. 318-323, 2004.

[4] Y. Zorian, “Test requirements for embedded core-based systems and
IEEE P1500,” Proc. of International Test Conference, pp. 191–199,
1997.

[5] T.J. Chakraborty, S. Bhawmik and C.-H. Chiang, “Test access
methodology for system-on-chip testing,” Proc. of International
TECSWorkshop, pp. 111–117, 2000.

[6] V. Lyengary, K. Chakrabarty, M.D. Krasniewski and G.N. Kumar,
“Design and optimization of multi-level TAM architectures for
hierarchical SOCs,” Proc. of 21st IEEE VLSI Test Symposium, pp.
299-304, 2003.

[7] M. Nahvi and A. Ivanov, “Indirect test architecture for SoC testing,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, vo. 7, pp. 1128-1142, 2004.

[8] B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas, “Bringing
communication networks on a chip: test and verification
implications,” IEEE Communications Magazine, vol. 41, no.9, pp.
74-81, 2003.

[9] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, “Power-aware
NoC reuse on the testing of core-based systems,” Proc. of
International Test Conference, pp. 612-621, 2003.

[10] E. Cota, L. Carro, and M. Lubaszewski, “Reusing an on-chip
network for the test of core-based systems,” ACM Transactions on
Design Automation of Electronic Systems, vol. 9, no. 4, pp.471–499,
Oct. 2004.

[11] I. Ghosh, N. Jha, and S. Dey, “A low overhead design for testability
and test generation technique for core-based systems,” Proc. of
International Test Conference, pp. 50–59, Nov. 1997.

[12] M. Nourani and C. Papachristou “Structural fault testing of
embedded cores using pipelining,” IEEE JETTA, vol. 15, no. 1-2, pp.
129–144, Aug.-Oct. 1999.

[13] E. Cota, L. Carro, A. Orailoglu, and M. Lubaszewski, “Test planning
and design space exploration in core-based environment,” IEEE,
Design, Automation and Test Conference in Europe, pp.483–490,
Mar. 2002.

[14] E. Cota et al., “The impact of NoC reuse on the testing of core-based
systems,” Proc. of 21st IEEE VLSI Test Symposium, pp.128-133,
2003.

[15] E. Cota et al., “Reusing an on-chip network for the test of core-based
systems,” ACM Transactions Design Automation of Electronic
Systems, pp. 471-499, 2004.

[16] K. Jong-Sun et al., “On-chip network based embedded core testing,”
Proc. of IEEE International SOC Conference, pp. 223-226, 2004.

[17] T. H. Cormen, C. E. Leiserson, and C. Stein, Introduction to
algorithms. McGraw-Hill, 1990.

[18] Y. K. Dalal and R.M. Metcalfe, “Reverse path forwarding of
broadcast packets,” Communications of the ACM, vol. 21, no. 12,
pp.1040–1048, 1978.

[19] H.K. Lee and D.S. Ha, “On the generation of test patterns for
combinational circuits,” Tech. Rep. 12-93, Dept. of Electrical Eng.,
Virginia Polytechnic Institute and State University, 1993.

[20] A. Jalabert, S. Murali, L, Benini. G. De Micheli, “xpipes compiler: A
tool for instantiating application specific Networks on Chip,” Proc.
of Design Automation and Test in Europe Conference, pp. 884-889,
2004.

Table 2. Comparison of our method with bus based testing

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

