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Abstract 
This paper proposes reuse of on-chip networks for 

testing switches in Network on Chips (NoCs). The 
proposed algorithm broadcasts test vectors of switches 
through the on-chip networks and detects faults by 
comparing output responses of switches with each other. 
This algorithm alleviates the need for: (1) external 
comparison of the output response of the circuit-under-test 
with the response of a fault free circuit stored on a tester 
(2) on-chip signature analysis (3) a dedicated test-bus to 
reach test vectors and collect their responses. 
Experimental results on a few test benches compare the 
proposed algorithm with traditional System on Chip (SoC) 
test methods. 

1. Introduction 
RECENT advances in IC design methods and 

manufacturing technologies allow designers to integrate the 
complete system on a single chip. This so-called SoC 
product class is a yet-evolving design style that integrates 
technology and design elements from other system driver 
classes into a wide range of high-complexity, high-value 
semiconductor products  [1]. Even though commercial 
products currently exhibit only a few integrated cores  [2], 
in the next few years, technology will allow the integration 
of thousands of cores, making a large computational power 
available.  

Today’s System on Chip (SoC) technology can achieve 
unprecedented computing speed that is shifting the IC 
design bottleneck from computation capacity to 
communication bandwidth and flexibility [3]. Also, since 
communication buses between the cores are not 
sufficiently scalable, bus-based SoCs (the common type of 
SoCs) cannot handle this high volume of communication 
between the cores in the SoCs. In addition, these SoCs 
cannot be used for high speed serial communications. 
Moreover, as volume of the data communication on the 
chip increases, the power consumption increases. 
Therefore, a scalable communication infrastructure that 
better supports the trend of state-of-the-art SoC 
integrations is required. Thus, recent researchers use 
packet-switched micro-network on a chip, so called NoC, 
as a scalable communication media. The basic idea is 
borrowed from traditional large-scale multi-processors and 
the wide-area network domains.  

It is important that SoC designers consider a test 
methodology for their new SoC architectures. Like other 
SoCs, an NoC has to be tested for manufacturing defects. 
One of the main problems for testing an SoC is the access 
to the cores during the test process  [4]. A number of 
solutions have been presented in the literature  [5]  [6] to 
solve this problem while minimizing test costs, mainly pin 
count and test time. Most methods rely on scalable and 
easy-to-design test access mechanisms (TAMs) to reduce 
design time. For those methods, bus-based TAMs are 
usually chosen. Since the NoCs consist of functional cores, 
switch cores and interfaces, test methodologies should be 
performed on each of these three parts. 

This paper proposes a novel concurrent test 
methodology for testing the switches of an NoC. The rest 
of the paper is organized as follows. Related works on 
testing the SoC and NoC are reviewed in Section 2. Section 
3 introduces some preliminaries and definitions. Our 
proposed algorithm is discussed in Section 4. In our 
proposed algorithm, a wrapper architecture is proposed for 
the switches and this is discussed in Section 5. In Section 6 
test time calculation will be described. The proposed 
switch architecture will be discussed in Section 7. Finally 
the paper ends with experimental results and conclusions. 

2. Related Works 
A packet switching communication-based TAM for an 

SoC has been proposed in  [7]. The proposed TAM model 
is called NIMA, and it is defined for the test task. Thus, 
routing and addressing strategies are defined considering 
only the test requirements of each system. Test and 
verification challenges for system chips that utilize on-chip 
network has been presented in  [8]. In  [8] an NoC has been 
exemplified by Philips’ ÆTHEREAL NoC architecture. It 
shows the particular advantages of using an NoC for both 
testing and verifying the network components, and testing 
and verifying the other components of the SoC. The reuse 
of functional connections during test has been suggested in 
the literature  [9] [10]- [13] to reduce test costs in terms of 
area and pin overhead. For those methods, a core-to-core 
connection model is assumed. The impact of the reuse of 
an on-chip network for the test of core-based systems is 
described in  [14],  [15]. These references formalize a reuse 
strategy aiming at minimizing the system test costs. A 
network-based embedded core testing architecture using 
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the star-connected OCN has been proposed in  [16]. This 
architecture provides the scalability and configurability for 
system integration and core-based test approach. All of 
these test architectures need the following methods of fault 
detection: (1) external comparison of the output response 
of the circuit-under-test with the response of a fault free 
circuit stored on a tester, (2) on-chip signature analysis and 
(3) a dedicated test-bus to reach test vectors and collect 
their responses. Each of these methods has certain 
shortcomings that are alleviated by using output 
comparison for identical circuits. The external comparison 
method has the memory overhead of storing fault free 
responses. Signature analysis may suffer from aliasing, or 
error masking, that may cause a fault to go undetected even 
if it is propagated to an output of the circuit-under-test. 
Dedicated test bus which currently adds to the SoC has 
area and power overhead. 

3. Preliminaries 
NoCs can be defined as a set of structured routers and 

point-to-point channels interconnecting the processing 
cores of an SoC, in order to support communication among 
them. An NoC consists of two parts: switches and core 
interfaces. A network of the switches provides 
interconnection between cores. NoCs typically use the 
message-passing communication model, and the processing 
cores, attached to the network, communicate by sending 
and receiving request and response messages. These 
messages are called packets. Each packet is composed of a 
header, a payload and a trailer. 

 

 
A topology can be represented as an undirected 

connected graph G(V,E), where V={v1,v2,…vn} is the set of 
vertices or nodes and E={e1,e2, …em} is the set of edges or 
links in the corresponding network. We use N(v) to denote 
the set of neighbors of node v∈V. Also, we denote by δ(v) 
= |N(v)| the number of such neighbors. Some examples of 
topologies include regular tile-based topologies: grid, 
torus, hypercube, ring, multi-stage and fat-tree which are 
suitable for interconnecting homogeneous cores in a 
multiprocessor chip, and irregular topologies which are 

suitable for heterogeneous cores on the SoC having varied  
functionality  [2]. 

A topological centre of graph G(V,E) is defined as node 
v∈V that is closest to any other node in the network graph, 
i.e., node v which minimizes maxu∈V d(v,u), where d(v,u) is 
the distance between nodes v and u. 

Figure 1 shows an SoC implementation of an MPEG4 
decoder, using an NoC for its on-chip communication. In 
the MPEG4 design, many of the cores communicate with 
each other through the shared SDRAM. So a large switch 
(S1_1) is used to connect the SDRAM, while smaller 
switches are instantiated for the other cores  [2]. Large 
switches can be built by wiring smaller switches which 
means that we can have a fixed type switch and use it for 
all switch sizes. Therefore each NoC can be restructured as 
an NoC with identical switches. Even though, 
reconstructing the NoC to an identical-switch-based NoC 
may cause more area overhead for the NoC, but it may 
distribute network traffic and alleviate communication load 
over the switches. Reconstructing the NoC by the identical 
switches should be performed according to the design 
requirements and constraints. 

4. Proposed Work 
We propose a novel concurrent test methodology for 

testing the switches of an NoC. As mentioned above, we 
assume that all switches in the NoC are identical. So these 
identical blocks can reuse the same set of test vectors. Our 
approach broadcasts these test vectors through the network 
to be applied to these identical blocks. The proposed 
scheme helps obtain good reliability of switches, since 
switches are tested in a real integrated platform. Fault 
detection based on comparison of output responses of 
identical circuits reusing existing connections alleviates the 
need for each of the traditional inefficient methods of fault 
detection mentioned in the section on related works. 

Our test algorithm follows the scan-based methodology 
for testing the switches in the NoC. Since in our NoC 
architecture, all switches are identical, broadcasting the test 
vectors, in the form of packets, through the network is 
sufficient for testing them. The most immediate switch (es) 
connected to the source of test data is (are) called Test 
Access Switch(es), (TAS). From TAS all test data are 
broadcasted. 

We assume a test source, connected to TAS, generates 
the test vectors serially and provides them to the TAS. TAS 
not only delivers the obtained test vector to its neighboring 
switches but also feeds them into its own scan-chain, 
simultaneously. After shifting a test vector into the scan-
chain of the switch is finished, the switch captures the 
results of its combinational part in the scan-chain in one 
clock cycle (capture cycle). Because all switches should 
generate the same result for a specific test vector, the Test 
Access Switch broadcasts its result to its neighbors for 
comparing them with the corresponding results of their 
switches. This way, we are able to detect possible faults. 
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Figure 1. MPEG Decoder  



 

Other switches, in addition to this comparison, perform 
the same function as the TAS in sending the received test 
vector and their captured results to their neighbors. This 
excludes the boundary switches. A boundary switch is a 
switch in the NoC that has at most one switch in its 
neighborhood. Such a switch does not send test vectors and 
corresponding results to its neighbors. When a switch 
detects a discrepancy between the received and its captured 
results, it notifies the existence of a fault through a signal 
to its feeding switch. This signal is passed through the 
network until it reaches the TAS. Then TAS reports the 
existence of the fault in the NoC to the outside of SoC. 

For example, Figure 2 shows a network of switches and 
communication links among the switches of an NoC. This 
network consists of four nodes (switches) and three edges 
(channels). As depicted here, Switch 2 (shaded switch) is 
chosen as the Test Access Switch and receives test vectors 
from a test source. 

Suppose the length of each test vector is four; so, four 
clock cycles are needed to shift the test vector into the scan 
chain of a switch. Also, assume the length of the result of 
the switch to the test vector is five; therefore, five clock 
cycles are needed to shift out the result. 

 

 
 
Figure 3 illustrates the timing details of broadcasting test 

vectors through the switches of Figure 2. In this figure, 
Row 1 shows shifting a test vector from the test source into 
the Test Access Switch (TAS) (S2) and its capture cycle 
(CapCycle). Row 2 shows broadcasting the test vector to 
Switches 1 and 3. Furthermore, this row shows that TAS 
broadcasts its result to its neighbors after an idle clock 

cycle, which is needed to synchronize TAS with its 
neighbors. 

Row 3 and 4 show shifting a test vector from the source 
into Switches 1 and 3 (S1, S3), respectively and their 
capture cycles. After the capture cycles, these switches 
compare the received result from the source point switch 
with their own results. If a switch detects a discrepancy 
during this comparison, it stops its test process and issues a 
fail signal to its predecessor switch to notify the existence 
of a fault in the NoC. Rows 5 and 6 are similar to Rows 2 
and 3, respectively.  Switches 1 and 4 are the boundary 
switches, so they do not broadcast test vectors. 

In this example, 12 clock cycles are required to test all 
switches in the NoC by applying a test vector. Using our 
method, as shown in this example; the switches are tested 
concurrently in the test mode. 

Finding the TAS and the broadcasting tree impacts the 
test application time and power consumption in the NoC 
during the test session. In broadcasting test data, the main 
objective is to minimize usage of the resources by sending 
test data from one or more source points to multiple 
destinations. Examples of resources which are desired to be 
minimized include bandwidth, time and connection costs. 
Minimizing usage of the resources decreases the test 
application time for NoC elements.  

Our method broadcasts test vectors through the NoC in 
the form of packets, called test packets. The most basic 
way of sending test vectors through a network graph is 
using flooding [17]. With this technique, a node that 
receives a test vector sends packets to its adjacent nodes 
through all its adjacent links. If node v receives packet p 
from node u for which it is not the destination, then v first 
checks if p was received before. If this is true, the packet 
does not need to be sent again. Otherwise, node v just re-
sends the packet to all other adjacent nodes (excluding u). 
It is clear that after at most n such steps (where n is the 
number of nodes in the network), a test packet will reach 
all nodes, including the destinations. Thus, the algorithm is 
correct. The number of messages sent by each node is at 
most n. The number of messages received by v is at most 
nδG(V). 
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Figure 2. Network Graph of Figure 1
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Figure 3. Timing diagram of broadcasting test vectors through NoC of Figure 2 



 

This method of packet routing (flooding) is simple, but 
very inefficient. The first reason is that it uses more 
bandwidth than required, since many nodes that are not in 
the path to the destination will end up receiving a sent 
packet. Second, each node in the network must keep a list 
of all packets that it sends, in order to avoid loops. This 
makes the use of flooding prohibitive for all but very small 
networks.  

For solving the problem of the flooding algorithm, test 
vectors are inserted at the topological center of the 
network. This is a switch with a minimum distance from 
other switches. The inserted test vector is multicast from 
this point through a minimum multicast tree. In this tree a 
node that receives the test vector forwards it to its 
neighbors in the tree. For minimizing the test application 
time, we find the topological center of the network graph 
and then find the minimum spanning tree rooted at this 
topological center of graph.  

The topological center of a graph can be computed 
easily if all shortest paths among nodes are known. Using 
Dijkstra’s algorithm  [17], the shortest paths between nodes 
is obtained. To find the optimum broadcast routing 
(minimum broadcast tree), we use the Reverse Path 
Forwarding algorithm  [18] statically. 

5. Proposed Wrapper for Switches 
Test vectors are broadcast in the form of packets. There 

are two types of packets: data packet, and test packet. One 
bit in the packet distinguishes between these types. Data 
packets are used during normal mode of the NoC to 
perform the communication among the NoC. Test packets 
are used during test mode of the NoC to test the switches.  
The test packet consists of two parts: test vector and 
response (Figure 3). 

In order to apply our proposed method to an NoC, the 
NoC switches must be equipped with certain features. As 
mentioned above, each switch in the test mode should 
receive test vectors from one of its neighbors, shift the test 
vector into its scan chain and send this test vector and its 
response to the next switch. Furthermore, each switch of 
the network, except the switch at the access point, should 
be able to compare the received result from its neighbor 
with its own. 

A wrapper circuit surrounding the switch performs the 
above said task. The wrapper has no effect on the switch 
functionality during the NoC normal mode of operation. 
Figure 4 illustrates the structure of our proposed wrapper. 
This wrapper comprises a controller, two scan chains for 
inputs and outputs of the switch, an XOR to compare the 
results, and some multiplexers to direct the output stream. 

The wrapper controller checks the first bit of all newly 
arrived packets. Once, a test packet is detected at an input 
port, the controller sets the test mode for the switch. In this 
mode, the switch scan becomes active. The two scan chains 
of the wrapper concatenate the inputs and outputs of the 
switch to the internal scan chain of the switch. At the same 

time that a switch scan is active its controller sends the 
same test data to some of its neighbors. The neighbors to 
which test is sent are decided by the Minimum 
Broadcasting Tree algorithm. The implementation of this 
algorithm requires extra hardware in the switch that will be 
discussed in Section 7. After shifting a test vector into the 
scan chain is completed, the controller captures the 
response of the switch in the scan chain (capture cycle). 
This is an idle cycle. 

 

 
In each test packet, the test vector is followed by the 

response of the Test Access Switch (response part). After 
the capture cycle, the response part of the input packet is 
compared with the responses in scan chain, serially. Once, 
the controller detects a discrepancy between these two 
streams, a fault signal is returned back to the predecessor 
switch to report the fault. Each switch that is notified of the 
existence of a fault also notifies its predecessor switch of 
the fault. Finally, the test access switch indicates that the 
chip is faulty. 

6. Test Time Calculation 
Let N be the number of test vectors for a switch and nl, 

ni, and no be the length of internal scan chain, number of 
inputs, and number of outputs, respectively. Furthermore, 
let d be the depth of a minimum broadcast tree. 

Switches at the same distance to Test Access Switch are 
tested simultaneously. Each switch under test gives the test 
packet to its successor neighbor switches in the minimum 
broadcasting tree only by one clock delay. Thus, the test 
application time of an NoC, for one test vector, is equal to 
the test application time of a switch, for that test vector, 
plus the depth of the minimum broadcasting tree. 

Therefore, the total test application time for an NoC can 
be written as: 

( )( ) NdnnnTestTime oil *1,max +++=  

7. A Proposed Switch 
The same as switches in wide-area networks, switches in 

the NoC consist of I/O ports, buffers and a switch core. In 
order to implement our test scheme, a simple switch has 
been designed. Figure 5 shows part of this switch that 
routes an incoming packet to one of its output ports. Switch 

 

Figure 4. Wrapper Structure 
 



 

buffers are placed at the output ports and a distributed 
crossbar routing architecture is used in the input ports as 
the switch core. 

Packet routing in our proposed NoC is performed by 
source routing. When a packet arrives at an input port of 
the switch, beginning k(=2) bits of the packet (header) are 
removed and used as the address for determining the 
outgoing port to the destination core on the SoC. A 
controller module in the switch controls operation of its 
different parts. A 4x4 switch based on this architecture is 
shown in Figure.6. For testability, two flags MTF (Master 
Test Flag) and STF (Slave Test Flag) are added to each IO 
port of the switch that must be configured before testing. 
Using these flags, the desired spanning tree is specified in 
the on-chip network structure. Using these two flags, the 
switch recognizes broadcasting test packets (incoming 
packets from the port whose MTF is ON) and sends them 
to the ports that their STF flags are ON. If the packet is 
received at a port whose STF is ON, the packet contains 
the result of a test and should be routed to the TAS. 

 

 

 

8. Experimental Results 
For experimental results, five switches with 3, 4, 5, and 

6 ports are designed, synthesized, and their test vectors are 
generated using ATALANTA [19] (a public domain 
combinational test generator tool). Table 1 contains 
information about these switches. The first and second 
columns show the buffer size and the number of switch 
ports, respectively. The number of gates for each switch 

after synthesis is shown in the third column. The fourth 
column shows area overhead of the wrapper and the 
required modification for testability on each switch. Other 
columns contain test statistics of switches. Test power and 
test coverage are calculated by simulation, based on the 
number of transitions that take place while testing the gate 
level model of the circuit. In this table, experimental results 
are summarized for switches of different packet sizes. For 
all of these switches port size of 4 is considered in testing. 
Also other port sizes are considered just for the switch with 
16-bit packet size. 

 
 

 

 
 
To qualify efficiency of our method in an sample NoC, 

we have considered four different topologies of NoCs that 
have been proposed in  [20]. Figure 7 shows two different 
topologies for the Video Object Plane Decoder; also Figure 
8 shows two different topologies for the MPEG4 Decoder. 
The dashed switches are added to the original topologies in 
order to reconstruct them only by identical 4x4 switches. 
The bold links in these figures indicate the minimum 
broadcasting tree of each topology. The test access 

  
Figure 8. Different topologies for MPEG4 Decoder 

 

 
 

Figure 7. Different topologies for Video Object Plane 
Decoder 

 
 

Figure 5. In Port and Out Port modules in the switch 

 
Table 1. Switches statistics and their test results 

 

 
Figure.6. The 4x4 multi-purpose switch 



 

switches are shown by shaded nodes. 
For comparing our method with a traditional SoC test 

method, a bus-based test architecture for the NoCs in 
Figure 7 and Figure 8 is implemented. For each SoC 
design, a bus is considered to feed the test vectors to the 
switches. In order to reduce extra hardware overhead in 
this method, we have also considered comparing output 
responses of the identical switches for the test result. 

Table 2 compares test time (number of clock cycles 
needed for testing) and power consumption (number of 
transitions) of our method with the results obtained by 
applying the bus-based SoC test method. As shown in this 
table, our proposed algorithm has improved test application 
time and power consumption of up to 37.9% and 4.8%, 
respectively. This table also shows the area overhead as 
compared to the original NoC architecture. In some cases 
the modified architecture has less area rather than the 
original architecture. This is due to reconstruction of the 
original architecture using the identity switches. 

 

 
Our proposed algorithm has some advantages over the 

bus-based testing methods. The algorithm uses existing 
connections between switches while bus-based testing 
algorithms need to add buses to the original design. In 
contrast with the proposed algorithm, the bus-based 
algorithm imposes more area and delay overhead to the 
original design. Also, our proposed method is more 
flexible and extendible to large NoCs. 

9. Conclusions 
To meet the requirements of high speed testing for 

network on chip components, a new algorithm for testing 
NoC switches has been developed. High speed testing has 
been achieved by broadcasting test packets to switches 
through the existing on-chip networks. To detect faults, 
output responses of identity switches are considered to be 
compared with each other. The algorithm eliminates the 
main drawbacks of the previous bus-based NoC testing 
methods. According to the experimental results, by use of 
the proposed testing method, about 38% improvement in 
test time and up to 5% reduction in power consumption is 
gained. 
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