
An Efficient and Portable Scheduler for RTOS Simulation
and its Certified Integration to SystemC

Hiroaki Nakamura
Tokyo Research Laboratory

IBM Japan, Ltd.

Naoto Sato
Tokyo Research Laboratory

IBM Japan, Ltd.

Naoshi Tabuchi
Tokyo Research Laboratory

IBM Japan, Ltd.

Abstract

We propose a new task scheduling algorithm for
timed-functional simulation of concurrent software
tasks. It attains efficiency by reducing the frequency of
context-switching between concurrent tasks. It also pro-
vides a high-degree of portability in the sense that it only
needs the underlying system to support a very small num-
ber of primitives. We provide a concrete implementation
built on top of the SystemC scheduler and show some re-
sults of preliminary evaluation.

1. Introduction

In the system-level design process, designers first de-
scribe functional aspects without specifying implementa-
tion details. By attaching delay annotations (wait(delay) in
SystemC, and waitfor(delay) in SpecC) to the functional
model, they can analyze performance related properties. For
simulating multi-tasking software running on a single CPU,
the delay annotation should be interpreted so that the en-
closing task shares the CPU with other tasks. For this pur-
pose, we introduce a new delay annotation consume(delay)
to specify a delay-length of CPU time. For example, the
round-robin scheduler interleaves consume(5) at the initial
time 0 and consume(2) at 2 in the preemptive manner as fol-
lows.

One possible realization of consume is to serialize the
delay requests so that only one task is running at any
time [1], but it does not support interleaved scheduling as
exemplified in the above figure. Another solution is to build
an elaborate RTOS scheduler model [2], but it causes too
many context switches between the RTOS and software
tasks, which would deteriorate the simulation performance.
The performance drawback could be mitigated if we can

modify the underlying simulation kernel, though this has a
negative impact on its portability.

To resolve this challenge, we propose an efficient and
portable task scheduling algorithm for simulating software
tasks running on an RTOS.

2. A New Task Scheduling Algorithm

struct TASK {int remaining time, checkpoint; bool active;};
const int ntask;
TASK tasks[ntask];
int curr time, last time;

void consume(int dt, int taskid) {
tasks[taskid].remaining time = dt;
tasks[taskid].checkpoint = curr time + dt;
tasks[taskid].active = false;
SUSPEND AND RESUME(scheduler);

}

void update(int t1, int t2);
// requires t1 < t2 and ∀ i. tasks[i].remaining time ≥ 0
// ensures ∀ i.tasks[i].remaining time ≤ tasks[i].remaining time@pre
// and

∑
i

tasks[i].remaining time@pre - tasks[i].remaining time ≤ t2 - t1
// (@pre indicates the value at the start of the execution)

void scheduler run() {
update(last time, curr time);
last time = curr time;
for(i=0;i<ntask;i++)
if(tasks[i].checkpoint == curr time)

if(tasks[i].remaining time == 0) tasks[i].active = true;
else tasks[i].checkpoint = curr time + tasks[i].remaining time;

for(i=0;i<ntask;i++)
if(tasks[i].active) SUSPEND AND RESUME(tasks[i]);

}

void scheduler main() {
curr time = 0; last time = 0;
while(1) {
scheduler run();
curr time = min task checkpoint(); // min{tasks[i].checkpoint | i}

}
}

Figure 1. Scheduling Algorithm

Figure 1 shows our scheduling algorithm that coordi-
nates the execution of software tasks running on a CPU.

3-9810801-0-6/DATE06 © 2006 EDAA

consume(dt, taskid) This procedure sets the initial val-
ues for remaining time and checkpoint of tasks[taskid], and
then calls SUSPEND AND RESUME(scheduler), which
suspends the task and resumes the scheduler. When the
scheduler executes SUSPEND AND RESUME(task), the
software task is resumed and the procedure consume ter-
minates.
update(t1, t2) The procedure update, which implements a
specific scheduling policy, allocates a certain period of time
between t1 and t2 to each task, which results in reducing the
remaining time of the task.
scheduler main(), scheduler run() The procedure sched-
uler main, which runs in its own thread, repeatedly calls
scheduler run and updates the value of curr time. The pro-
cedure scheduler run first calls update(last time, curr time)
and then resumes the task whose remaining time has be-
come ’0’, by calling SUSPEND AND RESUME.

This algorithm accepts preemption requests with no de-
lay, because the procedure consume promptly switches to
the scheduler. This algorithm is also efficient in that the pro-
cedure scheduler run does not switch contexts at any points
between last time and curr time, whose interval is larger
than the granularity of time allocated to tasks.

On the other hand, the portability of this algorithm may
be limited, because the execution of threads is controlled
explicitly using SUSPEND AND RESUME, a low-level and
platform-dependent synchronization primitive. We modi-
fied our algorithm so that it works on top of existing simula-
tion platforms such as SystemC and SpecC. Then, we pro-
vided formal proofs of the correctness of the two versions
and their equivalence. See [3] for further detail.

3. Implementation and Preliminary Evaluation

3.1. Integration into SystemC

Figure 2 shows the portable version of our algorithm
that works on top of SystemC. The common super class
Scheduler implements consume, and subclasses of Sched-
uler implement update according to particular scheduling
policies. Scheduler::consume uses two dynamic structures:
table maps a task to its remaining time, and tasks maintains
the priorities and execution order of the scheduled tasks.

A scheduling policy is encapsulated in the method up-
date of a subclass of Scheduler. An implementation of up-
date for the preemptive priority scheduler assigns the whole
duration of time between the two checkpoints to the high-
est priority task, while that for the round-robin scheduler as-
signs TIME SLICE to the scheduled tasks in rotation. While
we showed only two variations of scheduling policies, one
may model other policies by implementing update for each.

3.2. Preliminary Evaluation

We evaluated the efficiency of our algorithm by com-
paring the number of context switches with that of a full

class Scheduler { class PreemptivePriority :
protected: public Scheduler {
map table; public:
list tasks; void update(void) {
sc time last time; time to consume = sc time stamp()

public: - last time;
virtual void update(void) = 0; if (tasks.notEmpty()) {
void consume(sc time& dt, int task) { task = tasks.popHighestPriority();

update(); remaining time = table.get(task);
tasks.put(task); remaining time = remaining time
table.put(task, dt); - time to consume;
while (dt > SC ZERO TIME) { table.put(task,remaining time);
wait(dt); }
update(); last time = sc time stamp();
dt = table.get(task); }
} };
table.remove(task);

}
};

class RoundRobin : public Scheduler {
public:
void update(void) {

time to consume = sc time stamp() - last time;
while (time to consume > SC ZERO TIME && tasks.notEmpty()) {
task = tasks.removeFirst();
remaining time = table.get(task);
step time = min(TIME SLICE, time to consume, remaining time);
new remaining time = remaining time - step time;
table.put(task,new remaining time);
if (new remaining time != SC TIME ZERO)
tasks.putLast(task);

time to consume -= step time;
}
last time = sc time stamp();
}
};

Figure 2. Scheduler Integrated to SystemC

RTOS model that interrupts software tasks for every tim-
ing interval. We used a timed-functional simulation pro-
gram simple_perf, which comes with the SystemC ref-
erence implementation as the basis of our experiment. This
program runs two tasks, the producer and the consumer.
The producer sends characters to the consumer via a fifo.
We modified the program so that it calls consume instead
of wait to specify delays, where consume is processed by a
round-robin scheduler whose time slice is 1 time unit.

Number of Context Switches
Full RTOS Model 20,068,800

Our Algorithm 839,191

The result indicates that our algorithm successfully elim-
inates 96% of the context switches required by the full
RTOS model.

References

[1] A. Gerstlauer, et al. : RTOS Modeling for System Level De-
sign, Proc. DATE, 2003.

[2] M. A. Hassan, et al. : RTK-Spec TRON: A Simulation Model
of an ITRON Based RTOS Kernel in SystemC, Proc. DATE,
2005.

[3] H. Nakamura, et al. : An Efficient and Portable Scheduler for
RTOS Simulation and its Certified Integration to SystemC,
IBM Research Report RT0627, 2005.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

