
Ultra-Efficient (Embedded) SOC Architectures based on Probabilistic CMOS
(PCMOS) Technology∗

Lakshmi N. Chakrapani Bilge E. S. Akgul Suresh Cheemalavagu Pinar Korkmaz
Krishna V. Palem Balasubramanian Seshasayee

Center for Research on Embedded Systems and Technology
Georgia Institute of Technology
Atlanta, Georgia, USA 30332.

{nsimhan,palem}@ece.gatech.edu

Abstract
Major impediments to technology scaling in the nanometer

regime include power (or energy) dissipation and “erroneous”
behavior induced by process variations and noise susceptibil-
ity. In this paper, we demonstrate that CMOS devices whose
behavior is rendered probabilistic by noise (yielding proba-
bilistic CMOS or PCMOS) can be harnessed for ultra low en-
ergy and high performance computation. PCMOS devices are
inherently probabilistic in that they are guaranteed to com-
pute correctly with a probability 1/2 < p < 1 and thus, by
design, they are expected to compute incorrectly with a prob-
ability (1 − p). In this paper, we show that PCMOS technol-
ogy yields significant improvements, both in the energy con-
sumed as well as in the performance, for probabilistic appli-
cations with broad utility. These benefits are derived using an
application-architecture-technology (A2T) co-design method-
ology introduced here, yielding an entirely novel family of
probabilistic system-on-a-chip (PSOC) architectures. All of our
application and architectural savings are quantified using the
product of the energy and the performance denoted (energy ×
performance): the PCMOS based gains are as high as a sub-
stantial multiplicative factor of over 560 when compared to a
competing energy-efficient CMOS based realization.

1. Introduction
As CMOS technology scales down into the nanometer re-

gion, hurdles introduced by noise and other device perturba-
tions (see Sano [14, 22], Kish [12] and Shepard [23]) pose sev-
eral challenges. The surprising premise that noise can be har-
nessed as a resource, rather than viewed as a hurdle was vali-
dated for the first time using foundational principles and the-
oretical models (see Palem [15, 16, 17]). Building on these
foundations, we have designed and studied CMOS devices [5]
that are “unstable” or “noisy”. In earlier work, we demon-
strated for the first time that computation based on such
noisy CMOS devices can yield orders of magnitude improve-
ments simultaneously to the energy consumed as well as to
the running time—collectively characterized as the energy-
performance product (EPP)—of an application. The particular
form of CMOS that is affected by ambient (thermal) noise—
we refer to it as probabilistic CMOS or PCMOS—was the sin-
gular innovation through which these improvements were ac-
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complished. The two significant contributions of this paper are
(i) the demonstration of PCMOS based ultra efficient (embed-
ded) computing architectures, where efficiency is quantified
through EPP and (ii) a demonstration of the value of this novel
technology in the context of a range of applications.

To demonstrate the utility and the efficacy of PCMOS,
we first develop a methodology (akin to hardware software
co-design and described in Section 3) that we refer to as
application-architecture-technology (or A2T) co-design. Our
methodology is aimed at realizing extremely efficient prob-
abilistic system-on-a-chip (PSOC) architectures using PCMOS
devices. As shown in Figure 2, a canonical PSOC architecture
consists of a (conventional) deterministic host processor used
to compute most of the control-intensive components of an
application, whereas the co-processor realized using PCMOS
devices will be used as an energy-performance (EPP) “ac-
celerator”. In this novel co-design methodology, the “prob-
abilistic content” (formalized later as flux) of the algorithm
or application becomes a novel resource to be managed and
treated, much as space requirements, flexibility and IP-reuse
are treated in the traditional co-design context. Furthermore,
as we will see in the sequel, considerations of architectural de-
sign efficiency differ significantly in the context of PCMOS,
by contrast with those arising in the context of conventional
CMOS based architectures.

Applications based on probabilistic algorithms with sig-
nificant flux benefit the most from PSOC architectures. Prob-
abilistic algorithms have found wide use in a range of em-
bedded applications drawn from speech and pattern recogni-
tion, security and other domains. To evaluate the benefits of
PCMOS based architectures, we considered a set of applica-
tions (Section 3) and four competing architectural realizations
in silicon (Section 2); the associated gains are presented in
Section 4. In Section 5, we study another crucial and novel
aspect of computing architectures that implement probabilis-
tic algorithms. Specifically, in application domains employing
probabilistic algorithms, independent “probabilistic bits” are
needed in copious quantities. Nevertheless, techniques for pro-
ducing independent random bits are difficult and are an exten-
sive area of study dominated by pseudo random number gen-
erators (PRNG) [19] with several complex approaches yield-
ing unsatisfactory results [8]. Here, we show that in addition to
yielding significant gains to the EPP, PCMOS technology also
yields random bits of a high quality. We establish this by per-
forming the tests provided by the National Institute of Stan-
dards and Technology (NIST) [21]. Concluding remarks and
directions for future research are the subject of Section 6.
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2. Probabilistic system on a chip (PSOC) archi-
tectures

As mentioned in the introduction, the surprising premise
that CMOS devices rendered probabilistic due to noise, are use-
ful and yield energy and performance benefits at the applica-
tion level will now be demonstrated using probabilistic sys-
tem on a chip architectures (PSOCs). For completeness, we first
present a brief overview of probabilistic CMOS (PCMOS) tech-
nology (for a detailed description, please see [5]) on which
such architectures are based.

2.1. PCMOS technology
By studying PCMOS gates whose outputs are computed

with a probability p < 1, we have shown [5] that the switching
energy (E) grows exponentially with the probability of cor-
rectness (p). In addition, the noise magnitude quantified as its
RMS and the switching energy E were shown to be quadrati-
cally related. These two relationships characterize the behav-
ior of PCMOS devices. The behaviors were derived from ana-
lytical models of PCMOS gates and switches, and have been ex-
tensively studied and verified using HSpice simulations. In this
paper, we use these PCMOS gates and their derived switches as
building blocks, to demonstrate their benefits to applications
through PSOC architectures.

2.2. PSOC architectures
To compare PSOC architectures with computing platforms

based on conventional CMOS technology, algorithm and archi-
tecture realizations in four different scenarios (Figure 1) were
considered: (a) when appropriate, the best known determinis-
tic algorithm, implemented completely in software and execut-
ing on a low-energy host processor (in our case a StrongARM
SA-1100), (b) a probabilistic algorithm for realizing the same
application, with pseudo random bits generated by a software
implementation of a well known algorithm [19] (both execut-
ing completely on the host processor), (c) the same probabilis-
tic algorithm executing on the host processor, with a conven-
tional CMOS co-processor (collectively referred to as the “con-
ventional CMOS based SOC” or SOC for succinctness) and (d)
with a functionally identical PCMOS based co-processor or a
PSOC.
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Figure 1. The host and co-processor realiza-
tions that are compared

These four cases encompass all reasonable alternate imple-
mentations of the application. Throughout this study, the co-
processors are specific realizations using CMOS (case (c)) and
PCMOS (case (d)), respectively of the probabilistic application
in question; thus the co-processors are application-specific.

2.3. Performance and energy modeling of PSOC ar-
chitectures

To estimate the performance of PSOC and SOC architec-
tures, the simulator of the Trimaran infrastructure [11] (also

see [4]) has been configured to determine the number of cy-
cles taken by an application executing on a StrongARM SA-
1100 host. This simulator also records a trace of the activ-
ity on the CMOS and PCMOS components of the PSOC. This
information combined with the performance models of the
co-processors obtained through HSpice simulations of PCMOS
switches yields the PSOC and SOC performance in terms of ex-
ecution time.

The energy consumption of an application executing on a
PSOC or a SOC architecture is the sum of the energy consumed
by the host, the energy consumed by the PCMOS (CMOS)
co-processor(s), and the energy cost for communicating be-
tween the host and the co-processor(s). In this study, the co-
processors are memory mapped and therefore, communica-
tion is realized through load-store instructions executed on
the host. In all cases and to quantify the energy consumed
by the SA-1100 host, the model described in [24] is used.
This model is reported by its authors to be within 3% of
the energy measured on an actual SA-1100 host. The energy
modeling techniques applied to various components of the
PSOC (SOC) architecture are illustrated in Figure 2. Since the
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Figure 2. The host and co-processor architec-
ture of a SOC and its energy-performance mod-
eling.

co-processors are application-specific, the energy consumed
by a particular co-processor varies with the application. The
CMOS based co-processors were designed and synthesized us-
ing TSMC 0.25µm process, and the associated energy cost
was determined from HSpice simulations. In the context of co-
processors realized with PCMOS technology, the energy cost
of the co-processor is derived similarly (and through physi-
cal measurements not reported here).

3. The A2T co-design framework
In this study, we consider applications based on probabilis-

tic algorithms that include Bayesian inference [13], Random
Neural Networks [10], Probabilistic Cellular Automata [9]
and Hyper-Encryption [6]. Any PSOC implementation of a
probabilistic application involves partitioning the application
between the host and the (application specific) PCMOS based
co-processor. Even though the manner in which these applica-
tions are partitioned vary across individual applications, they
follow a common theme, thus allowing us to suggest a method-
ology. The notion of a core probabilistic step with its associ-
ated probability parameter p is one such theme common to
all of these applications, and across probabilistic algorithms
in general. In our work, this core probabilistic step is identi-
fied by hand and implemented in PCMOS. The deterministic
parts of the application are implemented as software execut-
ing on the host processor or as a customized application spe-
cific circuit (ASIC) when appropriate. This co-design method-
ology is unique in the sense that as opposed to traditional SOC
designs, several unique algorithm and technology characteris-



tics explicitly motivated and grounded in PCMOS and its prob-
abilistic behavior need to be considered, to obtain highly effi-
cient designs.

3.1. Algorithm and technology characteristics influ-
encing co-design

PCMOS is particularly efficient in computing with ultra-low
energy. For example, the energy consumed for generating one
random bit using PCMOS is 0.4 pico Joules [18]. By contrast,
the Park-Miller algorithm [19] implemented in custom hard-
ware in ASIC consumes about 2025 times this amount of en-
ergy. Given this dramatic difference and hence benefit, it is to
be expected that having higher amounts of “probabilistic con-
tent” in the algorithm will yield greater opportunities for de-
riving benefits from PCMOS technology. Thus, the amount of
“probabilistic content”, which we refer to as the application’s
flux, and denoted by F , will be a figure of merit. Flux is de-
fined as the ratio of probabilistic operations to the total num-
ber of operations of the algorithm.

Though PCMOS is extremely energy efficient, the operating
frequency of our current design is low [18], and has been deter-
mined to be about 1 MHz. By contrast, CMOS based pseudo-
random bit generators produce pseudo-random bits at a rate
as high as 4 million bits per second or more. Given this po-
tential limitation, the peak rate at which an application con-
sumes random bits, or the (peak) application demand band-
width is a characteristic of interest. If the peak application de-
mand bandwidth exceeds the bandwidth of the PCMOS based
design—a design being an element or a building block that is
PCMOS based, the PCMOS devices need to be replicated. Thus
the need for extra bandwidth will be met through parallelism,
and the amount is quantified as the replication factor R. Based
on these technology and algorithm characteristics, the applica-
tions of interest are partitioned, optimized and implemented as
PSOC designs.

3.2. The suite of applications

In this section, we (due to space constraints) summarize the
suite of applications, their partitioning and optimization, lead-
ing to the design of efficient PSOC architectures.

Bayesian Networks (BN) Bayesian inference is a statisti-
cal inference technique mimicking the human decision mak-
ing process. Hypotheses and their corresponding probability
weights are notions central to this technique. The probabil-
ity weights are interpreted to be the degrees of belief associ-
ated with the corresponding hypotheses. Based on evidences,
the degree of belief in a hypothesis is incremented (or decre-
mented) till it approaches 1 (or 0) in which case the hypoth-
esis is very likely (unlikely). A Bayesian network is used to
perform a task referred to widely as Bayesian inference, and
is modeled as a directed acyclic graph G of nodes V repre-
senting variables and edges E representing dependence re-
lations between the variables. Each variable u uniquely rep-
resented by a node v ∈ V can be assigned a value from
a finite set of values Σu. Each value σ ∈ Σu has a con-
ditional probability p(σ/σ′ ∈ Σ′) associated with it, where
Σ′ ∈ (Σ1 × Σ2 × Σ3 · · ·Σl) is the string of values of the
variables represented by all of the l parents of u. Variables
whose values are known apriori are called evidences and based
on such evidence, other variables are inferred. The particu-
lar Bayesian networks considered in this study is a part of the
following applications: a hospital patient management system
and printer troubleshooting in a Windows operating system en-
vironment.
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Figure 3. The co-processor architecture of a
PSOC which implements Bayesian inference.

Partitioning and Optimization We choose the likelihood
weighting algorithm [20] for Bayesian inference. The ran-
dom experiment (used for inference) in this probabilistic al-
gorithm, is implemented in the PCMOS co-processor (consist-
ing of several modules), with the remainder implemented as
software executing on the host. In a Bayesian network G,
the conditional probabilities associated with each value of the
variables of a node are known apriori, and are used to de-
sign a module of PCMOS switches (inverters), one module
per node v in the graph. As an example, consider a node
u with Σu = {0, 1, 2}. As before, let Σ′ be an instance
of the string of values associated with the parents of u. Let
0 ≤ p(0/σ′), p(1/σ′), p(2/σ′) ≤ 1 be the conditional prob-
abilities associated with 0, 1, 2 ∈ Σu respectively, given that
the parents of the node v have outputs σ′ ∈ Σ′. In our PSOC
architecture, Bayesian inference will be performed by three
PCMOS switches A,B and C corresponding to 0, 1, 2 respec-
tively. The inputs for these switches are fixed at 0 and the prob-
ability of correctness associated with A,B, C is by design,
p(0/σ′), p(1/σ′)

1−p(0/σ′) and p(2/σ′)
1−p(0/σ′)−p(1/σ′) respectively. Thus,

when the switches are inspected in the order < A,B,C >,
the value which corresponds to the first switch whose output
is the value 1 is the value inferred by node u. In the PSOC de-
sign, the set of switches {A,B, C} will be referred to as a row
and each distinct switch in this set will be referred to as an el-
ement. Since a row is associated with each element of the set
Σ′, many rows are required to implement the strings associ-
ated with the space of all possible outputs corresponding to
the parents of the node u from Σ′. These set of rows will be
referred to as a table.

As shown in Figure 3, the PCMOS module corresponding
to a node u implements a table, whose row is indexed by a
particular string σ′ of values associated with the parents of u
computed earlier. The number of columns in the table is |Σu|,
where each column corresponds to a value from the set Σu;
in our example, |Σu| = 3. An element in the table, identi-
fied by <row, column> is a specialized PCMOS switch whose
probability of correctness is computed as indicated above. Fi-
nally a conventional priority encoder is connected to the out-
puts of a row to determine the final result of the random ex-
periment; it performs the function of inspecting the values of
a row and choosing the final output associated with u.

Random Neural Network (RNN) Following Gelenbe [10],
a random neural network consists of neurons and connections
between the neurons. Information is exchanged between the
neurons in the form of bipolar signal trains. Neurons have
potentials associated with them, which are defined to be the
sums of incoming signals. This potential in turn, influences
the rate of firing. The particular neural network considered in
this study is used to heuristically determine the vertex-cover



of a graph due to Gelenbe and Batty [10].
Partitioning and Optimization The Poisson process

which models the “firing” of a neuron is implemented in the
PCMOS co-processor, with the rest of the computation imple-
mented to execute on the host processor. To realize the Pois-
son process characterizing a neuron firing, the Bernoulli
approximation of a Poisson process [7] is used. As an exam-
ple of a methodological step in our A2T co-design approach,
since the rate at which random bits are required by the host ex-
ceeds the rate at which PCMOS based switches can compute,
the “neurons” in the co-processor of the PSOC are repli-
cated to match the required rate. In the interests of efficiency,
and as another example of our A2T methodology, the ap-
plication is restructured to reduce the replication factor R,
by interleaving the demand for random bits and the pro-
cessing of these bits on the host—distributing the firings
more evenly over the course of the entire application’s exe-
cution. This has the effect of reducing the peak application
demand bandwidth.

Probabilistic Cellular Automata (PCA) are a class of cellu-
lar automata used to model stochastic processes [9]. Cellular
automata consist of cells with local (typically nearest neigh-
bor) communication. Each cell is associated with a state and a
simple transition rule which specifies its next state, based on
its current state and typically, the states of its neighbors. In the
probabilistic string classification application due to Fuks [9],
the state of each cell assumes a value of 0 or 1, giving rise
to 8 possible transition rules (each rule has two possible out-
comes, 0 or 1). In addition, each transition rule is probabilis-
tic: for a transition rule τi (0 ≤ i ≤ 7), the probability that the
output state of the rule is 0 is denoted by pi,0 and the probabil-
ity that the output state is 1 is denoted by pi,1.

Partitioning and Optimization Each transition rule is im-
plemented in the co-processor by a PCMOS switch whose in-
put is a 0. The probability of correctness associated with the
ith switch is pi,1. Again, the control-intensive part of choos-
ing a transition rule (based on the state of a cell and the states
of its neighbors) and updating the states upon evaluating the
rules are all implemented on the host processor. Since the rate
at which the transition rules are evaluated exceeds that sup-
ported by PCMOS devices, this structure is again replicated
many times with concomitant optimizations.

Hyper-Encryption (HE) is a provably secure encryption
technique proposed by Ding and Rabin [6] in the bounded stor-
age model. This scheme consists of generating an encryption
pad based on a publicly available random string α and a shared
secret key between the sender and the receiver. The secret key
S is a sequence of whole numbers S = s1, s2, s3 · · · sk such
that each number 0 ≤ si < |α|. If α[j] is the jth bit of α,
the encryption pad is generated by α[s1] ⊕ α[s2] ⊕ . . . α[sk],
where ⊕ denotes the pairwise exclusive OR (XOR) function.
Message encryption is performed by a bit-wise XOR operation
of the encryption pad with the message.

Partitioning and Optimization In the PSOC, the random
string α is generated using PCMOS while the generation of the
encryption pad as well as the encryption are performed by the
host. Both in the context of PCA and Hyper-Encryption (as
shown in Figure 4), the SA-1100 host is also replaced by cus-
tom hardware.

4. Metrics, results and analysis
In order to characterize and quantify benefits derived

through PSOC architectures, we now define a variety of met-
rics. In the interests of staying within the stipulated page
limits, our development will be brief.

Application gain over SA-1100 gain over CMOS

BN 9.99 × 107 2.71 × 106

RNN 1.25 × 106 2.32 × 104

PCA 4.17 × 104 7.7 × 102

HE 1.56 × 105 2.03 × 103

Table 1. The EPP gain of PCMOS over SA-1100 and
over CMOS for the core probabilistic step

4.1. Metrics for quantifying the application level
benefits

Energy performance product: EPP described earlier, is
defined as the product of the energy consumed by the appli-
cation and its execution time. This metric will be used as the
primary figure of merit to evaluate alternate implementations,
including SOC and PSOC variants. Given the EPP of two alter-
nate realizations, they can be compared as follows.

Energy performance product gain: ΓI is the ratio of the
EPP of the baseline denoted by the symbol β to the EPP of a
particular implementation I (e.g., a PSOC or an SOC). This ra-
tio is calculated as follows:

ΓI =
Energyβ × Timeβ

EnergyI × TimeI
(1)

For determining ΓI , and unless otherwise stated, the baseline
(and hence, the numerator of ΓI) always corresponds to the
case when the entire computation is performed on the host pro-
cessor. The StrongARM SA-1100 serves as the baseline pro-
cessor, and therefore, there is no co-processor. For example,
in the context of the RNN application solving the vertex cover,
the baseline is the StrongARM SA-1100 computing the deter-
ministic as well as the probabilistic content, whereas I is the
combination of the StrongARM SA-1100 as the host comput-
ing the deterministic component and the co-processor comput-
ing the probabilistic components of the application.

Quality of probabilistic implementation: This attribute is
characterized empirically based on the statistical tests from the
NIST suite [21] and will be the subject of Section 5.

4.2. Gains of core probabilistic steps through PCMOS

The application level gains in energy and performance
(when compared to the baseline case where there is no co-
processor) is attributed to the efficiency of the co-processor
while executing the core probabilistic operations. We summa-
rize these gains of PCMOS over StrongARM SA-1100, and
over custom CMOS implementation for the core probabilistic
step for each of the applications in Table 1. Each row of this ta-
ble corresponds to one of the four distinct applications of in-
terest to us and the gains achieved per core probabilistic step
are shown there. As can be readily seen from Table 1, these
gains are substantial—orders of magnitude greater—in both
contexts. These per-operation gains would of course be valu-
able at the level of an entire application, only if the applica-
tion embodies significant opportunity characterized by its flux
F .

4.3. Application level gains of PCMOS

As summarized in Table 2, gains at the scope of an entire
application range from a factor of about 80 for the PCA appli-
cation, to a factor of about 300 in the context of the RNN appli-
cation. As mentioned earlier, the baseline implementation for
HE, PCA and RNN applications is the StrongARM SA-1100
computing the deterministic as well as the probabilistic con-
tent and I is a PSOC executing an identical probabilistic al-
gorithm. For the BN case, the baseline is the StrongARM SA-



1100 computing the deterministic junction tree algorithm and
I is a PSOC executing the likelihood weighting algorithm. A
range of EPP gains are observed whenever multiple data points
are available, for example, in the context of the Bayesian in-
ference where different data points correspond to different net-
works, the flux varies from 0.25 % to 0.75 %. The correspond-
ing gain increases from a factor of 12.5 to an impressive factor
of 291 largely due to increase in flux. Similar increases are ob-
served for the other applications as well, caused by greater flux
values in the application as shown in the table.

Algorithm Flux F (as percentage of total operations) ΓI

Min Max
BN 0.25%-0.75% 12.5 291

RNN 16.4%-19.7% 226.5 300
PCA 4.19%-5.29% 61 82
HE 12.5% 1.12 1.12

Table 2. Application level flux, maximum and
minimum EPP gains of PCMOS over the base-
line implementation where the implementation
I has a StrongARM SA-1100 host and a PCMOS
based co-processor

4.4. Impact of host efficiency
We will now consider and extend the gains to the entire ap-

plication suite. We will delineate the (less obvious) impact of
the efficiency of the host processor on the gain of an imple-
mentation ΓI . Referring back to the Table 2, the striking as-
pect of the gain is evident in the context of the HE application.
From Table 1 we note that the energy consumed by each core
probabilistic step in the context of the HE application is over
a factor of 150000 while using the SA-1100 host, when com-
pared to a PCMOS based design. Furthermore, as seen in Ta-
ble 2, the HE application has high flux—much higher than the
corresponding values of BN and PCA applications. Yet, the HE
application does not seem to demonstrate any gain at all, since
ΓI = 1.12. We will devote the rest of this section to try and
understand this potential “anomaly”.

Once again, in the interests of staying within the mandated
space limits, we will restrict detailed discussion to the HE ap-
plication. The reason for this “anomaly” is that the Stron-
gARM host is extremely inefficient. Thus the relative sav-
ings of PCMOS, while significant are rendered insignificant
as an overall proportion of the entire application, when the
StrongARM host is included. Thus gains through PCMOS—
the limits being substantial as shown in Table 1—can be truly
achieved only if the amount of effort spend in the co-processor
is comparable in terms of EPP units to that spent in the host. To
verify this hypothesis, a baseline SOC architecture in which the
host processor and the co-processor are both custom ASIC ar-
chitectures (Figure 4) is considered. With this notion, moving
away from a StrongARM host processor to one realized from
custom ASIC logic, amount of energy and running time spent
in the host is considerably lower. Thus and perhaps counter in-
tuitively, increasing the efficiency of the competing approach
enhances the value of PCMOS gains at the application level.
In the context of the HE application, and with this change to
the baseline, the gain ΓI increases to 9.38 - almost an order of
magnitude. Similarly when a baseline with a custom ASIC host
is used, the ΓI value in the context of the probabilistic cellu-
lar automata application increases to 561. We view this fact
as being extremely favorable for PSOC based designs. Thus,
as host processors become more efficient with future technol-

ogy generations, the gains of PSOC architectures over conven-
tional SOC architectures increase.
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Figure 4. The Custom ASIC host and its PCMOS co-
processor constituting a PSOC implementation, for
Hyper-Encryption

5. The value of PCMOS to quality of randomness
While the EPP gains for applications have been our signif-

icant concern to demonstrate the utility of PCMOS, the qual-
ity of the implementation of a probabilistic algorithm is a
characteristic of interest as well. Random bits of low qual-
ity affect application behavior—from the correctness of Monte
Carlo simulations [8] to the strength of encryption achieved by
schemes such as Hyper-Encryption [6]. We employed statisti-
cal tests from the NIST suite [21] to assess to quality of ran-
domness in a preliminary way. The random sequences in the
case of PCMOS have been produced from physical measure-
ments of a probabilistic inverter fabricated using the 0.25µm
TSMC process, whereas the pseudo-random bits derived us-
ing Park-Miller [19] algorithm were evaluated using the out-
put of a custom design simulated using HSpice. In both cases,
p = 0.5.

The results of these comparisons are shown in Figure 5.
Among these tests and to highlight a few, the runs test, is used
to determine a contiguous sequence of bits with a value 1 in
a block. The rank test is used to check the linear dependence,
while the FFT and approximate entropy tests detect period-
icity and frequency of overlapping patterns. In evaluating the
test results, we employed the testing strategy and criteria as
recommended by NIST. Specifically, the test results shown in
parenthesis in the table are compared against a threshold (the
recommended value being 0.93) used to determine whether
the sequence passes (or fails) a test. The tests are performed
on random bit sequences of length 20, 000, 000. The result in-
dicates the proportion of sub sequences (tested through iter-
ations) that pass, from the random sequence being tested. As
seen from the figure, the quality of random sequences gener-
ated by PCMOS is higher than that of those generated by CMOS,
since more tests in the former case yield a pass result com-
pared to the latter—eleven tests with a pass score in the con-
text of PCMOS whereas seven in the CMOS context, out of a
total of fourteen tests.

6. Conclusion and remarks
We have demonstrated the value of the novel PCMOS tech-

nology within the context of realizing ultra efficient PSOC ar-
chitectures, over a range of applications ubiquitous to embed-
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Figure 5. Comparison of quality of randomiza-
tion for PRNG and PCMOS.

ded computing and beyond. The improvements that we were
able to demonstrate were orders of magnitude over applica-
tion specific CMOS designs. Next, we wish to explore a larger
suite of applications and associated PSOC architectures, signif-
icantly from the signal processing (DSP) domain wherein the
probability of correctness p at the device level manifests itself
naturally as the signal-to-noise ratio at the level of a computa-
tional kernel such as a filter. Another interesting and valuable
intellectual direction to pursue in the future involves a thor-
ough and in-depth exploration and study of the quality of ran-
domness. We note in passing that PCMOS has the ability of
producing random bits as opposed to the pseudo-random bits
that conventional random number generators produce. Mea-
suring the quality of randomness remains a challenge, if ap-
proaches other than empirical—such as those advocated by
NIST—are sought, since the complexity of provably correct
tests for randomness can be undecidable [3]. This question of
generating pseudo-random bits has deep roots in computer sci-
ence with connections to important questions about the inher-
ent difficulty of computations (see Blum and Micali [1]). In a
sense, A2T co-design methodology based on PCMOS, and thus
a source of high quality random bits can be viewed as a techno-
logical response to the significant challenge embodied in Yao’s
comment from 1982—“If, in an application, it is possible to
isolate some simple randomness properties that can guarantee
success, then a statistical test based on the desired random-
ness properties can be used to screen and select a appropri-
ate generator. This, however, is seldom the case. Furthermore,
the performance of a pseudo-random number generator under
a particular statistical test is usually hard to determine ana-
lytically, and often has to rely on empirical evidence.” [25].
Finally an independent and equally interesting direction, in-
volves investigating the applicability of the ideas, methods and
constructs presented here to the overarching question of realiz-
ing reliable computing from unreliable elements—such “prob-
abilistic designs” are considered central to sustaining Moore’s
law in the nanometer regime of CMOS based architectures [2].
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