
Efficient Incremental Clock Latency Scheduling for Large Circuits

Christoph Albrecht
Cadence Berkeley Labs, Berkeley, CA, USA

Abstract

The clock latency scheduling problem is usually solved
on the sequential graph, also called register-to-register
graph. In practice, the the extraction of the sequential graph
for the given circuit is much more expensive than computing
the clock latency schedule for the sequential graph. In this
paper we present a new algorithm for clock latency schedul-
ing which does not require the complete sequential graph as
input. The new algorithm is based on the parametric short-
est paths algorithm by Young, Tarjan and Orlin. It extracts
the sequential timing graph only partly, that is in the criti-
cal regions, through a call back. It is still guaranteed that
the algorithm finds the critical cycle and the minimum clock
period. As additional input the algorithm only requires for
every register the maximum delay of any outgoing combi-
national path. Computing these maximum delays for all the
registers is equivalent to the timing analysis problem, hence
they can be computed very efficiently. Computational results
on recently released public benchmarks and industrial de-
signs show that in average only 20.0 % of the edges in the
sequential graph need to be extracted and this reduces the
overall runtime to 5.8 %.

1. Introduction
The clock scheduling problem is usually solved on the sequen-

tial graph. The sequential graph has a node for every register and
has a directed edge from a node u to a node v whenever there
is a combinational path starting at the register corresponding to
node u and ending at the register corresponding to node v. Asso-
ciated with every edge is the maximum delay of all combinational
paths from and to the respective registers. Generating the sequen-
tial graph is computationally expensive. The arrival times are prop-
agated separately for each register over the complete fanout to the
next registers. Every node and edge in the circuit graph is touched
as often as it appears in the fanout of a register.

Simple timing analysis is performed on the gate-level timing
graph, which has a node for every pin and an edge for every prop-
agation segment within a gate as well as for every pair of a driver
pin and a load pin connected by a net.

Though the number of nodes in the sequential graph is smaller
compared to the gate-level timing graph, the number of edges can
be enormous. Potentially, it can be n2, where n is the number of
nodes. Our computational results show that on practical instances

the number of edges in the sequential graph can be up to 24 times
larger than the number of edges in the gate-level timing graph.

It is computationally less expensive to determine for every reg-
ister and primary input the maximum delay of any outgoing edge
in the sequential graph. We only need to perform two longest paths
delay propagations, forward for the arrival time computation and
backward for the required arrival time computation. This is equiv-
alent to the timing analysis problem and can be done in linear time.
For a clock period T and a slack s at the output pin of the regis-
ter the maximum delay of all outgoing paths of the register is given
by T − s.

Our contribution is a new algorithm which does not require
the complete sequential graph as input but which extracts parts
of the sequential graph through a call-back mechanism. As addi-
tional input it requires for every node in the graph the maximum
delay of all outgoing edges. As the algorithm optimizes the laten-
cies it queries for a few selected nodes the outgoing edges through
a call-back function.

Our algorithm is based on the parametric shortest paths algo-
rithm by Young, Tarjan and Orlin [1] and it has the following
differences: (1) Instead of one single shortest paths tree, an ar-
borescence, we have several arborescences and at the beginning
of the algorithm any single node forms an arborescence. This has
the advantage that the latencies of most nodes are not changed.
(2) During the algorithm by Young, Tarjan and Orlin the cost of
the edges changes. The cost of each edge is a constant minus a sin-
gle pareameter and this pareameter increases. The algorithm main-
tains a shortes path tree and in order to do so the algorithm needs
to exchange edges in the tree, one edge at the time. This exchange
step is the main step of the algorithm. The algorithm uses a heap to
determine the next edge which needs to be exchanged. We add an
additional step which queries the outgoing edges of a node based
on the maximum delay specified at the beginning of the algorithm.
We use a second heap to determine the next node for which the out-
going edges have to be queried. We show that the runtime of the
algorithm is still O(nm + n2 log n) as the original algorithm by
Young, Tarjan and Orlin.

Our algorithm is especially useful when combined and iterated
with other incremental optimization algorithms because it works
only in the critical parts of the design. This becomes more and
more important as the complexity of the optimization flows in-
creases.

This paper is organized as follows: In Section 2 we discuss pre-
vious work, in Section 3 we give a formal definition of the clock
latency scheduling problem, in Section 4 we describe the algo-
rithms, in Section 5 we discuss extensions, and in Section 6 we
present computational results.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



2. Previous Work
In the literature the clock latency scheduling problem is also

known as the clock skew optimization problem. Fishburn [2] for-
mulated the problem as linear program, and subsequently, further
research on the clock latency scheduling problem was published
([3], [4], [5]).

Albrecht et al. [6, 7] and Kourtev et al. [8] consider the problem
to not only compute a clock schedule which minimizes the clock
period but which improves the slack on many other paths. For an
overview of the clock latency scheduling problem, see Kourtev and
Friedman [9] and Sapatnekar [10] (Chapter 9).

The problem of computing a clock schedule minimizing the
clock period is equivalent to finding a minimum mean cycle in a
directed graph. The minimum mean cycle is the cycle for which
the average weight is minimum amoung all cycles, in a directed
graph. Dasdan et al. [11] give an overview of the different algo-
rithms for computing the minimum mean cycle in a directed graph
and present experimental results about the performance of the al-
gorithms for practical VLSI circuits. They conclude that Howard’s
algorithm is the fastest algorithm. However, no polynomial bound
on the runtime for this algorithm is known. We could not see
how this algorithm could be used for incremental clock latency
scheduling. In practice the runtime to compute the minimum mean
cycle is negligble compared to the runtime to extract the sequen-
tial graph.

To our best knowledge our work is the first work which com-
putes the optimum clock period without the complete sequential
graph.

3. Problem Formulation
Clock latency scheduling changes the latencies of the clock sig-

nal arriving at the registers. By increasing the latency of a clock
signal at a register the slack of the incoming logic paths increases
while the slack of the outgoing paths decreases. The opposite re-
sult is achieved by decreasing the latency.

For a given circuit the sequential graph is defined as follows:
The nodes are the registers. A special host node represents all
primary inputs and outputs. Whenever there is a combinational
path from a register u to a register v, the graph contains an
edge e = (u, v). The weight d(e) of this edge represents the max-
imum propagation delay of all paths from the register u to the reg-
ister v. For a node v we denote by l(v) the latency of the register
corresponding to the node.

The problem to minimize the clock period T by clock latency
scheduling can be formulated as the following linear program:

min T

s. t. l(u) + d((u, v)) − T ≤ l(v) ∀ (u, v) ∈ E (1)

For a given feasible clock period T , the latencies can be deter-
mined by a longest path computation with the length of an edge e
being c(e) = d(e) − T . It can be shown that the minimum clock
period achievable by clock latency scheduling is equal to the max-
imum mean weight of all directed cycles in the sequential timing
graph.

To simplify the presentation we ignore the setup time which
could be added to the delay of the path. At the end of the paper we

2 4 5 23 8 db ca

(a)

d c

ba 3

9

10 +3+7

+0+3

2 8

(b)

Figure 1. Circuit and the corresponding sequential
graph.

describe how further constraints, lower and upper bounds on the
latencies and hold constraints, can be considered.

Figure 1(a) shows a circuit with registers and gates. The num-
bers associated with the gates represent the delay. Figure 1(b)
shows the corresponding sequential graph. Associated with the
edges is the delay. Register a has a clock latency of +3, regis-
ter b of +0, register c of +3 and register d of +7. This achieves the
best possible clock period of 6.

4. Algorithms
In this section we present our clock latency scheduling algo-

rithm to solve the linear program (1).
In difference to the algorithm by Young, Tarjan and Orlin we

compute the maximum mean cycle instead of the minimum mean
cycle, hence compute longest paths instead of shortest paths. To
get the same behavior the edges could simply be multiplied by -1.

We present two algorithms, the first algorithm still requires the
complete register-to-register graph as input, but maintains several
arborescences instead of one single longest path tree as does the
algorithm by Young, Tarjan and Orlin. The second algorithm in-
crementally extracts the sequential graph.

The algorithms use a heap which has the element with
the largest key on the top. The function heap init(H) initial-
izes the heap H , heap empty(H) returns true if the heap is
empty, heap add(H, x, k) adds an element x with the key k to the
heap H , heap key max(H) returns the maximum key of all el-
ements in the heap, heap pop max(H) returns the tuple of the
element with the maximum key together with the key and re-
moves this element from the heap, and heap element(H, x)
returns true if the element x is in the heap H .

In the following we describe the first algorithm, Algorithm 1.
Contrary to the algorithm by Young, Tarjan and Orlin, we do not
have a single directed tree, an arborescence, but a branching1, that
is several unconnected arborescences2. The edges of these arbores-
cences are called critical edges, because they have zero slack. The
algorithm keeps the critical edges in the set F . At the beginning
of the algorithm the set of critical edges F is empty. Every node
forms an arborescence by itself and is a root.

The algorithm maintains for each node v some variables: The
total delay of the edges on the path from the root of the arbores-

1 A directed graph is called a branching if the graph does not contain
a directed cycle and each node has at most one incoming (entering)
edge.

2 A branching is an arborescence if the underlying undirected graph is
connected. An arborescence has exactly one node without any incom-
ing edge. This vertex is called the root of the arborescence.



Algorithm 1 Clock Latency Scheduling
Input: The sequential graph G = (V,E, d).
Output: A critical cycle C, the minimum clock period T ,
and for each node v ∈ V the latency l(v) given by the func-
tion latency(v).

1: heap init(Hedge)
2: F := ∅
3: for all v ∈ V do
4: set α(v) := 0, β(v) := 0 and ξ(v) := ∅
5: for all v ∈ V do
6: Let e = (u, v) be the edge with

edge pivot(e) = max
(u,v)∈E

edge pivot((u, v)).

7: set µ(v) := e and η(v) := edge pivot(e)
8: heap insert(Hedge, v, η(v))
9: while (not heap empty(Hedge) and

heap key max(Hedge) > −∞) do
10: set (v, T ) := heap pop max(Hedge)
11: set e = (u, v) := µ(v)
12: if (V, F ∪ {e}) contains a cycle C then
13: return (C, T )
14: set F := F \ ξ(v) ∪ {e} and ξ(v) := e
15: update delays and levels(e)
16: update edge keys(v)
17: return (∅,−∞)

cence to the node is denoted by α(v) and the number of edges on
this path is denoted by β(v). We call β(v) also the level of the
node v. The critical incoming edge e ∈ F of a node v is stored
in ξ(v), which might be empty (∅). The variables are initialized in
line 4.

During the algorithm, for the current clock period T , any path
in F is always a longest path with respect to the length d(e)−T for
edge e ∈ E. This makes it possible to compute the latencies of a
node v for the current clock period, which is returned by the func-
tion latency(v), that is α(v)−β(v) T . At the beginning this prop-
erty holds for a clock period T which is equal to or larger than the
maximum delay of all edges. The clock period T decreases dur-
ing the algorithm and the branching F is adjusted.

The algorithm maintains the heap Hedge which stores each
node v with the clock period as key at which a new incoming
edge (u, v) would become critical, if there were no other edges.
This clock period is computed by the function edge pivot((u, v)).
At the beginning of the algorithm (lines 6–9) this clock period
is simply equal to the delay of the edge, because α(v) = 0
and β(v) = 0. The algorithm stores the next critical incoming
edge of node v in the variable µ(v) and the clock period in η(v).
An edge (u, v) is critical if l(u) + d((u, v)) − T = l(v). Since
l(v) = α(v) − β(v) T for all v ∈ V , this is equivalent to

α(u) − β(u) T + d((u, v)) − T = α(v) − β(v) T.

Solving for T results in the expression in line 2 of Function 1, the
function edge pivot.

As long as the heap Hedge is not empty, the algorithm pops
the next node v from the heap. If the new critical edge e = (u, v)
stored in µ(v) forms a cycle C with the already critical edges in F ,

Function 1 edge pivot((u, v))

1: if (β(v) ≤ β(u)) then
2: return (α(u)+d((u, v))−α(v))/(β(u)+1−β(v))
3: else
4: return −∞

Function 2 update delays and levels((u, v))

1: Let A = (V ′, F ′) be the maximal arborescence in G
with root v and edges in F .

2: set ∆d := α(u) + d((u, v)) − α(v)
3: set ∆l := β(u) + 1 − β(v)
4: for all w ∈ V ′ do
5: set α(w) := α(w) + ∆d and β(w) := β(w) + ∆l

Function 3 update edge keys(v)

1: Let A = (V ′, F ′) be the maximal arborescence in G
with root v and edges in F .

2: for all e = (u, v) ∈ E with u ∈ V ′ and v /∈ V ′ do
3: if (η(v) < edge pivot(e)) then
4: set µ(v) := e and η(v) := edge pivot(e)
5: heap increase key(Hedge, v, η(v))
6: for all v ∈ V ′ do
7: Let e = (u, v) be the edge with

edge pivot(e) = max
(u,v)∈E

edge pivot((u, v))

8: if (η(v) > edge pivot(e)) then
9: set µ(v) := e and η(v) := edge pivot(e)

10: heap decrease key(Hedge, v, η(v))

Function 4 latency(v)

1: return α(v) − β(v)T

then this cycle has the maximum mean delay and the algorithm re-
turns the cycle with the current clock period (line 13). Otherwise,
the arborescence is modified by a pivot step (line 14).

For each node w in the maximal arborescence A = (V ′, F ′)
in G with root v and edges in F the delay α(w) and the level β(w)
is updated by the function update delays and levels((u, v)).

The reason that an edge e = (u, v) becomes critical is that the
path in F from one root to node u plus the edge (u, v) has more
edges than the path in F from possibly another root to the node v.
Hence the level β(v) only increases during the algorithm.

As the delays and levels of the maximal arborescence in G with
root v and edges in F are changed, the keys at which a new edge
could become critical as well as the heap Hedge need to be up-
dated by the function update edge keys(v). For an edge (u, v)
with u ∈ V ′ and v /∈ V ′ the pivot clock period can only in-
crease (line 5), while for an edge (u, v) with u /∈ V ′ and v ∈ V ′

the pivot clock period can only decrease (line 10). For all other
edges the pivot clock period remains unchanged.

In practice, the algorithm terminates by finding a critical cy-
cle (line 13) at a point at which most of the nodes still have a
level of β(v) equal to zero and these nodes then also get a la-
tency of zero. The algorithm by Young, Tarjan and Orlin has a
single arborescence and all nodes except for the single host node



+0

T = 

c d
10

+0

10

(a)

10
c db

+0

9

T = 

+0 +1

9

(b)

10
c d ab

+0

9 2

T = 

+2 +5 +0

7

(c)

10
c d ab

3

+3 +7
+3

+0

9 2

T = 6

(d)

Figure 2. Snapshots of Algorithm 1 for the sequen-
tial graph in Figure 1(b).

have a critical incoming edge, a level different than zero and there-
fore most likely a latency different than one. The algorithm by
Burns [3] is similar to our algorithm with respect to the property
that it maintains several arborescences instead of one.

Figure 2 shows the different steps of the algorithm for the se-
quential graph in Figure 1(b). Shown are the critical edges in the
branching F . The numbers at the nodes give the latency. The edge
(c, d) is the first edge which becomes critical, then the edge (b, c),
(d, a) and finally (a, b) which forms a directed cycle, the maxi-
mum mean cycle with an average delay of 6. This is the minimum
clock period. In each of the figures the nodes are ordered with in-
creasing level. For example, in Figure 2(c), the node b has level 0,
the node c has level 1, the node d has level 2 and the node a has
level 4.

We will now describe the incremental clock latency schedul-
ing algorithm, Algorithm 2. The algorithm has one additional
heap, the heap Hnode. It is used to determine when the outgoing
edges of a node need to be queried by the call-back function con-
struct out edges. Since the latencies of the nodes only increase, an
edge (u, v) can become critical if l(u) + dout(u) − T ≥ 0. With
l(u) = α(u) − β(u) T this is equivalent to

α(u) − β(u) T + dout(v) − T ≥ 0.

Solving for T gives

T ≤ (α(u) + dout(u))/(β(u) + 1)

which is the expression in the function node pivot(v), Function 5.
Once the outgoing edges of a node have been queried, the

keys of the successor nodes are updated by the function up-
date successor nodes. As before, the algorithm continuously de-
creases the clock period. It is ensured that whenever an outgoing
edge of a node could become critical, it is extracted. When the
branching F is updated (line 18) not only do the keys in the heap
Hedge need to be updated, but also the keys in the heap Hnode

as done by the function update node keys (line 20). Young, Tar-
jan and Orlin use a Fibonacci-Heap and show that the runtime
is O(nm + n2 log n), where n is the number of nodes and m
the number of edges. For a Fibonacci-Heap which has the ele-
ment with the maximum key on the top the amortized time to

Algorithm 2 Incremental Clock Latency Scheduling
Input: The sequential graph G = (V,E, d) given implicitly
by the set of nodes V , the worst outgoing slack dout(u) =
max(u,v)∈E d((u, v)) for every node u ∈ V , and a func-
tion construct out edges(v), which generates the outgoing
edges of the node v.
Output: A critical cycle C, the minimum clock period T ,
and for each node v ∈ V the latency l(v) given by the func-
tion latency(v).

1: heap init(Hedge)
2: heap init(Hnode)
3: F := ∅
4: for all v ∈ V do
5: set α(v) := 0, β(v) := 0 and ξ(v) := ∅
6: for all v ∈ V do
7: heap insert(Hnode, v,node pivot(v))
8: while (not heap empty(Hnode) and

not heap empty(Hedge)) do
9: if (heap max key(Hnode) > heap max key(Hedge))

then
10: set (v, T ) := heap pop max(Hnode)
11: construct out edges(v)
12: update successor nodes(v)
13: else
14: set (v, T ) := heap pop max(Hedge)
15: set e = (u, v) := µ(v)
16: if (V, F ∪ {e}) contains a cycle C then
17: return (C, T )
18: set F := F \ ξ(v) ∪ {e} and ξ(v) := e
19: update delays and levels(v)
20: update node keys(v)
21: update edge keys(v)
22: return (∅,−∞)

Function 5 node pivot(v)

1: return (dout(v) + α(v))/(β(v) + 1)

Function 6 update successor nodes(u)

1: for all e = (u, v) ∈ E do
2: if (η(v) < edge pivot(e)) then
3: set µ(v) := e and η(v) := edge pivot(e)
4: heap increase key(H, v, η(v))

Function 7 update node keys(v)

1: Let A = (V ′, F ′) be the maximal arborescence in G
with root v and edges in F .

2: for all v ∈ V ′ do
3: if (heap element(Hnode, v)) then
4: heap increase key(Hnode, v, node pivot(v))

increase a key is O(1). Hence, the additional step to construct
the outoing edges of the nodes including the update function up-
date successor nodes has a total time of O(m).



+0

+0

T = 10

10

c

d

(a)

T = 10

+0

c d
10

+0

(b)

T = 9

+0

b

c d
9
10

+0

+1

(c)

T = 9

10
c db

+0

9
+0 +1

(d)

10
c

+0

9

+0

d3 8

b

a
T = 8

+1 +3

(e)

T = 7

10
c

+0

9
+2 +5

+0

d3 8
2

b

a

(f)

10
c d ab

3

+3
+0

9 2
+0+2 +5 8

T = 7

(g)

T = 6

10
c d ab

3

+3
+3

+0

9 2
+7 8

(h)

Figure 3. Snapshots of Algorithm 2 for the sequential graph in Figure 1(b).

Theorem 1 The incremental clock latency scheduling algorithm,
Algorithm 2, correctly finds the critical cycle and the minimum
clock period in O(nm + n2 log n).

Figure 3 shows the different steps executed by the algorithm for
the sequential graph in Figure 1(b). Shown are the critical edges in
the branching F and dashed are the edges which have been ex-
tracted by calling the function construct out edges. In 3(a) this
function has been called for node c, in 3(c) for node b, in 3(e)
for node a and in 3(f) for node d. The Figures 3(b), 3(d), 3(g), and
3(h) correspond to the Figures 2(a-d). In each of these figures a
new edge becomes critical. This example shows that not necessar-
ily one of the newly extracted edges has to become critical in the
next step.

5. Extensions
To keep the presentation of the algorithm simple we have

only considered setup constraints and ignored hold constraints and
other constraints, for example lower and upper bounds on the la-
tencies of the registers. We could find the minimum clock period
subject to the constraint that no hold constraints are violated. The
algorithm by Young, Tarjan and Orlin can distinguish between pa-
rameterized edges and unparameterized edges. The setup edges
are parameterized edges and the hold edges are unparameterized
edges. These unparameterized edges are also used to implement
lower and upper bounds on the latencies.

In order to extract only a subset of the hold edges we intro-
duce a third heap and specify the minimum delay of all incoming
edges for each node at the beginning. The algorithm extracts all in-
coming hold edges of a node as soon as the latency of the node be-
comes larger than the minimum delay of all incoming edges speci-
fied. Designs with multiple clocks with different clock periods can
be optimized by using the slack of the combinational paths instead
of the delay, rewriting (1), and maximizing the worst slack.

Finally, it is possible with the algorithm by Young, Tarjan and
Orlin to not only optimize the worst slack, that is to find the most
critical cycle, but to contract the cycle and to continue the algo-
rithm, hence to increase the slack on other edges. For more details
see [6, 7].

6. Computational Results
We have implemented the two algorithms presented and evalu-

ated them within a commercial synthesis tool, Cadence RTL Com-
piler. To derive the outgoing edges in the sequential graph of a reg-
ister, we increase the clock latency of the register to a high value,
then query the slack at the data pins of the registers in the fanout
and reset the clock latency of the register to zero again.

We use 9 designs of the recently released IWLS 2005 Bench-
marks [12] and 8 industrial designs. Table 1 shows the characteris-
tics of the testcases. Shown are the number of primary inputs (PIs),
primary outputs (POs), registers (seqs), gates, pins and nets.

Table 2 presents the results achieved with the standard clock la-
tency scheduling algorithm (Algorithm 1) and with the incremen-
tal clock latency scheduling algorithm (Algorithm 2). Shown are
the number of nodes in the sequential graph, then the number of
edges in the sequential graph and the runtime to extract the se-
quential graph plus the time to compute the maximum mean cy-
cle (minimum clock period), then finally the number of edges ex-
tracted by the incremental clock latency scheduling algorithm and
the runtime. Shown is also the percentage reduction in the num-
ber of edges in the sequential graph which have to be extracted
and the percentage decrease in the runtime. For the runtime re-
ported for Algorithm 1 in Column 4, 98.2 % is needed to extract
to sequential graph and only 1.76 % for computing the maximum
mean cycle. The runtime to extract one edge is certainly not unique
for all the edges in the circuit and depends on the structure of the
circuit. Hence, the reduction in the number of edges extracted may
be smaller than the reduction of the runtime (ind01 and ind02) or
larger (ind06 and ind07). In summary, our new incremental clock
latency scheduling algorithm extracts only 20.01 % of the edges
in the sequential graph (reduction of 79.99 %) and the runtime de-
creases by 94.23 % to only 5.77 %.

Acknowledgments
The author would like to thank his colleagues from the Cadence

RTL Compiler team, especially Sascha Richter, for the close col-
laboration and a lot of help.



design PIs POs seqs gates pins nets
faraday DSP 575 269 3629 33509 147984 32592
faraday DMA 686 262 2202 15055 77939 13776
faraday RISC 276 351 8051 61105 301749 60805
opencores systemcaes 260 129 710 5701 30713 5157
opencores mem ctrl 115 152 1145 11501 71534 11175
opencores pci bridge32 162 207 3803 16485 93806 14915
opencores ethernet 96 115 10545 41428 242823 40275
opencores vga lcd 89 109 17102 56522 359360 56234
gaisler netcard 68 57 97873 342641 2119174 342265
ind01 162 229 14010 134874 822174 346658
ind02 2328 1692 87132 929820 5229168 2235468
ind03 223 236 3727 25885 196606 93181
ind04 166 441 9064 80297 380004 74376
ind05 156 325 9587 87555 631877 281066
ind06 422 475 3980 20275 163306 72935
ind07 215 230 12010 142452 1166099 525114
ind08 273 128 10554 114067 786693 350049
average 368 318 17360 124657 754177 268002

Table 1. Characteristics of the testcases.

Clock Scheduling (Alg. 1) Incr. Clock Scheduling (Alg. 2)
runtime runtime

design nodes edges (sec) edges % (sec) %
faraday DSP 3629 2039 28.00 192 -90.58 1.00 -96.43
faraday DMA 2202 92090 12.00 33221 -63.93 4.00 -66.67
faraday RISC 8051 319568 61.00 50916 -84.07 7.00 -88.52
opencores systemcaes 710 32415 6.00 8206 -74.68 1.00 -83.33
opencores mem ctrl 1145 56405 14.00 30249 -46.37 8.00 -42.86
opencores pci bridge32 3803 92354 18.00 2735 -97.04 1.00 -94.44
opencores ethernet 10545 250289 153.00 1659 -99.34 3.00 -98.04
opencores vga lcd 17102 616015 1490.00 549 -99.91 5.00 -99.66
gaisler netcard 97873 19287654 17720.00 743530 -96.15 92.00 -99.48
ind01 14010 490378 1549.00 27525 -94.39 325.00 -79.02
ind02 87132 1633188 933.00 110100 -93.26 180.00 -80.71
ind03 3727 2573175 337.00 218547 -91.51 26.00 -92.28
ind04 9064 3405537 402.00 185622 -94.55 33.00 -91.79
ind05 9587 4220472 737.00 204085 -95.16 42.00 -94.30
ind06 3980 4267940 733.00 3586393 -15.97 320.00 -56.34
ind07 12010 4550388 1271.00 59694 -98.69 25.00 -98.03
ind08 10554 5331479 1372.00 4184349 -21.52 476.00 -65.31
average 17368 2777728 1578.59 555739 -79.99 91.12 -94.23

Table 2. Computational results for clock latency scheduling and incremental clock latency scheduling.

References

[1] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster parametric short-
est path and minimum balance algorithms,” Networks, vol. 21, no. 2,
pp. 205–221, 1991.

[2] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on
Computers, vol. 39, pp. 945–951, July 1990.

[3] S. M. Burns, Performance Analysis and Optimization of Asyn-
chronous Circuits. PhD thesis, California Institute of Technology,
Pasadena, CA, December 1991.

[4] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Graph algorithms for clock schedule optimization,” in Digest of
Technical Papers of the IEEE/ACM International Conference on
Computer-Aided Design, (San Jose, CA), pp. 132–136, November
1992.

[5] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic approach to
clock skew optimization,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 407–410, 1994.

[6] C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Cycle time and
slack optimization for VLSI-chips,” in Digest of Technical Papers

of the IEEE/ACM International Conference on Computer-Aided De-
sign, (San Jose, CA), pp. 232–238, November 1999.

[7] C. Albrecht, B. Korte, J. Schietke, and J. Vygen, “Maximum mean
weight cycle in a digraph and minimizing cycle time of a logic chip,”
in Discrete Applied Mathematics, vol. 123, pp. 103–127, November
2002.

[8] I. S. Kourtev and E. G. Friedman, “Clock skew scheduling for im-
proved reliability via quadratic programming,” in Digest of Techni-
cal Papers of the IEEE/ACM International Conference on Computer-
Aided Design, (San Jose, CA), pp. 239–243, November 1999.

[9] I. S. Kourtev and E. G. Friedman, Timing Optimization through Clock
Skew Scheduling. Boston, Dortrecht, London: Kluwer Academic
Publisher, 2000.

[10] S. Sapatnekar, Timing. Norwell, MA: Kluwer Academic Publishers,
2004.

[11] A. Dasdan, S. S. Irani, and R. K. Gupta, “An experimental study of
minimum mean cycle algorithms,” Tech. Rep. UCI-ICS 98-32, Uni-
versity of Illinois at Urbana-Champaign, 1998.

[12] C. Albrecht, “IWLS 2005 Benchmarks,” International Workshop for
Logic Synthesis (IWLS): http://www.iwls.org, June 2005.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



