Optimizing Sequential Cycles
through Shannon Decomposition and Retiming

Cristian Soviani

Olivier Tardieu

Stephen A. Edwards*

Department of Computer Science, Columbia University, New York

Abstract

Optimizing sequential cycles is essential for many types
of high-performance circuits, such as pipelines for packet
processing. Retiming is a powerful technique for speeding
pipelines, but it is stymied by tight sequential cycles. Designers
usually attack such cycles by manually combining Shannon de-
composition with retiming—effectively a form of speculation—
but such manual decomposition is error-prone.

We propose an efficient algorithm that simultaneously ap-
plies Shannon decomposition and retiming to optimize circuits
with tight sequential cycles. While the algorithm is only able
to improve certain circuits (roughly half of the benchmarks we
tried), the performance increase can be dramatic (7%—61%)
with only a modest increase in area (3%—12%). The algorithm
is also fast, making it a practical addition to a synthesis flow.

1 Introduction

High-performance circuits rely on efficient pipelines. Provided
additional latency is acceptable, tight sequential cycles are the
main limit to pipeline performance. Unfortunately, such cycles
are fundamental to the function of many pipelines.

Retiming [4] is usually applied to high-performance
pipelines. Doing so renders the length of purely combinational
paths nearly irrelevant since it can divide such paths among
multiple clock cycles to increase the clock rate. However, be-
cause retiming cannot change the number of registers on a
sequential cycle—a loop that passes through combinational
logic and one or more registers—the depth of the combina-
tional logic along sequential cycles becomes the bottleneck.

We present an algorithm that uses Shannon decomposition
to move combinational logic from one loop to another, mak-
ing retiming even better for optimizing pipelined sequential
circuits. Designers have done this by hand for years; our algo-
rithm applies Shannon decomposition and retiming across an
entire circuit to deal with subtle interactions among loops. It
considers many implementations at once and selects the best.

Our algorithm works well on pipelined circuits where cy-
cles in control logic are the performance bottlenecks, a typical
situation since datapaths rarely include cycles.

*soviani, tardieu, sedwards@cs.columbia.edu. Edwards and his group is
supported by an NSF CAREER award, a grant from Intel corporation, an
award from the SRC, and from New York State’s NYSTAR program.

3-9810801-0-6/DATEQ06 © 2006 EDAA

1 —HH Period: 8
x2 HHH X1 HHH Period: 9
x3-HH f ——y et/
3 HHH —
x4 “HHH X HH 0| ,
8 l
P
L—
1

1
N

(a) Initial circuit (b) After Shannon Decomposition

Period: 2.25

225 225 225 1.25 1
e e B B

(c) After Shannon Decomposition and Retiming

Figure 1: The single-cycle feedback loop prevents retiming
from improving circuit (a), but applying Shannon decomposi-
tion (b) reduces the delay around the loop so that (c) retiming
can distribute registers and reduce the clock period.

1.1 An example

In the sequential circuit in Figure 1a, combinational block f
has delay dpoge = 8 so the minimum period of this circuit is 8.

The designer put three registers on each input hoping that
retiming would distribute them uniformly throughout f to de-
crease the clock period. Unfortunately, the feedback loop from
the output of f to its input prevents retiming from improving
the period below the combinational length of the loop, dyode,
since retiming can not change the number of registers along it.

Applying Shannon decomposition to this circuit can enable
retiming. Figure 1b illustrates how: we have duplicated the
combinational logic block and added a multiplexer to its out-
puts. While this actually increased the longest combinational
path to dpode + dmux = 9 (We assumed a unit delay for the mul-
tiplexer), it greatly reduced the combinational delay around the
cycle to the delay of only the mux: dpyx. This transformation
makes it possible for retiming to pipeline the slow combina-
tional block to produce the circuit in Figure 1¢ with a period
of (1/4)(dnode + dmux) = 2.25.

1.2 Related work

Most sequential optimizations apply a sequence of combina-
tional and sequential transforms that usually interact in unpre-
dictable ways, so most scripts use an empirically-chosen order.
By contrast, our work considers the effect of retiming while
doing Shannon restructuring, giving better results than either
alone. Omitting the retiming step gives an optimization that is
easily beaten by a combination of other techniques.

Performance-driven combinational resynthesis is a mature
field. Singh et al’s tree height reduction [12] is typical: it
optimizes critical combinational paths at the expense of non-
critical ones. Along similar lines, Berman et al. [1] propose the
generalized select transform (GST). Like us, the GST employs
Shannon decomposition, but our technique also considers the
effect of retiming. Other techniques include McGeer’s gener-
alized bypass transform (GBX) [7], which takes advantage of
certain types of false paths, and Saldanha’s exact sensitization
of critical paths [9], which makes corrections for input patterns
that generate a late output.

Our algorithm employs Leiserson and Saxe’s Retiming [4],
which can decrease the minimum period of a sequential net-
work by repositioning registers. This commonly-used transfor-
mation cannot change the number of registers on a loop; our
work employs Shannon decomposition to work around this.

Sequential logic resynthesis has also attracted extensive at-
tention, such as the work of Singh [11]. Malik et al. [5] com-
bine retiming and resynthesis (R&R). Pan [8] proposes a gen-
eral performance-driven approach to R&R, which our work is
a particular instance of. However, we only consider Shannon
decomposition instead of arbitrary restructuring, allowing us
to systematically explore the design space.

Hassoun et al’s [3] architectural retiming mixes retiming
with speculation and prediction to optimize pipelines; Mari-
nescu et al.’s technique [6] proposes using stalling and for-
warding. Like us, they identify critical cycles as a major per-
formance issue, but they synthesize from high-level specifica-
tions and can make architectural decisions. Our work trades
this flexibility for more detailed optimizations.

2 Basics

Our algorithm attempts to optimize the speed of sequential cir-
cuits that consist of combinational nodes and registers. For-
mally, a sequential circuit is a directed graph S = (V,E) with
vertices V. = PITUPOUN URU {spi,spo}. PI/PO are the pri-
mary inputs/outputs; N are single-output combinational nodes;
R are the registers; spi and spo are two super-nodes connected
to/from all PI/PO respectively. The edges E C V x V model
the interconnect: fanin(n) = {n’|(n’,n) € E}. S has no combi-
national cycles. We define weights d : V — R:

arrival time (from clock) n € PI
__) delay of logic neN
d(n) = required time (to clock) n € PO M

0 n € RU{spi,spo}

x
=}
x
]
o
oo

xk f < xk |
x1 x1—| 1

Figure 2: Shannon decomposition of f with respect to x

Arrival times are computed in a topological order on the
combinational nodes:

at(n) =d(n)+ max at(n')
n’ fanin(n)

2)

2.1 Shannon decomposition

Let f : B? — B be the Boolean function of a combinational
node n and let 1 <k < p. Then

fx1,x0,..,%p) = xif, + X fyy Where

ka :f(-xla"'u-xkfla17-xk+17"'7xp)
fﬁ:f(-xla"'uxk71707xk+lu"'7xp)'

This Boolean property, due to Shannon, has an immediate
consequence: if a node is modified as in Figure 2, its computed
function f does not change. This is known as the Shannon or
generalized select transform [1].

Our algorithm relies on the fact that the arrival time at(n)
may decrease if x; arrives later than all other x; (i # k):

and

at(n) = max {at(fg),at(fy,), at(xx) } + dmux

Of course, since both fy- and f,, are computed, the area
typically increases. Intuitively, this is speculation, as we start
computing f before knowing x;.

2.2 Retiming

Retiming [4] follows from noting that moving registers across
combinational nodes preserves the circuit functionality.

Retiming tries to move registers to decrease long (critical)
combinational paths at the expense of short (non-critical) ones.
However, it can not decrease the total delay along a cycle.

Let ret(S) be the minimum period achievable through retim-
ing. If d¢ and r¢ are the combinational delay and the number
of registers of the cycle € in S then ret(S) > dy/ry. Simi-
larly, if & is a path from spi to spo having r4 registers and
of combinational delay d 4 then ret(S) > d s /(re +1). Thus,
ret(S) > Ib(S) where

dy dp
max , max 3)
“ecycles(S) I'y P cpaths(S,spi,spo) ' + 1

Ib(S) = max (

is known as the fundamental limit of retiming.
Classical retiming may not achieve Ib(S). To achieve it in
general, we must allow registers to be inserted at precise points

procedure RelaxNode(n)
atnew < d(n) + MAXy/ fanin (n) at(n’)
if ate,, # at(n) then
at(n) < atep

Figure 3: The Bellman-Ford relaxation step

procedure SeqShannon(S, c)
(converges, fix_point_fat) = Bellman-Ford (S, ¢)
if not converges then
return NOT_FEASIBLE
ShannonTransform(S, c, fix_point_fat)
Retime(S)
return SUCCESS

Figure 4: SeqShannon: Our algorithm for restructuring a cir-
cuit S to achieve a period ¢

inside the nodes. We will assume this is possible (which it is,
for example, in FPGAs [14]), so ret(S) = 1b(S) holds. We shall
thus focus on transforming S to minimize Ib(S).

Computing Ib(S) directly using equation (3) is not practical
because the number of cycles may be exponential; instead we
use the Bellman-Ford minimum-length-path algorithm. To ap-
ply Bellman-Ford, which has no notion of registers, we treat
the registers as nodes with negative delay: Vr € R,d(r) = —c,
where c is the desired period. This trick follows from noticing
that for each € € cycles(S), ¢ > 1b(S), so ¢ > d¢ /ry. Rewrit-
ing, we have dy — ¢ - r¢ <0, which implies },,c d(n) <O0.

If there exists a retiming for period ¢, then S has no positive
cycles, and, due to a similar reasoning for paths &, at(spo) <
c. The reverse implication, which is harder to prove, also holds.

These conditions hold iff the Bellman-Ford algorithm ends
in a bounded number of iterations. Therefore, Ib(S) can be ap-
proximated by binary search on the period c. Note that the
Bellman-Ford relaxation step (Figure 3) is based on (2).

3 Our algorithm: combining Shannon and retiming

Our algorithm (Figure 4) systematically explores combina-
tions of Shannon transforms and retiming for a given period c.
If feasible, it returns a circuit operating with period c, and fails
otherwise. We can find the best ¢ by binary search.

The core of our technique is a modified Bellman-Ford
shortest-path algorithm. Given a period c, it looks for a way
to reshape the combinational logic such that ¢ > 1b(S), where
Ib(S) is defined by (3). If it succeeds, we are guaranteed that
ShannonTransform() and Retime() will be able to restructure
the circuit and achieve the desired period c. It is fairly easy to
build a correct circuit at this point, but harder to build one with
reasonable area. We discuss doing this in Section 3.5.

3.1 Chaining Shannon transforms

We do not know a priori if applying a Shannon transform to
a node improves circuit performance, thus we consider both

O

X
i)
ol N
(a) unchanged

(b) Shannon

t
X [

(c) start Shannon

(d) stop Shannon

(e) extend Shannon

Figure 5: The Shannon “cell library”

leaving a node unchanged (Figure 5a) and applying Shannon
decomposition to one of its inputs (Figure 5b). We use this to
transform single nodes, but we also want to transform groups.

We use a triplet of wires, (fx, fx,,Xk), essentially a redun-
dant encoding of f in three bits, to carry a Shannon decompo-
sition between adjacent nodes.

A transformed node, minus the multiplexer, (Figure 5c), has
three outputs instead of one: it still computes f, but the out-
put is encoded as above. So f is transmitted to its fanout(s) by
three wires. The fanout node(s) must also be modified to ac-
cept the three-wire-encoded function as one of its inputs. This
is shown in Figure 5d.

To model a Shannon transform on two connected nodes, we
treat the first node as being “start Shannon” (Figure 5c) and
the second being “stop Shannon” (Figure 5d). To extend the
transform to more than two nodes, we also modify intermedi-
ate nodes to be “extend Shannon.” Each has one input and the
output encoded on three wires, as shown in Figure Se.

Transforming a node to be a “start Shannon” can be done in
several ways, one for each input. Thus, we have to specify for
such nodes which input is used as the select; the other trans-
form types are unambiguous when their context is considered.

As anode with a triplet as output may have several fanouts,
the resulting Shannon transform will not be a path in the gen-
eral case, but a tree, with a “start Shannon” node as root and
several “stop Shannon” nodes as leaves.

Any node can be transformed in several ways, and each
fanout can use any of these. For example, we can leave a
node unchanged and pass its output to one fanout and at the
same time transform the node by “start Shannon” and pass the
triple output to a second fanout. Our algorithm always makes
all variants available to every fanout; it becomes the fanout’s
responsibility to select the best.

We deliberately only allow a single triplet to drive a node
to limit the area penalty. While the decomposition is easy
for multiple incoming triplets, a pair of triplets requires four
copies of the node, three would require eight, and so forth.

/'/ |
\\\\ 4 /,’)
—__ =7 Shannon witheas select

Figure 6: A circuit to illustrate Shannon decomposition

(a) unchanged

(c) start Shannon ..
"=~ (d) stop Shannon

Figure 7: The circuit in Figure 6 transformed with Shannon
decomposition

3.2 Shannon decomposition as labeling

We model the result of combining several Shannon transforms
in a simple way: we describe it as a node labeling. We consider
replacing each combinational node in the network by one or
more of the cells in Figure 5, i.e. we label it with letters a—e.
For nodes labeled b or ¢ we also have to designate one of its
input as select, which we do as part of the labeling process.

Some cells have wire triplets as inputs or outputs. Only
triplet inputs and outputs can be connected, so not all labelings
are valid. But if we respect this simple rule, any labeling of the
initial graph is a coherent combination of Shannon transforms.
In Figure 6, we choose to perform two Shannon transforms,
one involving a single node, the other involving two. Labeling
the nodes accordingly, we obtain the circuit in Figure 7.

We can imagine more complex cells, e.g., arising from
a multi-input decomposition or nesting transformations. We
have experimented with some of these; a thorough investiga-
tion remains future work.

3.3 Sets of feasible arrival times and pruning

For an acyclic fragment with a labeling and arrival times at
inputs, we can compute the arrival time at each intermediate
wire. For single wires, the arrival time is a single real num-

(16)
(10,10,14)(16,16,6)(16,16,8)
(15)(17)(17)
(15,15,11)(16,16,7)
(16)(17)
prune
(15)(10,10,14

(8)(7.7.7) —

—

(15)(14,14,14)

(14)(13,13,11)

(none) selector f selector g selector h
unchanged (16)
start (10,10,14) (16,16,6) (16,16,8)
start & stop (15) 17 17
extend (15,15,11) (16,16,7)
extend & stop (16) 17

Figure 8: Computing feasible arrival times for node i

ber; for triplets, we have three real numbers, one for each
wire. We denote the arrival time of such a triplet as a vector
(at(fig), at(fy), at(x).

Considering all possible valid labelings, we have a set of
arrival times for each node n. We call such a set the “feasible
arrival times” or fat(n). The set can be a mixture of single num-
bers and triplets, as different labelings of n may be replaced by
any cell in Figure 5.

Figure 8 illustrates the procedure for computing the FAT
set at node i. It is an exhaustive enumeration: the delay of the
“unchanged” case is calculated first, then multiple possibilities
are calculated assuming each input can be a selector: starting
Shannon with the input as a selector, starting and immediately
stopping, extending Shannon if the input has at least one triplet
in its pruned FAT, and extending Shannon and stopping.

FAT sets can be pruned without compromising the perfor-
mance of the final circuit by keeping only the fastest imple-
mentations. An arrival time of (15) at some node is not nec-
essarily better than an arrival time of (16) since the node may
not lie on a critical path. However, (15) is no worse, which we
indicate by writing (15) < (16). Thus, (16) can be safely re-
moved from a FAT set. The reasoning is more subtle for triplets
of wires, but similar: (16,16,6) < (16,16,8), so (16,16,8)
can also be removed. In general, (a) < (x,y,z) if @ < x and
(a,b,¢) = (x,y,z) if a <x, b <y, and ¢ < z. In Figure 8, ex-
haustively applying this rule to the FAT set for node i gives
only two elements: fat(i) = {(15),(10,10,14)}.

The small size of the FAT sets after pruning in Figure 8
is typical; across all the circuits we have analyzed, we find
pruned FAT sets seldom contain more than four elements. This
is probably the main reason that our algorithm is fast.

3.4 Simultaneously considering several circuits

FAT sets allow us to consider multiple circuit implementations
simultaneously. Each fanin has a FAT set that completely char-
acterizes all possible implementations of that fanin.

Fortunately, FAT sets are small enough for us to exhaus-
tively consider, for each node, all possible cells in Figure 5 as
well as the two types of each fanin (simple wire or triplet).

To compute the FAT set of n, we consider all choices of
node, compute their arrival times, and prune the resulting set.
Using this operation instead of (2) in the Bellman-Ford relax-
ation step (Figure 3) allows us to compute the arrival times for
a set of circuit implementations rather than just a single one.
Pan [8] uses a similar technique.

We claim that retiming for period c is feasible iff Bellman-
Ford converges. We prove half of this claim by construction.
If Bellman-Ford converges, we build an equivalent circuit for
which Ib(S) < ¢, so, after retiming, c is feasible. Such a brute-
force construction produces overly large circuits; instead, we
use a construction that limits Shannon-induced duplication to
critical paths only; see Section 3.5.

Convergence of our augmented Bellman-Ford algorithm im-
plies a fixed-point solution, i.e., a FAT set for each node, which
is stable under the pruned FAT-set computation. For the sam-
ple in Figure 9a, Bellman-Ford converges to the fixed-point
solution in Figure 9b, so we claim the period ¢ = 3 is feasible.

For each node, we build an implementation corresponding
to each element of its FAT set; we are free to choose any cell
from Figure 5 and use any FAT elements at each input.

For example, for node / in Figure 9b, we consider two im-
plementations with FATs of (4,4,8) and (9). These are “Start
Shannon” and “Shannon” (Figure 5c and b), both with g’s out-
put as the select. These give arrival times of (4,4,8) and (9).

The procedure will succeed for each node as a conse-
quence of how we computed the pruned FAT sets through the
Bellman-Ford relaxation. For the resulting network 1b(S) < ¢,
so, after retiming, we have a solution.

3.5 Area-oriented construction

Nodes not along critical cycles can use smaller, slower imple-
mentations. This basic observation leads to our area-efficient
restructuring from FAT sets.

We construct the circuit through a reverse graph traversal.
The required time of spo is c. Then, at each node, we select
an implementation and propagate required times toward its
fanins. Like the arrival times, a required time is either a real
number or a triplet (Section 3.3).

At each node, we have a list of one or more required times
from each of its fanouts. Using the already-computed FAT sets,
we can determine which cells in Figure 5 are feasible for the
node for each required time. We build a feasibility table with
cells as lines and required times as columns. Each cell has a
cost that models its expected area. We select a minimum-cost
set of lines that cover all columns.

(1) ‘ (-Inf)

——
2

(c) After Shannon decomposition

0

1
=

2 1

e}

(d) Final retimed circuit

Figure 9: (a) A circuit with desired period ¢ = 3; arrival times
A =1,B=3,C =2; required times D = 3; dpyx = 1. Our ex-
tended algorithm computes the FAT sets in (b), implying the
restructured circuit in (c). Finally, retiming moves latches (d).

Table 1: Experiments on ISCAS89 sequential benchmarks

Reference Retimed Ours Time Speed Area
period area period area period area (s) up penalty
s510 8 184 8 184 8 184 05
s641 11 115 11 115 9 122 1.1 22% 6%
s713 11 118 11 118 10 121 09 10% 3%
$820 7 206 7 206 7 206 05
s832 7 217 7 217 7 217 04
s838 10 154 10 154 8 162 26 25% 5%
s1196 9 365 9 365 9 365 06
sl423 24 408 21 408 13 460 3.8 61% 12%
s1488 6 453 6 453 6 453 07
s1494 6 456 6 456 6 456 0.8
$9234 11 662 8 656 8 684 6.7
s13207 14 1382 11 1356 9 1416 18.0 22% 4%
s38417 14 7706 14 7652 13 7871 113 7% 3%

Although our procedure usually selects one implementation
of each node, this is not always the case. For example, node
h in Figure 9d is both “end Shannon” (the output from the
multiplexer fed to node g) and “extend Shannon” (the outputs
before the multiplexer fed to f). Note that our algorithm does
not needlessly duplicate node # in this case.

The area cost estimate for each type of node implementation
is a heuristic; we are in the process of refining them.

Starting with the fixed-point solution in Figure 9b, we gen-
erate the network in Figure 9c. Its minimum period is 9, which
is worse than the original in Figure 9a, but Ib(S) as defined
by (3) is 3. Retiming gives the network in Figure 9d, which
behaves like Figure 9a but respects the timing constraint.

4 Experiments

We implemented our algorithm in C++ using the SIS li-
braries [10] to handle BLIF files. Our testing platform is
a 2.5 GHz, 512 MB Pentium 4 running Fedora Core 3 Linux.

We ran our algorithm on mid-sized ISCAS89 sequential
benchmarks and target an FPGA-like, 3-input lookup-table ar-
chitecture. Hence, we report delay as levels of logic and area
as the number of lookup tables. SIS failed to run on the other
ISCAS89 benchmarks; we do not report their numbers.

Following Saldanha et al. [9], we run script.rugged and per-
form a speed-oriented decomposition decomp -g; eliminate -1;
sweep; speed_up -i on each sample. We then reduce the
network’s depth while keeping its nodes 3-feasible with re-
duce_depth -f 3 [13]. We report the results of this classical
FPGA delay-oriented flow under “Reference” in Table 1.

Starting from these optimized circuits, we compare directly
running retiming (retime -n -i, modified to use the unit de-
lay model) with running our algorithm followed by retiming.
Columns “Retimed” and “Ours” list the period and area re-
sults. Our running time, listed in the “time” column, includes
finding the period by binary search. We verified the sequen-
tial equivalence of the input and output of our algorithm using
VIS [2]; our reported times do not include this.

Although our algorithm can do nothing on half the exam-
ples, it gives a significant speed-up for the other half at the
expense of an average 5% area increase. The algorithm is very
fast, especially when no improvement can be made. Its runtime
appears linear in the circuit size. Its memory requirements are
low, e.g., 70MB for the largest example s38417. Our technique
therefore appears to scale well.

5 Conclusions

We presented an algorithm that systematically explores combi-
nations of retiming and Shannon decomposition. Our decom-
positions are a form of speculation that duplicates logic in gen-
eral, but we deliberately restrict each node to be duplicated no
more than once, bounding the area increase and also simplify-
ing the optimization procedure.

The algorithm finds the optimum-period solution. Our
resynthesis technique attempts to limit duplication off the crit-
ical path to further limit the area penalty.

Experimental results already show significant speed im-
provements at the expense of very little area increase. Running
times suggest the algorithm scales well to large circuits.

[1] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, and L. Tre-
villyan. Efficient techniques for timing correction. In Proc.
ISCAS, pages 415-419, 1990.

R. K. Brayton et al. VIS: a system for verification and synthesis.
In Proc. Computer-Aided Verification, pages 428-432, 1996.

S. Hassoun and C. Ebeling. Architectural retiming: pipelining
latency-constrained circuits. In DAC, pages 708-713, 1996.
C.E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5-35, 1991.

S. Malik, E. M. Sentovich, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Retiming and resynthesis: Optimiz-
ing sequential networks with combinational techniques. IEEE
Transactions on CAD, 10(1):74-84, 1991.

M.-C. V. Marinescu and M. Rinard. High-level automatic
pipelining for sequential circuits. In ISSS, pages 215-220, 2001.
P. C. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli,
and S. K. Sahni. Performance enhancement through the gener-
alized bypass transform. In /ICCAD, pages 184-187, 1991.

P. Pan. Performance-driven integration of retiming and resyn-
thesis. In Proceedings of DAC, pages 243-246, 1999.

A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. Performance optimization using
exact sensitization. In Proc. DAC, pages 425-429, 1994.

E. M. Sentovich et al. SIS: A system for sequential circuit syn-
thesis. Technical report, UCB/ERL M92/41, 1992.

K. J. Singh. Performance optimization of digital circuits. PhD
thesis, University of California, Berkeley, 1992.

K.J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Timing optimization of combinational logic. In
Proceedings of ICCAD, pages 282-285, 1988.

H. Touati, H. Savoj, and R. K. Brayton. Delay optimization of
combinational logic circuits by clustering and partial collapsing.
In Proceedings of ICCAD, pages 188-191, 1991.

H. Touati, N. Shenoy, and A. L. Sangiovanni-Vincentelli. Re-
timing for table-lookup field-programmable gate arrays. In
Proc. Intl. Workshop FPGAs, pages 89-93, 1992.

(2]
(3]
(4]

[5

—

(6]

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

[14]

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

