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Abstract

Conventional task scheduling on real-time systems with
multiple processors is notorious for its computational in-
tractability. This problem becomes even harder when de-
signers also have to consider other constraints such as en-
ergy consumptions. Such a multi-objective trade-off explo-
ration is a crucial step to generating cost-efficient real-time
embedded systems. Although previous task schedulers have
attempted to provide fast heuristics for design space ex-
ploration, they cannot handle large systems efficiently. As
today’s embedded systems become increasingly larger, we
need a scalable scheduler to handle this complexity. This
paper presents a hierarchical scheduler that combines the
graph partition and the task interleaving to tackle the trade-
off exploration problem in a scalable way. Our scheduler
can employ the existing flattened scheduler and significantly
accelerate the design space explorations for large tasks.
The speed-up of up to 2 orders of magnitude has been ob-
tained for large task models compared to the conventional
flattened scheduler.

1. Introduction

Today’s embedded software are complex and contain
large portions of static software components such as the
multimedia codecs. When mapping these components onto
a multiprocessor platform, system designers need a good
synthesis tool that can make trade-offs between multiple ob-
jectives such as performance and energy consumption. Be-
cause most scheduling problems encountered during sys-
tem synthesis are quite difficult, conventional scheduling
algorithms suffer lengthy runtime when scheduling large
task models. The divide-and-conquer (DNC) strategy is nor-
mally employed on the task models in order to reduce the
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scheduling complexity. However, conventional DNC algo-
rithms often partition the task model based on the number
of tasks, which is not the only reason for the extremely long
times of the task-level design space explorations. Moreover,
conventional DNC approaches lack a post-DNC step which
can partly compensate for the loss of scheduling optimal-
ity due to the division. This paper presents a novel approach
to deal with very large task models by combining the graph
partition method with the interleaving technique.

2. Preliminaries

This section first briefly describes our system model for
the trade-off exploration. It then gives an overview of the
scalable exploration flow.

An embedded application is represented by a gray-box
model, which is essentially a two-level hierarchical task
graph [9]. With this specification, an application is rep-
resented as a set of thread frames (TF) at the high-level.
Each TF is a piece of code performing a specific func-
tion, which is then partitioned into thread nodes (simply
referred to as threads) - the basic scheduling units at low-
level. The purpose of our trade-off exploration is to de-
termine a cost-optimal (e.g. energy consumption, deadline
miss rate) thread scheduling on a set of heterogeneous pro-
cessors. Heterogeneous processors normally execute the
same thread at different speeds and with different energy
consumptions. These differences form the design space
of energy-performance trade-offs. A set of Pareto-optimal
trade-off points can be identified by exploring this space.
Our design space exploration is performed within each TF,
i.e., we identify Pareto-optimal trade-offs inside each indi-
vidual TF. Hence, this paper is focused on how to efficiently
schedule a large TF at the low-level. Handling of multiple
TFs at the high-level can be found in the work of [11].

We propose a hierarchical scheduling approach for the
scalable trade-off exploration. This approach consists of
five steps as illustrated in Fig. 1. Note that the Pareto curves
indicated in the overview figure are actually sets of Pareto-
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Figure 1. Hierarchical Scheduling Overview

optimal schedules of individual thread partitions (TP). The
whole workflow is demonstrated in the following example:
Example 1

Consider a design-time exploration problem of mapping a
given TF (shown in Fig. 2(a)) onto a three-processor platform con-
sisting of one VLIW processor running at 1.56 V and two RISC
processors running at 1.08 V and 1.62 V, respectively. For simplic-
ity, all threads have the same amount of execution times and en-
ergy consumptions on each processor, i.e., all threads are the same:

VLIW RISC

Energy consumptionµJ 485.438 1040.55

Execution timeµs 177.816 1009.69

Note that although threads’ execution times/energy are non-
deterministic due to run-time dynamic behaviors, we can capture
them by using different working scenarios: a thread has a worst
case execution time/energy under a specific scenario. Only the pro-
filing data for a RISC running under 3.1 V is given in the table.
For the RISC processors running at different voltages, the profil-
ing data can be derived from the reference data based on f ∝ V 3

dd,
where f and Vdd denote the frequency and the working voltage of
the processor, respectively.

The first scheduling experiment has treated the TF as a flattened
graph and has used the design-time scheduler described in [10]
which can explore the energy-performance trade-off space for a
single thread frame. As a comparison, the second experiment has
used the hierarchical scheduling approach. That is, it first decom-
posed the input TF into a set of TPs (see Fig. 2(b)); then it sched-
uled threads inside each TP using the conventional design-time
scheduler; at the end, it interleaved the individual schedules gen-
erated from each TP. Due to the dependencies among TPs, only
TP1 can be interleaved with TP2, and the same for TP4 with TP5.
Fig. 3 uses three sample schedules to illustrate the differences be-
tween flattened scheduling, conventional DNC and the hierarchi-
cal scheduling with interleaving. Each block in this figure repre-
sents a thread from the Fig. 2. The conventional DNC schedule has
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Figure 2. Input TF Example
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approaches

4 synchronization points, i.e., each TP must await until the previ-
ous TP is done, while the hierarchical schedule only has 2 syn-
chronization points.

The design space exploration results of the two experiments
are plotted on Fig. 4, the flattened exploration Pareto curve is very
close to the hierarchical exploration Pareto curve. However, hier-
archical scheduling has reached this result much faster: the explo-
ration time of the flattened scheduling is about 15.5 seconds, while
the hierarchical exploration only takes 0.5 second.

3. Thread Frame Decomposition

We consider an input TF as a Directed Acyclic Graph
(DAG) T (V, E) where the vertices V = {v0, ...vn} repre-
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sent the set of threads and the edges E represent the control-
and data-dependencies among threads. The TF decomposi-
tion splits an input TF into multiple TPs in order to break
down the scheduling efforts. Each TP is in fact a smaller
TF. In this section, we first discuss what properties of the
TFs have influences on making a decomposition decision.
We then present an effective TF decomposition algorithm.

3.1. Decomposition Guidelines

Two major issues must be considered for decomposi-
tion. First, how to estimate the scheduling time of a cer-
tain TP and thus ensure that the resulting partitions would
not lead to a long-time scheduling. Second, how to estab-
lish the inter-TP dependencies such that those dependen-
cies will give less constraints to utilize the parallel proces-
sors. To address these two concerns, we present three de-
composition guidelines for the hierarchical scheduler.

3.1.1. Horizontal Decomposition Most DNC algorithms
in the task scheduling domain only relate the problem’s
complexity to the size of the problem. However, the par-
allelism of a TP can also influence the scheduling time
significantly. Because parallel threads have no ordering
constraints, a larger exploration space needs to be exam-
ined when allocating and ordering the threads onto het-
erogeneous processors. For instance, to put two sequen-
tial threads on two different processors one has 4 possible
schedules; while with two parallel threads, one has 8 dif-
ferent schedules. Scheduling results based on extensive set
of random TFs have shown that a TP with more parallel
threads has longer design-time scheduling in general. We
define the maximum number of parallel threads in a parti-
tion as its width, i.e., if the task graph of a partition is tra-
versed by a breadth-first search, the maximum number of
threads that are traversed within one search step is called
the width of this partition. For example, the task graph de-

picted in Fig. 2(a) has a width of 4 (node 11, 13, 14 and 15).
Then we can use the maximum width of a TP to control its
scheduling complexity during the thread frame decomposi-
tion. That is, we decide a maximum width threshold value
based on experiments, and ensure that each TP has a maxi-
mum width less or equal to the threshold. As a result of the
maximum width control, our decomposition scheme tends
to split a wide TF into horizontal (parallel) TPs. Although
this horizontal decomposition seems to cause a optimality
penalty in the sense that less concurrency would be avail-
able when conducting the exploration for each partition, the
interleaving technique on the later stage of the hierarchical
scheduler would effectively exploit the concurrency across
the boundaries of partitions.

3.1.2. Look-ahead Decomposition In order to improve
the results of the hierarchical scheduling, we have devel-
oped a partition interleaving technique that can exploit the
parallelism from different TPs (See Section 5 for the expla-
nations of interleaving). Because interleaving can only be
applied to a set of parallel TPs, we need to construct paral-
lel TPs to use the interleaving after decomposition.

Partitioning two dependent threads to different partitions
can create unnecessary inter-partition dependencies (illus-
trated in Fig. 5) and hence lead to less parallel partitions.
Therefore, we need to take the thread dependencies into
account during the decomposition. One way to consider
those dependencies is to put threads with the same succes-
sor thread in one partition. To do that, we developed the
look-ahead decomposition (LAD) method. The basic idea
of LAD is that if N candidate threads should be decom-
posed (N > Maximum Width), we look one step ahead
on each candidate thread to check if any two candidates
share a common successor thread. If that happens, we call
them relative threads. The candidate threads are distributed
into different groups in such a way that all threads inside a
group are relative threads. Then we can partition threads in-
side each group. Because candidate threads that share com-
mon successors stay in the same group, our partition will
not allocate them to different TPs unless the group size is
larger than the maximum width.

3.1.3. Partition Dependency Control During the decom-
position, the dependencies that are broken by the TPs’
boundaries give rise to a set inter-partition dependencies,
which is referred as graph dependencies. These graph de-
pendencies are additional constraints over the original de-
pendencies specified by the edges inside those TPs. A graph
dependency between thread partitions TP1 and TP2 makes
the activation of any threads inside TP2 later than the com-
pletion of the last thread in TP1. After the thread frame
decomposition, each TP is regarded as an independent unit
by the scheduler. This makes the graph dependencies cru-
cial to preserve the control- and date-dependencies in the
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original TF. If we model N decomposed TPs with a graph
G(V, E), where V = {vi | 1 ≤ i ≤ N} denotes all TPs
and E = {(vi, vj) | vi, vj ∈ V } denotes all graph depen-
dencies, it is obvious that a valid G must be a DAG. How-
ever, an arbitrary TF decomposition by only following the
decomposition guidelines discussed so far could lead to an
invalid non-DAG for the TPs, as illustrated in Fig. 6.

It is hard to detect the deadlock graph dependencies dur-
ing an arbitrary TF decomposition. However, we can ef-
fectively avoid such deadlocks by controlling the inbound
graph dependencies. Before controlling the dependencies,
we label all threads of the original TF with generation num-
bers. A thread’s generation number is 0, if it has no prede-
cessor; Otherwise, its generation number is the maximum
one of all predecessors’ generation numbers plus 1. For a
TP, we call the set of threads with the smallest generation
number as the entry threads (note that the entry threads may
have predecessors outside the TP). If we let that all inbound
graph dependencies only occur at the entry threads, we can
then guarantee that the decomposition on the original TF
does not have graph dependencies in deadlock. Our decom-
poser controls the graph dependencies by using a two-step
decomposition method. The first step is called thread par-
tition initialization (TPI). It creates initial TPs from the set
of threads with the same generation numbers, i.e. it creates

TPs in a single generation layer. The second step, thread
partition expansion (TPE), then tries to expand the given
initial TP to the next generation. The new partition is fed
back to the second step and the expansion is continued un-
til either no further successors are available, or all succes-
sors have at least one predecessor not partitioned to the cur-
rent TP.

3.2. Thread Frame Decomposition Algorithm

The whole decomposition process is listed in Algo-
rithm 1. The topological sorting at line 4 labels each thread
with an unique generation number. Then the first set of ini-
tial TPs are created from threads at generation 0 with con-
sideration of LAD mechanism (line 5). Each initial TP is
expanded as large as possible under the constraint of max-
imum width (line 7). If any threads in the original TF are
not partitioned after the expansions, new initial TPs are cre-
ated from the earliest generation level (line 8).

Algorithm 1 Thread Frame Decomposition
1: INPUT: Input TF
2: OUTPUT: TPs, Partition Dependencies
3: Initialize TF data-structures
4: Topological sorting on all threads of input TF
5: TPI at generation 0
6: while Input TF is not fully decomposed do
7: TPE on each initial TPs
8: TPI from undecomposed part of the input TF
9: end while

4. Clustering Thread Partitions

After the decomposition, the input TF is broken into mul-
tiple TPs which are then passed to the design-time sched-
uler [10]. The design-time schedules of each thread parti-
tion are explored by the design-time scheduler running in-
dependently from other TPs. Therefore, multiple instances
of schedulers can run simultaneously to speed up the over-
all scheduling. Note that our hierarchical scheduler does not
depend on specific design-time schedulers, any scheduler
that can carry trade-off explorations would be able to be
employed by the hierarchical scheduler. This design-time
schedulers can generate the Pareto-optimal schedules on the
performance-energy trade-off space for each TP. All Pareto-
optimal schedules of a TP is referred to as its Pareto curve.

Traditional hierarchical thread scheduling techniques
stop after decomposing the input TF and only sched-
ule each thread partition individually. In contrast, our
hierarchical scheduling approach takes one step for-
ward by exploiting the parallelism among thread parti-
tions, i.e. we will generate a more parallel global sched-
ule than just run over the schedules of all TPs in a row.
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An interleaving phase is necessary to achieve that paral-
lelism. Before the interleaving phase, we must a) cluster
the TPs such that all partitions inside a cluster have no de-
pendencies between each other, and b) combine the
Pareto curves inside each cluster and prune the combina-
tions to extract a Pareto curve for each cluster. One com-
bination is formed by picking one Pareto point from each
curve in the cluster and adding them up, i.e., the combina-
tion’s energy figure is the sum of all selected Pareto points’
energy figures and its timing figure is the sum of all tim-
ing figures. Note that such combinations imply that no over-
lapping among TPs exists at this stage; overlapping only
takes place after applying the interleaving technique in-
troduced in the next section. Once all combinations are
generated, we only select the Pareto optimal combina-
tions as illustrated by Fig. 7.

5. Interleaving Thread Partitions

Each cluster has a set of Pareto-optimal schedules after
pruning. Those Pareto-optimal schedules represent the se-
quential combinations of Pareto-optimal schedules of indi-
vidual TPs within this cluster. That is, each Pareto optimal
schedule of the cluster represents a one-by-one running of
all TPs inside. This means that although the TPs do not have
dependencies within a cluster, they have to be run in a se-
quential manner. Meanwhile, an interesting observation of
Pareto-optimal schedules of individual TPs is that they have
significant processor idle times inside. These idle times, re-
ferred as slacks, are created mainly due to two reasons: a)
when decomposing the original TF, we have limited thread
parallelism within a TP to reduce the scheduling time. This
limited parallelism leads to the insufficient utilization of the
processors, and b) different execution times and energy con-
sumptions caused by running the same thread on hetero-
geneous processors let the power-optimizing design-time
scheduling strategies under-utilizes the parallelism in favor
of the energy efficiency. In order to reclaim the slacks and
thereby generate better Pareto curves, we propose to apply a

new technique to exploit the thread concurrency across par-
titions, namely the interleaving.

The idea of interleaving is to build a new global sched-
ule based on shifting the schedules of individual TPs. Dur-
ing this shifting, both the processor allocation of a thread
and the sequence of threads that belong to one TP are un-
changed. For a clear problem definition, we provide the
problem formulation as follows. A TP’s schedule Sk for c

processors is a list (M1, ..., Mc), where Mi = ((bj , etj), ...)
is the list of threads scheduled on the ith processor and
(bj , etj) denotes that the first thread on this processor is sj

with the start time of bj and the execution time of etj . For
k schedules (S1, ..., Sk) of the TPs ((V1, E1), ..., (Vk , Ek))
on a platform with c processors, the interleaving problem
can be formally expressed as:

∀si ∈

(

k
⋃

q=1

Vq

)

, Minimize[(xi + eti)max]

such that:

1. ∀e(si, sj , t) ∈ {E1, E2, ..., Ek} xi + eti + t ≤ xj ;

2. ∀a ∈ {1, 2, ...c} ∀(xi, eti), (xj , etj ) ∈ M1a ∪ ... ∪ Mka

(xi < xj ⇒ xi + eti ≤ xj ∧ xi > xj ⇒ xj + etj ≤ xi).

Scheduling threads with non-uniform execution times on
multiple processors is notorious for its intractability [6]. In
fact, Hoogeveen et al[7] have proved that even for three pro-
cessors, scheduling threads with fixed processor allocations
is a NP-hard problem. We have used an existing interleaving
heuristic based on the first-come-first-served principle [12]
to generate interleaved schedules.

6. Experimental Results and Discussions

We have used a software tool called TGFF [4] to gener-
ate random TFs for experiments. TGFF generates random
TFs according to the specified options such as the thread
number. In addition to generating the random TFs, TGFF
can be modified to generate a random configuration of mul-
tiprocessor platform.

To measure optimality of Pareto curves, we first need
to calculate the lower bounds. The lower bound of energy
consumption for scheduling a TF is calculated by allocat-
ing each thread to the processor with minimal energy con-
sumption and then summarizing all threads’ energy figures.
The lower bound of execution time is calculated by allo-
cating threads to their fastest processors and summarizing
all individual execution times; then the summarized exe-
cution time is divided by the number of processors on the
given platform. Note that a lower bound of time may not
be reached by any feasible schedule at all. But no feasible
schedule could have an execution time shorter than a lower
bound.

The optimality measurement of the scheduling results is
then performed by applying the metric of Pareto-optimality,



6-processor 8-processor
optimality sched. time optimality sched. time

50 Flat 13.9 × 106 1000 S 14.3 × 106 1000 S

threads Hier 7.5 × 106 29 S 7.7 × 106 30 S

75 Flat 13.3 × 106 2000 S 15 × 106 2000 S

threads Hier 2.8 × 106 30 S 3.0 × 106 35 S

100 Flat 36 × 106 4000 S 32 × 106 6000 S

threads Hier 10 × 106 35 S 9 × 106 37 S

Figure 8. Pareto optimality and Scheduling
Time Comparison: Flattened vs. Hierarchical
Scheduling

that is, we measure the differences between a result’s en-
ergy/time and the lower bounds of energy/time. The prod-
uct of a result’s time difference and its energy difference
is used to evaluate its Pareto optimality. The optimality of
a Pareto curve is then evaluated by the mean value of all
Pareto points’ products. A large number of random TFs are
generated with 50, 75 and 100 threads inside. TFs are de-
composed with the maximum partition width of 5. We have
conducted the scheduling experiments for platforms with 6
and 8 processors, respectively. The design-time scheduler
of [10] is used as the reference flattened scheduler for com-
parisons. A lower value of the metric of Pareto-optimality
in experimental results (Fig. 8) represents a better Pareto
curve in the sense that it gives faster schedules at lower en-
ergy consumptions.

7. Related Work

General graph decomposition methods of the divide-and-
conquer strategy have been investigated for many years.
Most of them, such as [5], have been aimed at solving
general graph decomposition problems without consider-
ing the constraints introduced by the scheduling process af-
ter the decomposition, i.e., these methods do not consider
how to handle the task dependencies. Recently, [1] has com-
bined the decomposition problem and the scheduling prob-
lem within an unified hierarchical scheduling flow. How-
ever, their work has only considered the performance of re-
sulting schedules and hence severely reduced the schedul-
ing exploration space for each sub-graph. General purpose
evolutionary algorithms have been widely studied for multi-
objective optimization problems (see [2] for a good survey).
They have recently been adapted to the embedded soft-
ware synthesis methodologies [3, 8]. These evolutionary al-
gorithms distinguish from previous scheduling algorithms
by their capabilities to explore the trade-off space of the
multi-objective optimization, which is an important prob-
lem encountered when designing modern embedded sys-

tems. The evolutionary algorithms, however, are designed
for general purpose problem solving and thus inefficient
for task scheduling. Despite their extremely long schedul-
ing time, they are also not robust in terms of optimality; be-
cause they choose starting points randomly, and a bad start-
ing point can dramatically reduce the result’s quality.

8. Conclusions

This paper has presented a hierarchical scheduling ap-
proach based on the graph partition and the interleaving
technique. This approach can deal with large TFs in a scal-
able way by decomposing a TF into multiple TPs and per-
forming scheduling at each partition independently. The
subsequent interleaving technique ensures that parallelism
among TPs are exploited in the final schedule. Pareto opti-
mality of the scheduling results from our hierarchical sched-
uler is 50% to 80% better than that from the reference flat-
tened scheduler on average. Moreover, the scheduling times
are reduced by up to 2 orders of magnitude, which enables
fast design space explorations for the very large embedded
systems.
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