
Scheduling under Resource Constraints using Dis-Equations

Hadda Cherroun Alain Darte Paul Feautrier
LIP, ENS-Lyon, 46, Allée d’Italie, 69007 Lyon, France

Firstname.Lastname@ens-lyon.fr

Abstract

Scheduling is an important step in high-level synthesis
(HLS). In our tool, we perform scheduling in two steps:
coarse-grain scheduling, in which we take into account the
whole control structure of the program including imperfect
loop nests, and fine-grain scheduling, where we refine each
logical step using a detailed description of the available re-
sources. This paper focuses on the second step. Tasks are
modeled as reservation tables (or templates) and we ex-
press resource constraints using dis-equations (i.e., nega-
tions of equations). We give an exact algorithm based on a
branch-and-bound method, coupled with variants of Dijk-
stra’s algorithm, which we compare with a greedy heuris-
tic. Both algorithms are tested on pieces of scientific appli-
cations to demonstrate their suitability for HLS tools.

1. Introduction

Both VLSI technology and embedded systems have ad-
vanced to such a state that it would be almost impossible to
design circuits by hand. There has been an ever increasing
need for design automation or semi-automation on more ab-
stract levels where functionality and tradeoffs can be clearly
stated. High level synthesis (HLS) is on the verge of becom-
ing more cost effective and less time consuming than full
hand design [2]. Currently, many commercial and academic
HLS tools exist but the design community don’t integrate
them into its design flow, because of many reasons: they
lack interaction with the designers, they can support only
limited architectures and the quality of the design which
they generate is not up to that of manual design.

Our aim here is to improve the scheduling step of those
tools by reusing some of the methods and models which
have been pioneered by the compiler community. Among
these powerful methods, operation research solutions have
strongly increased the performances of scheduling. We pro-
pose to organize the scheduling process in two hierarchi-
cal levels. The purpose of this hierarchical decomposition
is to avoid dealing with problems exceeding the capac-
ity of scheduling tools. Finite state machine with a data
path (FSMD) is the most popular model used to describe

digital systems. We construct the first FSMD from an equiv-
alent parallel code that exhibits all the inherent parallelism
in the input description and take into account all the nested
loops. Afterwards, according to the resource constraints, we
exploit a part or all of this parallelism. This paper focuses
on the second level of scheduling by suggesting two so-
lutions for scheduling macro-tasks (represented as reserva-
tion tables) sharing resources. We first present some related
scheduling frameworks in HLS and we give an overview
of our HLS framework. Our formalism to express resource
constraints is detailed in Section 2. In Section 3, we present
an exact algorithm to construct an optimal schedule which
respects the resource constraints. In Section 4, we give ex-
perimental results. We also present a simple greedy heuris-
tic that we compare with the exact solution. Each method
has its advantages and disadvantages: we give some guide-
lines for selecting the best one according to the context.

1.1. Related Work

HLS has been subject for research for two decades
now [5]. We just mention a few related work here. For a
survey of HLS scheduling techniques, see [13, 14].

There are many specialized scheduling algorithms. List
scheduling variants are the most popular heuristic algo-
rithms because of their low complexity. For instance, it is
used in the SPARK tool (Gupta et al. [7]), together with loop
transformations, speculative code motion, and dynamic re-
naming. In UGH (User Guided HLS), Donnet [3] introduces
more interactions between the tool and the user. For using
and sharing resources, the user provides a draft data path
(DDP) as a guide to a list-scheduling based algorithm. If
the synthesized cycle time does not respect all constraints
(latency, area), the user modifies the DDP and resumes the
process until an acceptable solution is found. Ly et al. [10]
organize CDFG nodes into behavioral templates (as we do)
and schedule them using a hierarchical scheduling, based on
a list-scheduling algorithm too; nodes are ordered using in-
formation from the basic ALAP and ASAP schedules.

More sophisticated methods exist. For example, for mod-
eling constraints for HLS, Radivojević et al. [11] present
an exact conditional resource sharing analysis using a sym-

3-9810801-0-6/DATE06 © 2006 EDAA

bolic formalism. A more general formalism, proposed by
Kuchcinski [9], model all kinds of constraints uniformly by
finite domain constraints, which are solved using constraint
satisfaction/consistency techniques. Integer linear program-
ming techniques (ILP) can be used for resource constrained
scheduling (see Gebotys et al. [6] or Kästner et al. [8]
among others). We come back to ILP strategies in Section 4.

1.2. Context

The scheduler we describe in this paper is part of the
SYNTOL tool, whose aim is high level synthesis in the field
of compute-intensive embedded systems. The starting point
is a variant of C; the output is a hardware description at reg-
ister transfer level. Scheduling is our basic tool for hard-
ware generation: a schedule is a precise description of the
operations to be executed at each clock cycle; deducing the
FSM and the datapath from a schedule is a simple task. The
loop scheduling technique we use [4] is quite complex and
cannot take into account all the micro-operations implied in
the execution of one high-level statement. To find a com-
promise between complexity and precision of the model,
we apply node splitting until statements are limited to a
few memory accesses and arithmetic operations. This is too
coarse a description for hardware generation; a second pass
of scheduling is needed, and is the subject of this paper.

The first level or global schedule we generate has dis-
tributed the tasks (high-level operations) into fronts of fi-
nite size. Operations in the same front have no data depen-
dences (those have been taken into account by the first or-
der scheduler). However, due to the coarseness of the first
level resource model, all operations of a front may not be
executable at the same time. The front must be split into
as many elementary steps as necessary to satisfy detailed
resource constraints. The aim of the second level or local
scheduler is to minimize the number of elementary steps.

2. Task & Resource Constraints Model
In this section, we explain our task model and how we

represent resource constraints for such tasks.

2.1. Model: Tasks with Reservation Tables

Basically, a task is a statement in some high-level lan-
guage (C in our case). At the hardware generation level, it
must be split into simpler operations, like address calcula-
tions, memory accesses, arithmetic operations and the like.
It is possible to consider each of these elementary opera-
tions as micro-tasks to be scheduled independently. How-
ever, most of the time, the execution order of these opera-
tions is strongly constrained – for instance, arithmetic must
be done before results can be written to memory. Besides,
if elementary operations are not executed in contiguous cy-
cles, it may be necessary to implement registers to hold in-

termediate results (we want to force some operation chain-
ing). Lastly, some features, like pipelining and multi-cycle
operations impose still more constraints on the elementary
operations. Hence, we pre-schedule the elementary opera-
tions in each high-level statement, represented by a reserva-
tion table [12] or template [10], in which the start time of
each elementary operation is fixed, once and for all, rela-
tive to the start time of the task.

Let T be the set of task, R the set of resources, and pi

the latency (the unit is the clock cycle) of task i (its reser-
vation table is thus of size |R| × pi). Our goal is to fix the
relative starting dates ti of the tasks, while respecting re-
source constraints and minimizing the total execution time.
Due to our context, tasks are independent, i.e., they can be
executed in any order, but the general algorithm presented
in Section 3 can take into account dependent tasks as well.

2.2. Forbidden Distances

Consider two tasks i and j, with respective starting
dates ti and tj . In a valid schedule, i and j can start at
any dates except those which put them into resource con-
flict. The intuitive idea is to express the resource constraints
as a set of forbidden distances (tj − ti). Assume that a re-
source r ∈ R is used at step ti + dk

i by task i and at step
tj +dk

j by task j: dk
i and dk

j are problem inputs as the reser-
vation tables are given, whereas ti and tj are to be defined.
To satisfy the resource constraint for r, it is necessary that:

ti + dk
i 6= tj + dk

j i.e., ti − tj 6= dk
j − dk

i = dk
i,j .

This dis-equation eliminates a forbidden distance dk
i,j from

the solution space. All forbidden distances can be pre-
computed by examining the reservations tables.

Finding a schedule entails solving the following system:

ti − tj 6= d k
i,j , ti ≥ 0 ti ∈ Z, i, j ∈ T (1)

For a given pair of tasks i, j, there can be several forbid-
den distances dk

i,j , hence the index k. The set of inequali-
ties ti ≥ 0 is added into the system just to fix the origin of
the schedule. The goal is to minimize the total time.

3. An Exact Branch-and-Bound Solution
Solving such a system of dis-equations while minimiz-

ing maxi ti is an NP-Complete problem as graph coloring
is a particular case of the problem defined in (1). Indeed,
in the case ti − tj 6= 0, the solution is to give different
colors to i and j, while minimizing the number of colors
(maxi ti). Nevertheless, there are many methods for solv-
ing (1), if fast approximations are not good enough in prac-
tice, such as branch-and-bound (BAB) methods, integer lin-
ear programming techniques, or even techniques of finite
domain constraint satisfaction programming [9]. Here, we
use BAB, which is, as is well known, a meta-algorithm for

guiding a search into the solution space. We progressively
build a tree of subproblems as follows:

• At the root, we start with the empty system (or with de-
pendence constraints if any);

• At each node N of the tree structure, we deal with a
new constraint (dis-equation e). This dis-equation can
be seen as the disjunction of the two inequalities:

ti − tj 6= dk
ij ⇔

{

e1 : ti − tj ≤ dk
ij − 1 or

e2 : ti − tj ≥ dk
ij + 1

so we perform a separation by introducing the inequal-
ity e1 (resp. e2) into the left child (resp. right child)
of N . We are not losing any solution in branching, be-
cause e1 ∩ e2 = ∅ and e1 ∪ e2 = e.

• During the resolution process, we maintain the latency
of the best schedule computed so far. At the beginning,
we can set this value Best to

∑

i pi.

• At each node N , we compute a new lower bound
Local by solving the system defined by the inequal-
ities introduced by all nodes belonging to the branch
from the root to this node N . If Local ≥ Best, the
subtree below N is not constructed as it will not lead
to a better complete solution. If the system is not fea-
sible, the subtree below N is not constructed either.

• At a leaf, we have exhausted all the constraints, so now
we can compute an actual solution. If its latency is bet-
ter than Best, then Best is updated.

• The algorithm stops when all the branches are ex-
plored. Best is returned as the optimum solution.

3.1. Finding the Local Bound

We now explain how to compute the local bound if it ex-
ists. At each node in the tree structure, we have to resolve
a system of l inequalities where l is the level of the node.
This system can be normalized as follows:

tj − ti ≥ wi,j (2)

where wi,j ∈ Z. This problem can be modeled by a
weighted directed graph G = (V,E,w), with one vertex
in V for each i and an edge in E from i to j with weight wi,j

for each inequality. Note that G may have cycles. In this for-
malism, the key point is that an optimal schedule is obtained
by computing the paths of maximal weight in G. Note that
if G has a cycle with positive weight, then there is no so-
lution; by summing all inequalities tj − ti ≥ wi,j along a
cycle C we get 0 ≥ w(C). Conversely, if G has only neg-
ative weight cycles, we can define, for each vertex j, the
maximal weight aj of a path leading to j (an empty path
has weight 0). We then have aj ≥ ai + wi,j as the maximal
weight towards j is at least larger than when going through i

first. Furthermore, for any solution ti and any path, we have

(by induction on the path length) ti ≥ ai. Thus, the set of
values ai gives an optimal solution.

To find maximal path weights, we can use Bellman-
Ford’s, Dijkstra’s (only for nonpositive weights), and
Floyd’s algorithms [1]. (Note: These algorithms are some-
times presented as finding paths of minimal weight.
This is the same, one just have to change the weight
signs.) In our context, we can reduce the complex-
ity of the method by noticing that at each stage of the BAB
algorithm, we add a new edge to a graph in which some in-
formation on maximal path weights may have already
been computed. What we need then is an incremental ver-
sion of a maximal path weight algorithm.

3.1.1. Incremental Floyd’s Algorithm Floyd’s algorithm
computes in O(n3), the maximal weight ai,j of a path
from i to j, for any i and j, assuming that G has no pos-
itive weight cycle. It can be modified to detect such cycles,
i.e., cases when the system (2) has no solution. To get an in-
cremental version of this algorithm, let us recall that, at a
node of the BAB process, we have to compute the maxi-
mal weight a′

i,j of a path from i to j, for any i and j, in
G

′

= (V,E ∪{e}, w), where G = (V,E,w) is the graph at
its parent node and e = (x, y) with weight wx,y = w0 rep-
resents the constraint added at this node. In G, we have al-
ready computed the maximal weight ai,j for any i and j.

We first check if G′ has a cycle of positive weight. If
this is the case, there is such a cycle that goes through e

and then back to x, in particular through a path of maximal
weight (in G), i.e., of weight ay,x. Thus, G′ has a positive
weight cycle iff w0 + ay,x > 0. If not, the new a′

i,j is ob-
tained by the relation a

′

i,j = max{ai,j , ai,x + w0 + ay,j}.
Also, when w0 ≤ ax,y , the new constraint is redundant and
no update is necessary. Algorithm 1 follows this strategy. At
each node, we get the dates ti = maxj aj,i and an evalua-
tion of Local as maxi ti, in O(n2) instead of O(n3). The
overall complexity is O(n2 2m) for m dis-equations.

Algorithm 1: Incremental Floyd’s Algorithm
Data: G = (V, E, w), Floyd’s matrix a, edge (x, y, w0)
begin

if w0 + ay,x > 0 then
Exit; /* Elimination, no solution below */

if w0 > ax,y then
for i from 1 to n do

for j from 1 to n do
ai,j = max{ai,j , aix + w0 + ayj} ;

end

3.1.2. Incremental Dijkstra’s Algorithm When all edge
weights w in G = (V,E,w) are nonpositive, instead
of computing all ai,j , we can just compute the maximal
path weight ti of a path leading to each vertex i (equiv-

alently from a source s to i) by running Dijkstra’s algo-
rithm. Otherwise, we use an idea similar to Johnson’s al-
gorithm [1]: We first modify the edge weights w into non-
positive weights wr, thanks to a well-chosen reweighting
function r (a function that assigns an integer ri to each ver-
tex i) such that wr

i,j = wi,j + rj − ri ≤ 0. It is easy to
check that G = (V,E,w) has a cycle of positive weight iff
so does Gr = (V,E,wr) because a reweighting keeps cy-
cle weights unchanged. Furthermore, the weight wr(P) of
a path P in Gr from i to j is equal to w(P) + rj − ri.

Using this reweighting mechanism, we get an incremen-
tal algorithm (Algorithm 2), faster than Algorithm 1, but
more complicated. We compute, for a node of the BAB tree,
the values t′i in the graph G

′

= (V,E ∪ {e}, w) where
G = (V,E,w) is the graph at its parent node and e = (x, y)
with weight wx,y = w0 represents the constraint to be
added. The ti for G are assumed to be available from the
parent node. Again, we first check that the problem is feasi-
ble and then, if it is, we compute the new solution t′

i.

Feasibility We use the same argument than for Algo-
rithm 1: G

′

= (V,E ∪ {e}, w), with e of weight w0, has a
positive weight cycle iff w0 + ay,x > 0 where ay,x is the
maximal weight of a path in G from y to x.

To compute ay,x, thanks to Dijkstra’s algorithm, we pro-
ceed as follows. Remember that we are given ti, the max-
imal weight of a path in G leading to i, for any i ∈ V .
These values satisfy the system of constraints for G, i.e.,
tj − ti ≥ wi,j . Let us define Gr with r = −t. Then
wr

i,j = wi,j − tj + ti ≤ 0. We can thus compute in Gr, us-
ing Dijkstra’s algorithm, the maximal weight ar

y,z of a path
from y to any reachable vertex z. We then obtain ay,z thanks
to the relation ay,z = ar

y,z+ry−rz . Thus the system of con-
straints defined by G′ is feasible iff w0 +ar

y,x + tx− ty ≤ 0
or x is not reachable from y in G (ay,x = ar

y,x = −∞).

New solution t′i If the problem is feasible, we still have to
compute t′i the maximal weight of a path leading to i in G

′

.
We do this by adding a fictive source in V , i.e., a new ver-
tex s in V , with ts = 0, and, for each i in V , a new edge
(s, i) of weight 0. We then use Dijkstra’s algorithm in G′

if G′ has only nonpositive weights. If not, we perform a
reweighting but, this time, −t may not be adequate because
of e of weight w0. Choose K such that K ≤ ay,j − tj for
all j reachable from y and K ≤ −tx −w0 if x is not reach-
able from y. We claim that the function r defined by

ri =

{

−ay,i if i reachable from y

−ti − K otherwise

is a valid reweighting, i.e., is such that wi,j + rj − ri ≤ 0
for each edge (i, j), including the new edge e = (x, y).

Proof. Consider an edge (i, j) ∈ E ∪ {e}. If neither i nor
j are reachable from y, (i, j) 6= e and wr

i,j = wi,j + ti −
tj ≤ 0. If both i and j are reachable from y, wr

i,j = wi,j −
ay,j + ay,i ≤ 0 by definition of ay,i and ay,j as maximal

Algorithm 2: Incremental Dijkstra’s Algorithm
Data: ti, the maximal weight of a path leading to i in

G = (V, E, w), e = (x, y, w0) edge to add
Result: t′i, the maximal weight of a path leading to i in

G
′

= (V, E ∪ {e}, w).
begin

if ty ≥ tx + w0 then
Return {ti}i∈V ; /* add e but no update needed */

else
ri = −ti for all i ∈ V ;
{ar

y,z}z∈V ← DIJKSTRA(Gr, y) ;
ay,z = ar

y,z + tz − ty for all z ∈ V ;
if w0 + ay,x > 0 then

Exit; /* Elimination, no solution below */
add s in V , ts = 0, ∀i, add (s, i) in E, ws,i = 0;
define K such that K ≤ ay,j − tj for all j such that

ay,j < +∞ and K ≤ −tx − w0 if ay,x = +∞;
ri = −ay,i for all i ∈ V reachable from y;
ri = −ti −K otherwise;
{a′r

s,i}i∈V ← DIJKSTRA(G′r, s) ;
Return {t′i = a′r

s,i − ri + rs}i∈V ;

end

path weights from y to i and y to j. Finally, if j is reachable
from y but not i, wr

i,j = wi,j + ti − ay,j +K ≤ tj − ay,j +
K if (i, j) ∈ E or wr

i,j = w0 + tx + K if (i, j) = e. By
choice of K, we get wr

i,j ≤ 0 in both cases.

We then compute, using Dijkstra’s algorithm, the max-
imal weight t′r. Also, as in Algorithm 1, we first test if
the new constraint is redundant (at this point). Algorithm 2
has the complexity of Dijkstra’s algorithm, O((n+m) lg n)
(resp. O(n lg n + m), for n vertices and m edges, if its pri-
ority queue is implemented with a binary heap (resp. Fi-
bonacci heap). Also, compared to Algorithm 1, only O(n)
memory is needed, it is thus also less memory consuming.

3.2. Constraints Reordering
Experiments show that the BAB runtime depends on the

order in which constraints are considered. We have thus de-
signed several constraint reordering heuristics to try to make
positive weight cycles appear as soon as possible. This re-
ordering is done statically (before the BAB algorithm).

Heuristic 1: This heuristic is greedy. Our goal is to try to
keep the subgraph defined by the constraints as connected
as possible so that cycles (and maybe cycles of positive
weights) appear. For this, we add constraints in a sorted list,
one by one, by selecting in priority a constraint e whose ex-
tremity has already been visited.

Heuristic 2: In this heuristic, we model the problem by an
undirected graph G = (V,E) obtained by representing each
dis-equation ti−tj 6= di,j by an edge (i, j). We build a basis
of cycles of G using a standard spanning tree algorithm. For
each cycle, we check its weight in both directions, weight-
ing edges with 1 + di,j or 1− di,j . If at least one of them is

Test T µT Branch-and-bound (BAB) greedy-scheduling (GS)
nbC Opt. Flyd Dijk Dijk+H1 Dijk+H2 Dijk+H3 Sched DevMax DevMin

test1 4 6 6 4 0.1 s 0.09 s 0.10 s 0.08 s 0.08 s 4 0 0
test2 4 7 7 4 0.17 s 0.10 s 0.06 s 0.09 s 0.09 s 5 1 0
css1 4 15 9 5 0.17 s 0.14 s 0.10 s 0.09 s 0.11 s 6 2 1
css11 4 15 6 4 0.10 s 0.09 s 0.07 s 0.09 s 0.08 s 5 2 0
css12 4 17 9 5 0.10 s 0.12 s 0.09 s 0.09 s 0.11 s 6 3 1
css2 9 32 23 6 48.25 s 8.61 s 16.03 s 1.56 s 4.75 s 7 2 1
css3 7 27 36 9 1’ 1 s 5.95 s 5.15 s 4.26 s 9.76 s 10 3 0
css5 3 9 7 5 0.08 s 0.10 s 0.07 s 0.09 s 0.09 s 5 0 0
css6 8 12 7 4 1.75 s 0.29 s 0.20 s 0.21 s 0.25 s 4 0 0
wss3 5 11 7 4 0.18 s 0.11 s 0.08 s 0.09 s 0.10 s 4 0 0
wss31 5 11 12 6 1.50 s 0.44 s 0.26 s 0.20 s 0.29 s 6 1 0
wss32 5 11 6 4 0.18 s 0.10 s 0.08 s 0.09 s 0.10 s 4 0 0
woc1 4 13 5 5 0.08 s 0.09 s 0.07 s 0.08 s 0.08 s 5 0 0
woc2 7 9 10 4 2.99 s 0.49 s 0.46 s 0.25 s 0.46 s 4 1 0
wss1 4 44 54 17 2.76 s 0.79 s 0.81 s 0.75 s 1.99 s 21 5 0
wss11 4 44 49 16 2.74 s 0.85 s 0.6 s 0.55 s 1.6 s 19 4 1
wss2 3 23 7 8 0.07 s 0.08 s 0.06 s 0.08 s 0.08 s 10 1 0
wss12 4 44 49 16 3.29 s 0.83 s 0.43 s 1.23 s 2.56 s 17 5 1
wmt22 4 31 24 13 0.83 s 0.34 s 0.42 s 0.28 s 0.63 s 13 0 0
css21 9 32 44 10 5h 9’ 27’ 59 s 14’ 38 s 4’ 46 s 23’ 11 s 11 2 1

Table 1. Scheduling Results for the Various Tests on the BAB and GS Algorithms.

positive, the cycle is chosen. These cycles are sorted in or-
der of increasing number of edges. Then, edges of one cycle
are selected before considering a new one (edges belonging
to several cycles are considered only once of course).

Heuristic 3: Here, we represent each dis-equation by one
of its two exclusive arcs, one with a positive arc. Thus, in
the resulting directed graph, all eventual cycles are positive.
Then, as in Heuristic 2, we enumerate cycles and use this to
define an order on constraints.

4. Experimental Results and Discussion
To compare with the exact BAB approach, we designed a

greedy scheduling (GS) heuristic. Tasks are scheduled one
after the other. At each step, given a subset Tm of already-
scheduled tasks, we look for the smallest date at which the
next task i can be scheduled, i.e., so that forbidden dis-
tances between i and all tasks in Tm are respected. We im-
plemented all algorithms and heuristics presented here and
performed experiments on 26 groups of independent tasks
from applications from the PerfectClub benchmarks. The
runtimes are measured in user seconds on a 1.8Ghz Intel
PIV running Linux. The first three columns of Table 1 are
the test names, the number of tasks (T), and the number of
micro-tasks (µT) composing them. The 4th to the 10th rows
are the BAB scheduler results: number of constraints (nbC),
optimal schedule length (Opt.), the runtime without reorder-
ing constraints for the incremental Floyd’s (Flyd), then Di-
jkstra’s (Dijk) algorithms, and this last one after reorder-
ing constraints according to H1, H2, and H3. The 11th row
presents the schedule length found by GS (its runtime is less
than the Linux clock resolution). As it is sensitive to the task
order, we ran it on a sample of task permutations. The sam-
ple size is the square of the number of tasks and the per-
mutations are random. The DevMax (resp. DevMin) col-

umn presents the difference between the worst (resp. best)
length in the sample and the optimum given by BAB.

The results show that, despite its simplicity, GS has a
good behavior, at least for these examples: even the length
of the worst schedule (in the sample) is not very far from the
optimum. Hence one can reach a good schedule by applying
only GS to a small sample permutations. On the other hand,
the analysis of the run time of BAB shows that it is reason-
ably fast compared to its high exponential theoretic com-
plexity. The BAB algorithm based on the incremental Dijk-
stra’s procedure is clearly faster. We observed one patho-
logic case (css21), given at the end of this section. In this
test, it happens that the local lower bounds are close to the
optimum so no early elimination is possible, which causes
the total scan of the solution space. Heuristics 1 and 2 im-
prove the runtime, but it is difficult to choose since none is
uniformly better than the other. H3 has the worst runtime,
which can be explained by the fact that only positive cy-
cles composed by positive arcs are taken into account.

We did some comparisons with ILP approaches. A first
solution is the so-called big-M method, which uses a large
constant (of the order of the schedule length) to express a
disjunction. This method appeared to be much slower, in
particular we were not able to get a solution for the patho-
logic case css21 due to memory overflow. This was one of
our motivations for developing our BAB algorithm, which is
less memory consuming. Another ILP approach is to intro-
duce as many 0/1 variable xi,j as there are time slots and
nodes (xi,j = 1 if node i is scheduled at time j). This
approach works fine in our case (with worst-case running
times similar to the BAB algorithm) if we rely on a binary
search to minimize the latency. However, if we introduce
ti =

∑

j xi,j (the time at which node i is scheduled) to
express the maximal latency or to express dependences in

*

+

+

+

*

+

*

+

+

+

*

+

+

+

RM

Val
RM

Mdp

t0

t1

t4

t5

t7

t8

t6

t2

t3

RM

Val

RM

Val

RM

Val

RM

Val

RM

Val
RM

Val
RM

Val

Figure 1. Pathologic case css21

the case of dependent tasks, the running times were much
higher. In general, the complexity increases tremendously
with the length of the schedule and the duration of tasks,
both in terms of number of variables and size of the num-
bers involved in the constraints. In contrast, for the solu-
tions we present here, increasing the tasks execution time
does not change the running time of the scheduler.
Example The pathologic case has 9 tasks (composed of 32
micro tasks). These independent tasks are taken from the
SPICE program (from line 765 to line 773) of the Perfect-
Club benchmarks. SPICE is a widely used circuit simula-
tion program developed at UC Berkeley.

t0: GDPR=VALUE(LOCM+4)*AREA
t1: GSPR=VALUE(LOCM+5)*AREA
t2: GM=VALUE(LOCT+5)
t3: GDS=VALUE(LOCT+6)
t4: GGS=VALUE(LOCT+7)
t5: XGS=VALUE(LOCT+9)*OMEGA
t6: GGD=VALUE(LOCT+8)
t7: XGD=VALUE(LOCT+11)*OMEGA
t8: LOCY=LYNL+NODPLC(LOC+20)

Assume one adder, one multiplier, two memory blocks
VAL (mapped to the Value array) and Mdp (mapped to the
NODPLC array) with one port, and that a memory access is
2 cycles, pipelined, all other resources are 1 cycle. Fig. 1
shows the optimal schedule, each task represented with its
predefined reservation table. It has length 10 and it corre-
sponds to t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 5,
t6 = 8, t7 = 6, t8 = 7. It is never obtained by the greedy
heuristic in the sample of permutations selected by GS.

5. Conclusion

This paper presents a formalism to accurately express re-
source constraints for tasks with reservation tables in HLS.
The resource constraints are modeled by dis-equations and
finding an optimal schedule entails resolving a system of
dis-equations. Experimental results show that, in effect, a

simple greedy heuristic is acceptable, at least for our exam-
ples. Our exact branch-and-bound approach, based on an
incremental Dijkstra’s algorithm, has an acceptable runtime
but can be vulnerable to rare pathologic cases. We have de-
signed three constraints ordering heuristics for improving
the runtime of this exact approach.

It is true that embedded systems designers tolerate much
longer compilation time than high-performance program-
mers. A design is the result of many iterations in which dif-
ferent architectural options are evaluated. GS is well suited
for the initial exploration. In the final phases, when one
must meet strict performance constraints, the use of an op-
timal method like the BAB algorithm may be warranted.

In future work, we will extend the greedy heuristic by es-
tablishing a more suitable order on the task list.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill, 1989.

[2] G. De Mecheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[3] F. Donnet. Synthèse de haut niveau contrôlée par l’utilisa-
teur. PhD thesis, Université Paris VI, Jan. 2004.

[4] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem. part II: Multi-dimensional time. International
Journal of Parallel Programming, 21(6):389–420, 1992.

[5] D. D. Gajski. Principles of Digital Design. Pr.-Hall, 1996.
[6] C. H. Gebotys and M. Elmasry. Simultaneous scheduling and

allocation for cost constrained optimal architectural synthe-
sis. In 28th Annual ACM/IEEE Design Automation Confer-
ence (DAC’91), pages 2–7, San Francisco, CA, USA, 1991.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: A high-
level synthesis framework for applying parallelizing com-
piler transformations. In 16th International IEEE Confer-
ence on VLSI Design (VLSI’03), pages 461–466, 2003.

[8] D. Kästner and M. Langenbach. Integer linear programming
vs. graph-based methods in code generation. Technical Re-
port A/01/98, Universität des Saarlandes, Feb. 1998.

[9] K. Kuchcinski. Constraints-driven scheduling and resource
assignment. ACM Transactions on Design Automation of
Electronic Systems, 8(3):355–383, 2003.

[10] T. Ly, D. Knapp, R. Miller, and D. MacMillen. Scheduling
using behavioral templates. In 32nd ACM/IEEE Conference
on Design Automation (DAC’95), pages 101–106, 1995.

[11] I. Radivojević and F. Brewer. A new symbolic technique
for control-dependent scheduling. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
15(1):45–57, Jan. 1996.

[12] B. R. Rau. Iterative modulo scheduling. International Jour-
nal of Parallel Programming, 24(1):3–64, 1996.

[13] J. Šilc. Scheduling strategies in high-level synthesis. Infor-
matica (Slovenia), 18(1), 1994.

[14] R. A. Walker and S. Chaudhuri. Introduction to the schedul-
ing problem. IEEE Design and Test of Computers, 12(2):60–
69, 1995.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

