
Multiprocessor Synthesis for Periodic Hard Real-Time
Tasks under a Given Energy Constraint∗

Heng-Ruey Hsu, Jian-Jia Chen, and Tei-Wei Kuo
Department of Computer Science and Information Engineering

Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106, ROC.

Emails:{b89108, r90079, ktw}@csie.ntu.edu.tw

ABSTRACT
The energy-aware design for electronic systems has been an impor-
tant issue in hardware and/or software implementations, especially
for embedded systems. This paper targets a synthesis problem for
heterogeneous multiprocessor systems to schedule a set of periodic
real-time tasks under a given energy consumption constraint. Each
task is required to execute on a processor without migration, where
tasks might have different execution times on different processor
types. Our objective is to minimize the processor cost of the en-
tire system under the given timing and energy consumption con-
straints. The problem is first shown being NP-hard and having
no polynomial-time algorithm with a constant approximation ratio
unless NP = P . We propose polynomial-time approximation al-
gorithms with (m + 2)-approximation ratios for this challenging
problem, where m is the number of the available processor types.
Experimental results show that the proposed algorithms could al-
ways derive solutions with system costs close to those of optimal
solutions.

Keywords: Energy-aware systems, Task scheduling, Real-time
systems, Task partitioning, Multiprocessor synthesis.

1. INTRODUCTION
Energy-efficiency has been an important design issue for hard-

ware and/or software implementations, especially for embedded or
mobile systems. Energy-efficient designs and scheduling could not
only extend the power-on duration of battery-driven devices but also
help in cutting down the power bill of server systems significantly [5].
In the past decade, energy-efficient task scheduling with various
deadline constraints has received a lot of attention. Various work
has been done for uniprocessor task scheduling, such as those in [1,
3, 17]. Different heuristics were also proposed for energy consump-
tion minimization under different task models in multiprocessor en-
vironments, e.g., [2, 6, 11, 18]. System-level synthesis for hetero-
geneous multiprocessor was also explored for cost consideration of
consumer markets, e.g., [15, 4]. In particular, the synthesis problem
for energy-efficient task scheduling of periodic hard real-time tasks
under a given processor cost constraint was first explored in [11],
where processors might have different costs. Different variations of
synthesis problem for energy-efficient were mentioned in [10].

This work is motivated by the needs in the minimization of the en-
tire system cost under the computing demands of applications and
a given energy consumption constraint. Given different implemen-
tations (over different hardware platforms/processors), tasks might
have different execution times and consume different amounts of
energy. Note that processors under discussions could be ASIC chips
because of the implementations of algorithms in hardware. For ex-

∗Support in parts by research grants from ROC National Science
Council NSC-94-2752-E-002-008-PAE.

ample, the decoding of MPEG files could be done by different digi-
tal processing chips with different energy consumption profiles and
execution times. For these tasks, we are interested in the determina-
tion of the amounts of these two DSP chips of so that the cost of the
allocated DSP chips are minimized, and the energy constraint of the
system and timing constraints of the tasks are satisfied.

This paper targets energy-efficient scheduling of periodic hard
real-time tasks, where no task migration among processors is al-
lowed. The goal is to assign a selected processor to the execution
of each task such that the total cost of processors is minimized, and
the energy and task timing constraints are satisfied. The problem is
NP-hard even when the number of the available processor types is a
constant. We show that there does not exist any polynomial-time al-
gorithm with a constant approximation ratio by an L-reduction [14]
from the set cover problem, unless NP = P . An approximation
algorithm based on a rounding technique is proposed by applying
a parametric relaxation on an integer linear programming (ILP) for-
mula. The approximation ratio is (m+2), where m is the number of
the available processor types. The algorithm is then improved with
better solutions in many cases but with the same approximation ra-
tio. The performance of the proposed algorithms was evaluated by
a series of experiments, compared to optimal solutions derived by
exhaustive search algorithms (when the size of the task set is small)
or a lower bound derived by a relaxation of the ILP formula of the
synthesis problem. Experimental results show that the proposed al-
gorithms could always derive solutions with system costs close to
those of optimal solutions.

The rest of this paper is organized as follows: Section 2 formally
defines the multiprocessor synthesis problem explored in this paper.
Section 3 presents the proposed approximation algorithms. The ex-
perimental results for the performance evaluation of the proposed
algorithm are presented in Section 4. Section 5 is the conclusion.

2. PROBLEM DEFINITION
This paper is interested in a synthesis problem for heterogeneous

multiprocessor environments. We consider an environment with m
different types of available processors. LetM be the set of avail-
able processor types. For each type Mi of available processor types
in M, an allocation cost Ci is associated with the processor type,
where Ci could be the corresponding price, area, or any property
under considerations.

We consider the scheduling problem of a set T of n periodic real-
time tasks without dependency constraints [13]. A periodic task is
an infinite sequence of task instances, referred to as jobs, where each
job of a task comes in a regular period. Each task τi in T is charac-
terized by four parameters: its execution time, energy consumption,
period, and relative deadline. ci,j and ei,j denote the worst-case ex-
ecution time and the energy consumption required to complete any
job execution of task τi on one processor of Mj , respectively, when

3-9810801-0-6/DATE06 © 2006 EDAA

τi executes alone and has all the resources that it requires. If there
does not exist any implementations of task τi on processor Mj , we
could assume that both ei,j and ci,j are infinity. The period pi of
task τi is the minimal arrival interval between two consecutive jobs
of the task. The relative deadline of task τi is the longest span of
the time interval between the latest completion time and the release
time of a job of τi. In this paper, the relative deadline of a task is
assumed being equal to the period of the task. If ci,j > pi for some
Mj , it is clear that the executing of τi on one processor of Mj will
unavoidably let τi miss its deadline. For such a case, we just set both
ei,j and ci,j as infinity. A task completes in time means that all of
the jobs of the task completes before their corresponding deadlines.
Throughout this paper, we focus our studies on the case in which
all of the tasks arrive at time 0. The hyper-period of a task set T ,
denoted by L, is the least common multiple (LCM) of the periods
of the tasks in T . For the brevity, let Ei,j denote the total energy
consumption of task τi executing on one processor of the processor
type Mj in the hyper-period (Note that there is no task migration).
That is, Ei,j = L

pi
ei,j .

In this paper, we are interested in the joint considerations of the
scheduling of hard real-time tasks and the allocation of processors
such that all of the tasks in T complete in time, the total energy
consumption of tasks in the hyper-period is no more than a given
energy budget Ebudget, and the cost of the allocated processors is
minimized. However, it might be difficult to define the energy con-
straint in a hyper-period. As a result, we assume that an average
value on the power consumption constraint is given. When the av-
erage power consumption constraint Pavg is given, Ebudget is set as
PavgL. The problem considered in this paper is defined as follows:

DEFINITION 1. Multiprocessor Allocation for Real-Time Tasks
under an Energy Constraint (MARTEC) problem

Consider a set T of independent tasks over a setM of available
processors with m different types, where all of the tasks in T ar-
rive at time 0, and m is a positive integer. Each task τi ∈ T is
characterized by its period pi, where the relative deadline of τi is
equal to pi. When τi is executed on one processor of processor
type Mj ∈ M, τi is associated with its execution time ci,j and
its energy consumption ei,j for each job execution on the proces-
sor, where Ei,j = L

pi
ei,j is defined as its total energy consumption

in the hyper-period L. Moreover, we are given an energy budget
Ebudget for the maximum energy consumption in the hyper-period
L of T . The objective of the problem is to derive a schedule of T
and a multisubset ofM for processor allocation such that each task
in T is executed on an allocated processor and completes in time, the
total energy consumption in the hyper-period of T does not exceed
Ebudget, and the total cost of allocated processors is minimized.

Without loss of generality, we assume thatM and T do not con-
sist of any dominating set, in which the domination of Mi over Mj

means that Mi is more expensive than Mj per unit, and any task
has a longer execution time and more energy consumption on one
processor of Mi than those on another processor of Mj . In such a
case, the type of processor Mi is not required.

THEOREM 1. The MARTEC problem is NP-hard in the strong
sense.

PROOF. We could show that the MARTEC problem is NP-hard
in the strong sense by a reduction from the bin packing problem,
which isNP-complete in the strong sense [8].

Due to the NP-hardness of the MARTEC problem, we focus the
study on approximation algorithms with a worst-case guarantee on
processor allocation cost. Based on [16], a polynomial-time α-
approximation algorithm for the MARTEC problem must have a poly-
nomial time complexity of the input size and could derive a solution

with the total cost at most α times of an optimal solution, for any in-
put instance, in which α is also referred to as the approximation ratio
of the approximation algorithm. The following theorem reveals the
inapproximability result of the MARTEC problem when NP 6= P.

THEOREM 2. UnlessNP = P, there does not exist any polynomial-
time approximation algorithm with a constant approximation ratio.

PROOF. This theorem is proved by an L-reduction [14, §13] from
the set cover problem, which does not admit any polynomial-time
approximation algorithm with a constant approximation ratio unless
NP = P [16, §29]. We omit the detail due to the space limita-
tion.

3. APPROXIMATION ALGORITHMS
In this section, the MARTEC problem is first formulated as an in-

teger linear programming, and a series of relaxations is then per-
formed to derive a feasible schedule and a proper allocation of pro-
cessors in polynomial time. We will show that the proposed al-
gorithms could derive approximated solutions with the worst-case
guarantee. We would only focus the discussions on input instances
in which

P

τi∈T minMj∈M ei,j ≤ Ebudget, since there does not
exist any feasible solution for the other cases.

3.1 Integer Programming and Relaxations
As shown in [12], the earliest-deadline-first (EDF) scheduling al-

gorithm is an optimal uniprocessor scheduling algorithm for inde-
pendent real-time tasks. A task set is schedulable if and only if the
total utilization of the task set is no more than 100%, where the
utilization of a task is defined as its execution time divided by its
period. In this paper, we consider the joint scheduling and alloca-
tion problem, in which EDF scheduling is applied to each allocated
processor. Suppose that the number of allocated processors of pro-
cessor type Mj is Kj . For each task τi in T , a binary variable zi,j,k

is set as 1 if τi is assigned to execute on the k-th allocated processor
of processor type Mj ; otherwise, zi,j,k = 0. The set Tj,k of tasks
assigned onto the k-th allocated processor of Mj is schedulable by
EDF if

P

τi∈Tj,k
ui,j ≤ 1, where ui,j is the utilization of τi on a

processor of Mj , i.e., ci,j

pi
. The MARTEC problem is formulated as

an integer linear programming problem as follows:

minimize
P

Mj∈M Kj · Cj

subject to
P

Mj∈M

P

τi∈T

Pn
k=1 Ei,j · zi,j,k ≤ Ebudget,

P

Mj∈M

PKj

k=1
zi,j,k = 1 ,∀τi ∈ T ,

P

Mj∈M

Pn
k=Kj+1

zi,j,k = 0 ,∀τi ∈ T ,
P

τi∈T ui,j · zi,j,k ≤ 1 , ∀Mj ∈ M, k = 1 . . .Kj , and
zi,j,k ∈ {0, 1} ,∀τi ∈ T , ∀Mj ∈ M, k = 1 . . .Kj ,

(1)
where the first constraint requires that the total energy consumption
of all of the tasks is no more than the given energy budget Ebudget,
the second and third constraints require that each task τi must ex-
ecute on one allocated processor only, and the fourth constraint
means that the total utilization of the tasks executing on one allo-
cated processor must be no more than one (because of EDF schedul-
ing). However, the derivation of an optimal solution of Equation (1)
is a NP-hard problem since the problem could be formulated as a
standard integer linear programming problem, which isNP-hard in
the strong sense.

Instead of looking for an optimal solution for Equation (1), we
could derive an approximated solution in polynomial time by per-
forming a series of relaxations. The first relaxation will be on the
objective function to reduce the number of variables required in the
programming. For each task τi in T , a binary variable yi,j is set
as 1 if τi is assigned to execute on a processor of processor type

Mj ; otherwise, yi,j = 0.
˚
Pn

i=1
ui,j · yi,j

ˇ

is an under-estimated
number of the required number of processors of processor type Mj .
Equation (1) could be relaxed into the following integer linear pro-
gramming problem:

minimize
P

Mj∈M

l

P

τi∈T ui,j · yi,j

m

Cj

subject to
P

Mj∈M

P

τi∈T Ei,j · yi,j ≤ Ebudget,
P

Mj∈M yi,j = 1 , ∀τi ∈ T , and
yi,j ∈ {0, 1} , ∀τi ∈ T , ∀Mj ∈M.

(2)

For any feasible solution of Equation (2), each task is assigned to
exactly one processor type. Let task set Tj be the set of the tasks
in T assigned on the processors of processor type Mj for a solu-
tion of Equation (2), i.e., Tj = {τi ∈ T | yi,j = 1}. We propose
to adopt the first-fit strategy to assign tasks in Tj to processors of
Mj (referred to as Algorithm FF). In each iteration, we assign an
un-assigned task τi in Tj to an allocated processor if the resulting
total utilization of the tasks assigned on the processor is no more
than 100%. If no such an allocated processor exists, we must get a
new processor of Mj and assign τi to the newly allocated proces-
sor. The time complexity of Algorithm FF is O(|Tj |

2). Algorithm
FF was shown being a 2-approximation algorithm of the bin packing
problem [16, §9]. The following lemma shows that the number of
the allocated processors of a solution derived by Algorithm FF is at
most max{1, 2

P

τi∈Tj
ui,j} for any Tj .

LEMMA 1. Given a task set Tj , the number of the allocated pro-
cessors of processor type Mj in Algorithm FF is at most
max{1, 2

P

τi∈Tj
ui,j}.

PROOF. There are two cases to consider: If
P

τi∈Tj
ui,j is no

more than 1, Algorithm FF would allocate only one processor and
assign all of the tasks in Tj on that processor. Therefore, only one
processor of Mj is allocated in this case. The other case is when
P

τi∈Tj
ui,j is greater than 1: Suppose that the number of the al-

located processors of processor type Mj by Algorithm FF is κ. κ
must be at least 2 because of the total utilization on the proces-
sor type. We shall show that

P

τi∈Tj
ui,j is no less than 1

2
κ. In

Algorithm FF, there must be at most one allocated processor with
utilization less than 1/2; otherwise, the workloads on two such pro-
cessors should be left on one. Let u∗ be the total utilization of the
allocated processor with utilization less than 1/2. All of the other
κ − 1 allocated processors must have total utilization no less than
1−u∗. Otherwise, the solution contradicts Algorithm FF. We know
that (

P

τi∈Tj
ui,j ≥ u∗ +(κ−1)(1−u∗) ≥ κ/2) since u∗ < 1/2

and κ ≥ 2. As a result, κ ≤ 2
P

τi∈Tj
ui,j .

According to Lemma 1, the number of the allocated processors
of Mj under Algorithm FF is at most twice of the ceiling of the to-
tal utilization of the tasks assigned on processors of Mj . Suppose
that the vector of y′

i,j is an optimal solution for Equation (2). The
assignment of tasks in Tj = {τi ∈ T | y′

i,j = 1} to the allocated
processors of Mj under Algorithm FF for all Mj inM will not vi-
olate the energy constraint Ebudget, and EDF schedules all of the

tasks in T in time. Since (
P

Mj∈M

l

P

τi∈T ui,j · y
′
i,j

m

Cj) is a
lower bound of an optimal solution of the MARTEC problem, we
could have a 2-approximation algorithm for the MARTEC problem
by applying Lemma 1. However, the deriving of an optimal solu-
tion for Equation (2) is also NP-hard, since Equation (2) could be
considered as an integer linear programming problem. When we re-
lax the integral constraint of yi,j so that yi,j could be any fractional
number, a naive relaxation of Equation (2) is as follows:

pi ci,j ei,j

M1 M2 M1 M2

τ1 50ms 30ms 50ms EmJ 1mJ

τ2 100ms 60ms 100ms 2EmJ 2mJ

C1 = 1, C2 = B, and Ebudget = 4E − 1mJ

Table 1: An input instance for demonstrating the unbounded
relaxation of Equation (3)

minimize
P

Mj∈M

P

τi∈T ui,j · yi,j · Cj

subject to
P

Mj∈M

P

τi∈T Ei,j · yi,j ≤ Ebudget,
P

Mj∈M yi,j = 1 , ∀i = 1 . . . n, and
yi,j ≥ 0, ∀τi ∈ T , ∀Mj ∈M.

(3)

An optimal solution of Equation (3) provides a new lower bound
of an optimal solution of the MARTEC problem. We shall show that
such a lower bound might be far away from an optimal solution of
the MARTEC problem in the worst case:

LEMMA 2. There exists an input instance such that the gap be-
tween the cost of an optimal solution of the input instance and an
optimal solution of the relaxation in Equation (3) is unbounded.

PROOF. This lemma can be proved by providing an example.
Suppose that we are given two tasks τ1 and τ2 in T with param-
eters listed in Table 1. The cost of an optimal solution to Equation
(3) is (1 + 2E−3

2E−2
)0.6 + B

2E−2
by setting (y1,1, y1,2, y2,1, y2,2) as

(1, 0, 2E−3

2E−2
, 1

2E−2
). Obviously, if both tasks τ1 and τ2 are assigned

to execute on processors of M1, the total energy consumption is
4EmJ , which is more than Ebudget 4E− 1mJ . Hence, an optimal
assignment allocates one processor of M1 and one processor of M2

with a total price equal to 1 + B. When the energy consumption
E is large enough, the gap between the cost of an optimal solution
for the input instance and an optimal solution of the relaxation in
Equation (3) is 1+B

1.2
. Hence, the gap is unbounded.

3.2 Approximation Algorithms Based on Para-
metric Rounding

This subsection shows that we could relax Equation (2) in a para-
metric way so that the gap between an optimal solution of Equa-
tion (2) and an optimal solution of the relaxed problem is bounded
for any input instance. Moreover, the proposed algorithm will de-
rive a feasible solution for the MARTEC problem by referring to an
optimal solution of the relaxed problem. For any input instance,
we show that the proposed algorithm will derive a solution with at
most (m + 2) times allocation cost of an optimal solution of the
relaxed problem, which is a lower bound of feasible solutions of the
MARTEC problem.

First, we re-index the available processor types in M so that
C1 ≤ C2 ≤ · · · ≤ Cm. The idea behind the parametric relaxation
of Equation (2) is that we restrict the solution of the input instance.
When the parameter is specified as m′, the solution of the input in-
stance is not to use any processor of Mj with j > m′ and to use at
least one processor of Mm′ . Clearly, the minimum solution of the
following integer programming problem among m′ = 1, 2, . . . , m
is a lower bound of the MARTEC problem:

minimize
l

P

τi∈T ui,m′ · yi,m′ · Cm′

m

+
Pm′−1

j=1

P

τi∈T ui,j · yi,j · Cj

subject to
P

τi∈T yi,m′ · ui,m′ > 0,
Pm′

j=1

P

τi∈T Ei,j · yi,j ≤ Ebudget,
Pm′

j=1
yi,j = 1 , ∀τi ∈ T , and

yi,j ∈ {0, 1} , ∀τi ∈ T , ∀j = 1, 2, · · ·m′.

(4)

For each specified m′, we relax Equation (4) by relaxing the in-
tegral constraint of yi,j so that yi,j could be any fractional number.
The ceiling of

P

τi∈T yi,m′ ·ui,m′ and the constraint
P

τi∈T yi,m′ ·

ui,m′ > 0 could be relaxed by two cases when
P

τi∈T yi,m′ ·

ui,m′ ≥ 1 or
P

τi∈T yi,m′ · ui,m′ ≤ 1. As a result, for each m′,
we could relax Equation (4) into the following two subequations:

minimize
Pm′

j=1

P

τi∈T ui,j · yi,j · Cj

subject to
P

τi∈T yi,m′ · ui,m′ ≥ 1,
Pm′

j=1

P

τi∈T Ei,j · yi,j ≤ Ebudget,
Pm′

j=1
yi,j = 1 , ∀τi ∈ T , and

yi,j ≥ 0, ∀τi ∈ T , ∀j = 1, 2, · · ·m′;

(5a)

minimize Cm′ +
Pm′−1

j=1

P

τi∈T ui,j · yi,j · Cj

subject to
P

τi∈T yi,m′ · ui,m′ ≤ 1,
Pm′

j=1

P

τi∈T Ei,j · yi,j ≤ Ebudget,
Pm′

j=1
yi,j = 1 , ∀τi ∈ T , and

yi,j ≥ 0, ∀τi ∈ T , ∀j = 1, 2, · · ·m′.

(5b)

Our proposed algorithm, denoted as Algorithm ROUNDING, first
derives a minimum feasible solution among the 2m equations of
all combinations in Equation (5). Since Equations (5a) and (5b) are
both standard linear programming problems, applying a polynomial-
time linear programming solver, such as that in [9], could derive an
optimal solution of Equation (5a) or Equation (5b) in polynomial
time of n and m′ for a fixed parameter m′ if a feasible solution
exists. If there does not exist any feasible solution for a fixed m′

for Equation (5a) or Equation (5b), the infeasibility could also be
determined in polynomial time. Since

P

τi∈T minMj∈M ei,j ≤

Ebudget, we could derive an optimal feasible solution y∗
i,j for ev-

ery τi ∈ T and j = 1, 2, . . . , m′ of Equation (5a) and Equa-
tion (5b) among m′ = 1, 2, . . . , m. For notational brevity, let y∗

i,j

be 0 for any j > m′, and y∗ be the abbreviated vector for the vari-
able assignment. Suppose that TI,j is {τi ∈ T | y

∗
i,j = 1} for ev-

ery j = 1, 2, . . . , m (Step 2). For the other tasks that are not in
TI,j for any j = 1, 2, . . . , m, we denote these tasks as fractional
tasks. Let TF be the set of fractional tasks, i.e., TF = {τi ∈ T |
∃j with 0 < y∗

i,j < 1}. In Steps 3 and 4, for each fractional task τi

in TF , we insert τi to TI,j∗ , where Mj∗ is the processor type Mj

with y∗
i,j > 0 and the minimum Ei,j . After the task assignment, in

Steps 5 and 6, we then assign task set TI,j by applying Algorithm
FF to allocate processors of Mj and assign tasks onto the allocated
processors of task set TI,j for j = 1, 2, . . . , m. After all, we just
schedule these tasks by applying EDF individually on each allocated
processor.

The energy consumption of the resulting solution is no more than
(
Pm

j=1

P

τi∈T Ei,j · y
∗
i,j ≤ Ebudget), since we assign fractional

tasks onto Mj∗ which it is the processor type Mj with y∗
i,j > 0 and

the minimum Ei,j . Hence,
Pm

j=1

P

τi∈TI,j
Ei,j ≤ Ebudget. Since

applying Algorithm FF leads to an solution with energy consump-
tion equal to (

Pm

j=1

P

τi∈TI,j
Ei,j), we know that the resulting

solution of the MARTEC problem will not violate the energy con-
straint. The resulting solution executes each task on an allocated
processor, and the total utilization of the tasks in each allocated pro-
cessor is no more than 100%. Hence, applying EDF will make each
task meet its deadline. Algorithm ROUNDING guarantees to derive
a feasible solution of the MARTEC problem. The time complexity is
O(mP + n2), where P is the time complexity for the applied lin-
ear programming solver. We now show the optimality of Algorithm
ROUNDING in the following discussions.

As shown in [7], feasible solutions of a linear programming prob-
lem with γ variables form a convex set in γ dimensions. Moreover,
an optimal solution for the linear programming equation is an ex-

Algorithm 1 : ROUNDING

Input: T ,M, and Ebudget;
1: let y∗

i,j be the minimum feasible solution of Equation (5a) and
Equation (5b) among m′ = 1, 2, . . . , m for every τi ∈ T and
j = 1, 2, . . . , m′;

2: TI,j ← {τi ∈ T | y
∗
i,j = 1} for every j = 1, 2, . . . , m;

3: for each τi with 0 < y∗
i,j < 1 for some 1 ≤ j ≤ m do

4: TI,j∗ ← TI,j∗ ∪ {τi}, where Mj∗ is the processor type Mj

with y∗
i,j > 0 and the minimum Ei,j ;

5: for j ← 1 to m do
6: allocate processors of Mj and assign the tasks in task set TI,j

by applying Algorithm FF;
7: return the EDF schedule of the resulting task assignment of T

and processor allocation;

treme point of the convex set [7, 16], where an extreme point of the
convex set is a member in the convex set which can not be expressed
by the convex combination of any two distinct members in the con-
vex set. We refer interested readers to [7, 16] for detailed definitions
of convex sets and extreme points. In other words, an extreme point
of the convex set of the feasible solutions for a linear programming
problem with γ variables makes at least γ inequalities in the linear
programming problem be tight. With such an observation of an op-
timal solution of the linear programming problem, we could show
that there are at most two tasks in TF .

LEMMA 3. If
P

τi∈T y∗
i,m′ · ui,m′ is 1, there are at most two

tasks in TF ; otherwise, TF has only one task only.

PROOF. There are (n·m′+n+2) constraints and n·m′ variables
in both Equation (5a) and Equation (5b). Hence, the convex set of
a solution of Equation (5a) or Equation (5b) is with n ·m′ dimen-
sions. By the definition of the extreme point, there must be at least
n ·m′ tight inequalities for an optimal solution of Equation (5a) or
Equation (5b). If the first and second inequalities of the constraints
in either Equation (5a) or Equation (5b) are tight in y∗, there must
be at least n · m − 2 − n variable with y∗

i,j = 0. In other words,
there are at most 2+n variables with y∗

i,j > 0. Let β be the number
of variables y∗

i,j which is strictly between 0 and 1. δ denotes the
number of variables y∗

i,j equal to 1. We have

δ + β ≤ n + 2, and
2(n − δ) ≤ β,

(6)

since there must be at least two variables strictly between 0 and 1
for a fractional task. By solving Equation (6), we can obtain two
inequalities δ ≥ n− 2 and β ≤ 4.

There are two cases: (1) δ = n − 2, and (2) δ ≥ n − 1. When
δ = n − 2, β must be 4, and

P

τi∈T y∗
i,m′ · ui,m′ is 1. Otherwise,

it is not a feasible solution of Equation (5). As a result, we have
exactly two fractional tasks on this case. When δ ≥ n − 1, β is at
most 3. Similarly, there is at most one fractional task.

The following theorem states the approximation ratio of Algo-
rithm ROUNDING.

THEOREM 3. Algorithm ROUNDING is a polynomial-time (m+
2)-approximation algorithm for the MARTEC problem.

PROOF. We prove this theorem by showing that the resulting
solution of Algorithm ROUNDING would allocate at most (m +

2)(
Pm′

j=1

P

τi∈T ui,j ·y
∗
i,j ·Cj) when y∗ comes from Equation (5a),

or (m + 2)(Cm′ +
Pm′−1

j=1

P

τi∈T ui,j · y
∗
i,j ·Cj) when y∗ comes

from Equation (5b). Let m̂ be the m′, in which we derive y∗.
By Lemma 1, we know that the resulting allocation of Algorithm

 2
 3

 4
 5

 6

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

Number of processor types

Number of tasks

N
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st
 ROUNDING

E-ROUNDING

(a) Average normalized allocation cost

 2
 3

 4
 5

 6
 7

 8
 9

 10

 2 6 10 14 18 22 26 30 34 38 42 46 50

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

Number of processor types

Number of tasks

R
el

ax
ed

 n
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

ROUNDING
E-ROUNDING

(b) Average relaxed normalized allocation cost

Figure 1: The experimental result when (a) the number of available processor types ranged from 2 to 6, and the number of tasks ranged from 2 to
15; (b) the number of available processor types ranged from 2 to 10, and the number of tasks ranged from 2 to 50.

ROUNDING is at most (
Pm̂

j=1
max{1, 2

P

τi∈TI,j
ui,j}Cj). Here

are two cases, decided by whether
P

τi∈TI,m̂
ui,m̂ · y

∗
i,m̂ > 1 or

not, to be considered.
If

P

τi∈TI,m̂
ui,m̂ · y

∗
i,m̂ ≤ 1, i.e., an optimal solution comes

from Equation (5b), the lower bound C∗ of an optimal solution
of the MARTEC problem would be (Cm̂ +

Pm̂−1

j=1

P

τi∈T ui,j ·

y∗
i,j · Cj). Let setM† be {Mj ∈ M |

P

τi∈TI,j
ui,j · y

∗
i,j > 1},

and k is the cardinality of M†. The allocation cost of processor
types in M† to schedule tasks in ∪Mj∈M†TI,j \ TF is at most
2

P

Mj∈M†

P

τi∈TI,j
ui,j ·y

∗
i,j ·Cj ≤ 2(C∗−Cm̂), and the num-

ber of processor types with (
P

τi∈TI,j
ui,j ·y

∗
i,j ≤ 1) is m̂−k. The

total allocation cost of all fractional tasks can be bounded by 2Cm̂

because there are at most two tasks in TF . Therefore, the allocation
cost of the solution derived by Algorithm ROUNDING is at most

2(C∗ −Cm̂) + (m̂− k)Cm̂ + 2Cm̂ ≤ (m̂ + 2)C∗ ≤ (m + 2)C∗,

since Cj ≤ Cm̂ for any j < m̂.
If

P

τi∈TI,m̂
ui,m̂ · y

∗
i,m̂ > 1, i.e., an optimal solution comes

from Equation (5a) with at most one fractional task in TF due to
Lemma 3, the lower bound C∗ of an optimal solution of the MARTEC
problem would be (

P

τi∈TI,m̂
ui,m̂·y

∗
i,m̂·Cm̂+

Pm̂−1

j=1

P

τi∈T ui,j ·

y∗
i,j ·Cj). Again, let k be the number of the setM†. The allocation

cost of the solution derived by Algorithm ROUNDING is at most

2(C∗ − ηCm̂) + (m̂− k − 1)Cm̂ + 2ηCm̂ + Cm̂ ≤ (m + 2)C∗,

where η is
P

τi∈TI,m̂
ui,m̂ · y

∗
i,m̂. A conclusion is reached.

Another algorithm, denoted as Algorithm E-ROUNDING, to en-
hance the quality of the derived solutions of Algorithm ROUNDING
could be done as follows: Algorithm E-ROUNDING selects a solu-
tion with the minimum resulting allocation cost by applying Steps
2 to 7 in Algorithm 1 among all of the feasible solutions of the 2m
linear programming problem described in Equations (5a) and (5b)
for m′ = 1, 2, . . . , m, by taking the solutions to derive TI,j and TF

in Step 2 and Step 3 instead of y∗. Algorithm E-ROUNDING guaran-
tees to derive a feasible solution of the MARTEC problem. The time
complexity is O(m(P + n2)), where P is the time complexity for
the applied linear programming solver. Clearly, a solution of Algo-
rithm E-ROUNDING is no worse than that of Algorithm ROUNDING
for any input instance. Algorithm E-ROUNDING is a polynomial-
time (m + 2)-approximation algorithm for the MARTEC problem.

We now show that the analysis is almost tight by providing a set
of input instances with a gap close to m between the solutions of
Algorithm ROUNDING and the optimal solutions. Suppose that we
are given m processors so that C1 = ε, C2 = C3 = · · · = Cm−1 =
K − ε, and Cm = K, where 0 < ε < K 6= ∞. There are m
tasks, τ1, τ2, . . . , τm. For τi in {τ2, τ3, . . . , τm}, ui,1 = 1, Ei,1 =
Ebudget/m, ui,i = ε/K − δ, Ei,i = Ebudget/m, and ui,j =
Ei,j = ∞ for j 6= i and j > 1, where ε/K > δ > 0. For
τ1, u1,m = 1, E1,m = Ebudget/m, and u1,j = E1,j = ∞ for
j 6= m. By applying Algorithm ROUNDING, TI,j would consist of
τj only, for j = 2, 3, . . . , m − 1. while TI,m contains τ1 and τm.
The allocation cost of Algorithm ROUNDING for this input instance
of the MARTEC problem is 2K + (K − ε)(m − 2), whereas the
optimal solution is K + (m − 1)ε. Clearly, when ε is small, any
solution derived by Algorithm ROUNDING is with a gap m to an
optimal one.

4. PERFORMANCE SIMULATION

4.1 Experimental Setups
In this section, we provide extensive evaluations for the proposed

algorithms. The hyper-period was 1000 ms. The number of jobs
of task τi within the hyper-period, denoted by ti, was an integral
integer uniformly distributed in the range of [1, 100]. Hence, the
period of task τi was set as 1000

ti
ms. The execution time ci,j of jobs

of task τi on processor type Mj was a random variable uniformly
distributed in the range of [1, 1000

ti
], and the energy consumption

ei,j of jobs of task τi on processor type Mj was a random variable
in the range of [100, 1000]. For each processor type Mj , the cost
Cj was an integral variable uniformly distributed in the range of
[100, 1000]. For a specified energy budget ratio f , the energy budget
for a given task set T on a set of processor types M was set as
(Emax−Emin)f +Emin, where Emin =

P

τi∈T minMj∈M ei,j

and Emax =
P

τi∈T maxMj∈M ei,j .
We run two types of experiments by first varying the number of

processor types and the number of tasks and then adjusting the en-
ergy budget. For the first type, two different configurations were
experimented by setting the energy budget ratio as 0.1. For the first
configuration, the numbers of processor types and tasks were from
2 to 6 and 2 to 15, respectively. For the second configuration, the
numbers of processor types and tasks were from 2 to 10 and 5 to
50, respectively. For the second type, we varied the energy budget
ratio from 0.05 to 1, stepped by 0.05, where the number of pro-

 1.28

 1.32

 1.36

 1.4

 1.44

 1.48

 1.52

 1.56

 1.6

 1.64

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

ax
ed

 n
or

m
al

iz
ed

 a
llo

ca
tio

n
co

st

Energy budget ratio

ROUNDING
E-ROUNDING

Figure 2: The average relaxed normalized allocation cost when
the energy budget ratio ranged from 0.05 to 1.

cessor types is an integral variable in the range of [2, 10], and the
number of tasks is an integral variable in the range of [2, 50]. Each
configuration was evaluated with 128 independent settings.

The normalized allocation cost was adopted as the performance
metric in the experiments. The normalized allocation cost of an al-
gorithm for an input instance is the ratio of the allocation cost of the
solution derived from the algorithm to that of the optimal solution
by an exhaustive search. The relaxed normalized allocation cost of
an algorithm for an input instance is the ratio of the allocation cost
of a solution derived from the algorithm to that of the lower bound
derived from the minimum cost among the 2m linear programming
problems of Equation (5).

4.2 Experimental Results
Figure 1(a) shows the average normalized allocation cost of Algo-

rithms ROUNDING and E-ROUNDING when the energy budget ratio
was 0.1, the number of processor types varied from 2 to 6, and the
number of tasks varied from 2 to 15. Figure 1(b) shows the average
relaxed normalized allocation cost of Algorithms ROUNDING and
E-ROUNDING, when the energy budget ratio was 0.1, the number of
processor types varied from 2 to 10, and the number of tasks varied
from 5 to 50 stepped by 5. The performance of E-ROUNDING was
no worse than that of ROUNDING in the experimental results. Both
of the proposed algorithms could derive solutions with costs close
to those of optimal solutions. The performance gap between the two
algorithms became wider for a larger number of processor types. In
Figure 1(a) (/Figure 1(b)), the average normalized allocation cost
(/relaxed normalized allocation cost) became larger when the num-
ber of processor types increased. However, the growing tendency
in both figures was slow. The maximum values of the average re-
laxed normalized allocation costs of ROUNDING and E-ROUNDING
in Figure 1(b) were 2.118 and 1.866, respectively.

Figure 2 shows the average relaxed normalized allocation cost of
Algorithms ROUNDING and E-ROUNDING when the energy budget
ratio varied from 0.05 to 1 with a step equal to 0.05. The average re-
laxed normalized allocation cost was almost the same when the en-
ergy budget ratio was greater than 0.65, since the energy constraint
was easier to satisfy when the energy budget ratio was larger. Again,
both of the proposed algorithms could derive solutions with costs
close to those of optimal ones. Moreover, Algorithm E-ROUNDING
outperformed Algorithm ROUNDING, especially when the energy
budget ratio was large.

5. CONCLUSION
This paper targets energy-efficient scheduling of periodic hard

real-time tasks with an objective to minimize the total cost of pro-
cessors under a given energy constraint. The problem is NP-hard

even when the number of the available processor types is a constant.
It is also shown that there does not exist any polynomial-time al-
gorithm with a constant approximation ratio, unless NP = P . We
first propose an approximation algorithm based on a rounding tech-
nique with the approximation ratio (m+2), where m is the number
of the available processor types. The algorithm is then improved
with better solutions in many cases. The performance of the pro-
posed algorithms was evaluated by a series of experiments, com-
pared to optimal solutions. Experimental results show that the pro-
posed algorithms could always derive solutions with costs close to
those of optimal solutions.

With the rapid evolving of voltage-scaling technology, the results
in this paper should be further extended with dynamic voltage scal-
ing. More researches in this direction might be rewarding in the
future.

References
[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Determining

optimal processor speeds for periodic real-time tasks with different
power characteristics. In Proceedings of the IEEE EuroMicro
Conference on Real-Time Systems, page 225, 2001.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of 17th International Parallel and
Distributed Processing Symposium (IPDPS), pages 113 – 121, 2003.

[3] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to
manage energy and temperature. In Proceedings of the 2004
Symposium on Foundations of Computer Science, pages 520–529,
2004.

[4] S. K. Baruah. Partitioning real-time tasks among heterogeneous
multiprocessors. In Proceedings of the 33rd International Conference
on Parallel Processing, pages 467–474, 2004.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle.
Managing energy and server resources in hosting centres. In
Symposium on Operating Systems Principles, pages 103–116. ACM
Press, 2001.

[6] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and
T.-W. Kuo. Multiprocessor energy-efficient scheduling with task
migration considerations. In EuroMicro Conference on Real-Time
Systems (ECRTS’04), pages 101–108, 2004.

[7] G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction.
Springer Verlag, 1997.

[8] M. R. Garey and D. S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. W. H. Freeman and Co., 1979.

[9] GNU Linear Programming Kit.
http://www.gnu.org/software/glpk/glpk.html.

[10] N. K. Jha. Low power system scheduling and synthesis. In
Proceedings of the 2001 IEEE/ACM international conference on
Computer-aided design, pages 259–263, 2001.

[11] D. Kirovski and M. Potkonjak. System-level synthesis of low-power
hard real-time systems. In Proceedings of the 34th ACM/IEEE
Conference on Design Automation Conference, pages 697–702, 1997.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[13] J. W. Liu. Real-Time Systems. Prentice Hall, Englewood, Cliffs, NJ.,
2000.

[14] C. H. Papadimitriou. Computational Complexity. Addison-Wesley
Publishing Company, 1994.

[15] Z. Shao, Q. Zhuge, X. Chun, and E. H.-M. Sha. Efficient assignment
and scheduling for heterogeneous dsp systems. IEEE Transaction on
Parallel and Distributed Systems, 16(6):516–525, June 2005.

[16] V. V. Vazirani. Approximation Algorithms. Springer, 2001.
[17] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced

CPU energy. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, pages 374–382. IEEE, 1995.

[18] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. In Annual ACM IEEE Design
Automation Conference, pages 183–188, 2002.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

