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Abstract

An ever increasing portion of design effort is spent on func-
tional verification. The verification space as the set of possi-
ble combinations of a design’s attributes is likely to be very
large making it infeasible to verify each point in this space.
State-of-the-art verification tools tackle this problem by us-
ing directed random generation of combinations in con-
junction with manually defined corner cases in order to get
satisfactory coverage with the desired distribution. In this
work, the underlying methodology to automatically genera-
ting complete sets of disjoint coverage models on the basis
of formal attribute definitions is extended to take relational
constraints into account. This allows the utilization of cov-
erage models with non-orthogonal, non-planar boundaries,
which can make hole analysis for coverage data obsolete. It
shall be demonstrated, how the proposed methodology can
be used to automatically determine corner cases more ac-
curately than it is possible with conventional approaches.

1. Introduction

Functional verification takes an increasing portion of the ef-
fort in hardware design. The verification space of a rea-
sonably large design as the set of all possible combinations
of a design’s attributes, i.e. a design’s parameters and in-
puts [16], is likely to be very large which makes it infea-
sible to verify all combinations. Verification environments,
e.g. Specman EliteTM from Cadence [17] or VERATM from
Synopsys [18], use randomly generated inputs in conjunc-
tion with the special verification of manually defined corner
cases to achieve an acceptable coverage of the verification
space with the desired distribution.

Typically, a special hardware verification language
(HVL), e.g. e or OpenVERA, is used to implement verifica-
tion by driving stimulus data into the hardware description
language (HDL) model or netlist and collecting its re-

sponse. Apart from comparing the output to expected
data, coverage data for post simulation processing can be
collected. Functional coverage focuses on a design’s func-
tionality, as opposed to code coverage which tries to ensure
that every line of source code is executed at least once.
Therefore, verification strategies using functional coverage
analysis in order to redirect the verification process are
design and even implementation specific [16, 21].

2. Previous Work

When using functional coverage, coverage models contain-
ing a large set of verification (coverage) tasks are systemati-
cally defined by the user and then used to measure, monitor
and redirect the testing process [16]. Each model covers a
specific area of the verification space [13] by restricting it
according to defined boundaries [6]. In order to cover the
whole verification space, every point of the space must be
handled by one of the coverage models. Every combination
of attribute values, i.e. each element of the cross-product
of a model’s attributes, may be either legal or illegal, which
makes restrictions describing valid combinations indispens-
able. This part of the coverage models is most difficult to
define, since often a deep understanding of the specifica-
tion, design and implementation is needed to create cor-
rect restrictions [16]. The PARAGRAPH methodology [11]
uses so-called Domain Graphs (DG) to split the verification
space into subspaces called domains on the basis of formal
descriptions of attributes and their interdependencies. DG
are constructed by removing all invalid, i.e. forbidden at-
tribute combinations and unifying combinations which are
virtually equal [9]. An example of combinations leading to
identical behaviour are different parity bit positions in a se-
rial bit stream while parity generation is turned off. From
DG disjoint coverage models are automatically derived.

This work extends PARAGRAPH to account for relational
constraints and therefore to derive coverage models with
non-orthogonal, non-planar boundaries. By this means, a
complete set of coverage models to fill the verification space
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is defined, avoiding large cohesive holes in the verification
space. Thus, using these models can potentially make hole
analysis techniques for coverage data as proposed in [16]
obsolete. The reduced verification space must be efficiently
represented in order to allow rapid traversion for automatic
stimulus generation during simulation. Therefore, the pro-
posed DG extensions are not implemented directly, but
mapped to binary diagrams. The corresponding data struc-
tures were derived from Binary Decision Diagrams and un-
derwent an evolution over Multi-terminal Binary Decision
Diagrams and Binary Moment Diagrams to Kronecker Mul-
tiplicative Binary Moment Diagrams [1, 2, 3, 4, 5, 20]. The
latter allow the representation of most expressions and their
interdependencies in linear size.

3. Verification Space

A design’s simulation stimulus consists of a set of stimuli
vectors M = {a1,a2, . . . ,am}, where each attribute ai can
take any value inside its defined range Ai. The verification
space can then be constructed as V = A1×A2× . . .×Am.
Each element v = 〈a1,a2, . . . ,am〉 of V, i.e. each point in the
verification space, represents one combination of attribute
assignments. It can be either legal or illegal, depending on
additional attribute interdependencies. A combination v is
valid in case all defined interdependencies are fulfilled. The
set of valid combinations shall be denoted as G⊆V.

The representation of G as DG was limited to orthogo-
nal subspaces, i.e. only subspaces with planar boundaries
parallel to the attribute axes could be expressed [8]. The ex-
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Figure 1. 2-dimensional verification space

tension presented in this work allows the representation of
subspaces with non-orthogonal and even non-planar bound-
aries. Suppose a set of attributes M = {a,b}, with the
ranges A = {1 . . .10} and B = {1 . . .10}. Two additional
interdependencies are expressed as relational constraints

a > b (1)

and
(a−5)2 +(b−2)2 > 2. (2)

Fig. 1 shows V and the effective verification space G⊆V
due to the interdependencies. The set G can be represented
as Multi-valued Decision Diagram (MDD) [12] with the
characteristic function

f (a1,a2, . . . ,am) =
{

1 : 〈a1,a2, . . . ,am〉 ∈ G
0 : else

.

Fig. 2 shows the corresponding MDD. The internal rep-
resentation relies on special binary decision diagrams
(K*BMD) which allow to fulfill both – usually contradic-
tory – demands, compact storage and efficient manipulation
[20]. Each path from the root to a leaf node in the MDD
represents a subspace of G. A particular attribute combina-
tion v = 〈a1,a2, . . . ,am〉 can be selected by assigning values
to the attributes according to the edge values in the MDD.
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Figure 2. Multi-valued Decision Diagram

Given a fixed set of MDD operations – one for each arith-
metic or logic operator available for the formal attribute de-
scription –, two basic graph types, identity and constant, are
sufficient to construct any MDD. The MDD of a constant
consists of a single leaf node carrying the constant value as
depicted in Fig. 3 for the constant 5. Identity graphs consist
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Figure 3. Constant and identity graph

of only one attribute node. Every adjacent edge is connected
to a leaf node for each value in the attribute’s range. The
identity graph for attribute a with A = {1 . . .10} is shown
in Fig. 3. The set of operations covers logic and arithmetic
operations supported by a number of HDL and HVL, such
as VHDL, Verilog and e [7]. The MDD of G is constructed
by iteratively applying MDD operations to the basic graphs.
First, a MDD is constructed for each relational constraint.
Since all constraints must always be fulfilled, the distinct



MDD must be linked via logical conjunction in a second
step in order to get the final MDD representing G. Fig. 4
shows the different steps executed during the MDD con-
struction of the second relation (cf. Eq. (2)) of the example
above.
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Figure 4. Iterative construction of MDD

4. Cardinality

It shall be shown in the following section, that it is essential
to determine the absolute number of elements in the effec-
tive verification space. This value is equivalent to the car-
dinality |G| of the set G. The cardinality of MDD can be
computed by counting the number of possible paths from
each node and recursively accumulating the values of all ad-
jacent nodes. Fig. 5 shows the value for each distinct node
and the accumulation result of 36, which can be validated
by counting the grey boxes printed in Fig. 1.
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Figure 5. MDD cardinality

5. Traversion

As stated in section 3, valid attribute combinations can be
selected by choosing one path in the MDD of G and assign-
ing attributes according to the edge values. Hence, simu-
lation stimuli can be generated by randomly traversing the
MDD. Starting at the root node, one of the adjacent edges is
selected at random and an arbitrary value inside the edge’s

range is assigned to the corresponding attribute. This pro-
cedure is repeated until a leaf node is reached. Note that the
assigned values do not require any further checking, since
the MDD contains valid attribute combinations only.

An equal distribution of the attribute combinations over
the verification space is (for most purposes) indispensable.
Therefore, it must be ensured that each combination is se-
lected with the same probability. This is accomplished by
using the ratio of the target and source node cardinalities as
edge weights and selecting edges according to their weight.
Fig. 6 shows the MDD of the example with all nodes having
their cardinalities displayed in order to explain the usage
of edge weights in detail. Consider attribute combination
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Figure 6. MDD traversion

〈a,b〉= 〈8,3〉 . Since every combination shall be selected
with the same probability, the probability of selecting this
one out of an overall number of 36 must be 1

36 . The source

and target node cardinalities of edge
8�−→ leaving node a are

36 and 7 respectively. Thus, this edge assigned a weight of
7
36 . Value 3 from the adjacent edge

1−7�−→ of the former tar-
get node b is selected with a probability of 1

7 according to
the corresponding source and target node cardinalities. By
this means, the probability of selecting combination 〈8,3〉
computes to 7

36 · 1
7 = 1

36 as postulated.
Erroneous behaviour due to specification misinterpreta-

tion or design bugs often occur in conjunction with input
vectors taking marginal values. Therefore, the opportunity
to direct random generation to emphasize those corner cases
is desirable, i.e. to select points close to the boundaries of
the effective verification space G. Using one of the verifica-
tion environments commercially available, users can manu-
ally define subranges to be emphasized for every attribute.
In case Specman EliteTM is used, the following e statements
could be used to emphasize the maximum and minimum
value of the example attributes a and b by a factor of 5 :

keep soft me.a == select {
5: [1]; // min value of attribute a
5: [10]; // max value of attribute a
1: others;};
keep soft me.b == select {
5: [1]; // min value of attribute b
5: [10]; // max value of attribute b
1: others;};



While these definitions can adequately be applied to the ver-
ification space V, they lead to missing corner cases if used
on the restricted effective verification space G as depicted
in Fig. 7. The points of V covered by the manual corner
definitions (a = {1,10} , b = {1,10} ) are marked with X,
the space G⊆V is printed in light grey. Since random gen-
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Figure 7. Inadvertently missed corners

eration must take the relational constraints into account as
well, only the intersection of both sets is emphasized. It
can be seen that some points on the boundary of G will – in
contradiction to the user’s intent – not get emphasized at all.
By deriving corner case definitions from G, this deficiency
can be remedied. Each point of v ∈ G, that has at least one
neighbour v′ /∈ G , is a point on the boundary of G. Two
points v = 〈a1,a2, . . . ,am〉 and v′ = 〈a′1,a′2, . . . ,a′m〉 are re-
garded as neighbours in case their manhattan distance, i.e.
the sum of the single attribute differences, does not exceed
the value of 1 :

Manhattan distance:
d(v,v′) = ∑m

i=1 |ai−a′i|.
In case not only points on the boundary itself, but points
close to it are to be selected, the stimulus generator can gen-
erate appropriate attribute combinations by selecting points
with a manhattan distance to the boundary smaller than the
desired corner width W. Fig. 8 shows the correct set of cor-
ner points for a corner width W = 1.

6. Functional Coverage

Modern verification strategies collect functional coverage
data to monitor the verification progress and to redirect the
verification process in order to improve functional cover-
age. The coverage grade is computed as the fraction of
valid attribute combinations already generated during simu-
lation. To perform this computation, the number of distinct
combinations generated so far, and the overall number of
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possible (valid) combinations is required. The former can
be determined by looking at coverage data collected dur-
ing simulation, which can as well be used to unveil large
cohesive areas in the verification space not covered by sim-
ulation yet. The latter, i.e. the cardinality |G| , is not avail-
able to state-of-the-art verification flows, since they usually
check the validity of combinations ’on-the-fly’ during stim-
ulus generation instead of constructing some representation
of G in advance. On that score, these tools use the cardi-
nality |V | instead of the – in case of additional constraints
usually much smaller – |G| , which leads to an underestima-
tion of coverage grades.

The set of combinations covered by simulation, i.e. the
coverage space, shall be denoted as C ⊆ G and is stored as
additional MDD. After generating an attribute combination
v = 〈a1,a2, . . . ,am〉, it is added to C :

C←C∪ v.

To illustrate this process, 10 combinations were randomly
generated and accumulated in C : 〈6,5〉, 〈9,5〉, 〈8,5〉,
〈10,4〉, 〈10,1〉, 〈3,2〉, 〈9,3〉, 〈8,5〉, 〈8,6〉 and 〈8,4〉. Fig. 9
shows the corresponding MDD. The coverage grade in this
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Figure 9. MDD of the coverage space C

case calculates to

|C|
|G| =

9
36

= 0.25,



as opposed to the computation using |V | instead of |G| ,
which yields

|C|
|V | =

9
100

= 0.09.

The MDD representation of C facilitates computation of
cross coverage grades in a post simulation process. No dec-
laration of cross coverage items in advance nor information
about the time at which attributes took a certain value is
necessary. The only user action required is to define the
set of attributes U ⊆M to include into cross coverage com-
putation. In a so-called smoothing process, every attribute
not contained in U is removed from C and G. The cross
coverage can then be computed on the basis of the result-
ing sets CU and GU . In case U consists of only one at-
tribute a j, the coverage grade of that single attribute is com-
puted instead. Fig. 10 opposes spaces G and C to depict
the smoothing process and the resulting coverage grades.
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Figure 10. Coverage and cross coverage

In order to determine the coverage of the example attribute
b, smoothing with respect to a is necessary, which means
row-wise subsumption, while smoothing with respect to b
means column-wise subsumption. Having a representation
of G available, the accumulation of generated combinations
as coverage space C is sufficient to determine any coverage
or cross coverage possibly desired, without the necessity to
declare any coverage items in advance.

7. Results

The software package PARAGRAPH [10] was extended with
the described capabilities. It reads formal attribute defini-
tions from a file using a special language resp. file format
proposed in [11] and constructs the corresponding MDD.
A bi-directional serial communication interface developed

with an industrial partner during an earlier project shall be
used as demonstration example. 30 attribute definitions (Ta-
ble 1) were extracted from the HDL model. Using the basic

attribute cardinality attribute cardinality
PINMODE 2 RXWA1_LEN 2

TXPCM 2 RXINTADDR 32

RXPCM 2 TXEDGE 2

TXCLKSEL 4 TXDEL 2

RXCLKSEL 4 TXPOL 2

CLK0SEL 3 TXPERIOD 3

CLK1SEL 3 TXWIDTH 5

RXEDGE 2 TXALIGN 2

RXDEL 2 TXMONO 3

RXPOL 2 TXMUTE_L 2

RXPERIOD 3 TXMUTE_R 2

RXWIDTH 5 TXCLK0_OUT 2

RXALIGN 2 TXCLK0_CONT 2

RXCLK1_OUT 2 TXWA0_LEN 2

RXCLK1_CONT 2 TXINTADDR 32

Table 1. Set of attributes

DG methodology of the preceding PARAGRAPH version,
the verification space can be split into 64 domains while be-
ing limited to REQUIRE and CONFLICT statements. The
fact that attribute RXEDGE only influences the interface be-
haviour in case RXPCM is assigned the value off is for in-
stance declared using a REQUIRE statement:

REQUIRE RXEDGE:
RXPCM name:off;

This way another 29 attribute interdependencies could be
defined reducing the overall number of valid attribute com-
binations by a factor of 2846. Using the extended MDD
methodology proposed here, 6 additional relational con-
straints, such as

RELATION TXPERIOD >= 2*TXWIDTH;

can be declared. The generation of the corresponding MDD
on a Sun UltraSPARC R©10 takes about 73 seconds. The ef-
fective verification space G is reduced by a factor of 17254
in comparison to the complete verification space V. Table 2
lists a number of designs to which the proposed method-
ology has been applied. Beside the equivalent gate count
of the particular design, the number of lines, attributes, and
constraints in the formal attribute description, the number
of nodes in the resulting DG, the time needed for the con-
struction of the DG including the MDD representing the re-
lational constraints, and the resulting reduction in size of
the effective verification space are given.



design source gates lines attributes constraints DG nodes construction reduction

bcdbin opencores [19] 1500 49 3 16 32 2s 77
fifo opencores [19] 30000 21 3 6 34 3s 4
vga internal 3000 52 9 15 146 7s 32

moments internal 70000 41 9 12 223 17s 1413
fsi industrial 15000 84 15 16 60 3s 239
i2s industrial 45000 194 30 36 967 73s 17254

Table 2. Construction time and reduction factor

8. Conclusion

This work enhances the basic PARAGRAPH methodology
to automatically derive complete sets of functional cover-
age models from formal attribute descriptions. With the ex-
tensions proposed, PARAGRAPH is enabled to utilize MDD
to take relational attribute constraints into account in order
to split the verification space into disjoint coverage mod-
els with non-orthogonal, non-planar boundaries. By this
means, the technique to prevent the traditional coverage
grade underestimation of conventional approaches is refined
by relying on an analytical model of the verification space.
The automatic extraction of corner cases with respect to the
model boundaries is raised to a whole new level, since the
completeness of the set of boundary points can be guaran-
teed for the first time.

Current work focuses on the representation of transitions
between different functional states or stimuli sequences.
Additional research is necessary to investigate how these
aspects can be expressed in terms of decision diagrams or
graphs, e.g. Temporal Event Relation Graphs (TERG) [15]
or Hierarchical Temporal Event Relation Graphs (HiTER)
respectively [14]. On that basis, solutions to automatically
drive a design into a certain state and efficiently direct veri-
fication from that state could be developed.
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[10] V. Jerinić and D. Müller. Tool-Demo: ParaGraph - Parame-
ter checking for IP. Presentation of the edacentrum Design,
Automation and Test in Europe Conference (DATE), page ,
Mar. 2003. Munich.
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