
A Coverage Metric for the Validation of Interacting Processes

Ian G. Harris
Department of Computer Science
University of California Irvine

Irvine, CA 92697 USA
harris@ics.uci.edu

Abstract

We present a coverage metric which evaluates the testing
of a set of interacting concurrent processes. Existing behav-
ioral coverage metrics focus almost exclusively on the test-
ing of individual processes. However the vast majority of
practical hardware descriptions are composed of many pro-
cesses which must correctly interact to implement the sys-
tem. Coverage metrics which evaluate processes separately
are unlikely to model the range of design errors which man-
ifest themselves when components are integrated to build
a system. A metric which models component interactions
is essential to enable validation techniques to scale with
growing design complexity. We describe the effectiveness of
our metric and provide results to demonstrate that cover-
age computation using our metric is tractable.

1. Introduction

Simulation-based validation is necessary to verify prac-
tical hardware designs today because simulation can be per-
formed for much larger designs than can be considered us-
ing formal verification techniques. Validation using simu-
lation requires the development of a test sequence which
can reveal design errors which may be present. Test gen-
eration may be performed automatically or manually, but
in either case there is a strong need for an empirical mea-
sure of the effectiveness of a test sequence. A measure of
test effectiveness acts as a completion criterion for the test
generation process. Such a measure also provides informa-
tion about which aspects of the design are as yet untested;
this information is used to direct the test generation process
toward the detection of unrevealed design errors. A mea-
sure of test effectiveness is typically refered to as a cover-
age metric and many coveragemetrics have been developed

1 This research was supported by the National Science Foundation un-
der grant CCF 0437116

for both hardware and software testing [19, 12, 1]. Cover-
age metrics define a set of criteria which must be satisfied
during simulation to ensure detection of design errors.

A range of different coverage metrics have been devel-
oped for use at different design abstraction levels, (i.e. gate-
level, register-transfer level, state machine, behavioral) and
to describe different types of errors (i.e. physical, control-
flow, dataflow). We are interested in a coverage metric at
the behavioral level because the behavior is the earliest
stage at which an executable design description is available
which can be evaluated automatically. Detecting design er-
rors early in the design cycle reduces the expense of the re-
design needed to correct an error.

All practical system designs are built from a set of in-
teracting concurrent processes, but almost all existing be-
havioral coverage metrics consider the testing of processes
individually. This is problematic because design errors are
most likely to be found in the interaction between multiple
components, rather than in any single component. A hier-
archy is always imposed on the design process in an effort
to improve productivity by partitioning the responsibilities
of different designers. The use of intellectual property ex-
emplifies this practice by completely separating the design
of a component, possibly outsourcing it to a different com-
pany.

Partitioning the design provides an abstraction, hope-
fully allowing the system designer to ignore details of the
components. The disadvantage of the use of this abstrac-
tion is that it is difficult for one designer to understand the
complex interactions between all components. This prob-
lem is most acute with the use of intellectual property be-
cause the detailed design information is likely to be hidden
from the system designer. Design errors which appear as a
result of the interaction between components are likely to
occur and difficult to detect.

Existing metrics are applied to multi-process designs by
first combining all processes into a single, complex behav-
ioral description. For example, state coverage is a state ma-
chine metric which requires that all states are entered dur-

3-9810801-0-6/DATE06 © 2006 EDAA

ing simulation. State coverage can be applied to a multi-
process design by computing the cross-product machine of
all of the processes, and then requiring that each state in the
cross-product machine is covered. The problem with this
approach is not only that the cross-productmachine is large,
but also that the vast majority of the cross-product machine
is redundant in most cases [13]. Use of a cross-product ma-
chine implicitly assumes that the individual processes are
independent, but this is never true. As a result the cross-
product machine will contain many states and transitions
which can never be executed. Coverage values for a cross-
product machine will be deceptively low because the major-
ity of the state space cannot be explored.
A behavioral coveragemetric which focuses on the inter-

action between processes is needed but coverage computa-
tion must be tractable. The number of interactions cannot be
too large to enable fast analysis. The set of interactions con-
sidered must be pruned to contain only those which are not
redundant and which are most likely to reveal design errors.
We present a coverage metric which evaluates the vali-

dation of the interactions between processes. We model the
behavior of each process as a control-flow graph (CFG) and
we assume that executing all control-flow paths in a sin-
gle process is sufficient to validate that process. An inter-
action is described by a set of paths in different processes,
executed in sequence. In the worst case the set of poten-
tial interactions could be as large as the cross-product of
the sets of paths in the individual machines. This potential
problem is addressed by identifying path pairs which con-
flict because the signal assignments of the first path violate
the control-flow conditions of the second path. Additionally,
path pairs are only considered as interactions if the second
path is directly dependent on the first path via a shared sig-
nal. Our results show that when these restrictions are con-
sidered, process interactions can be validated with low time
complexity.
The remainder of the paper is organized as follows. Sec-

tion 2 describes related work in coverage metrics and in-
teracting machines. Our formal definition of an interaction
is described in Section 3 with the criteria for interactions
which are important for validation. The system which we
have implemented to compute interaction coverage is pre-
sented in Section 4. Experimental results are shown in Sec-
tion 5 and Section 6 summarizes the key points of the cov-
erage metric.

2. Related Work

A coverage metric defines a set of coverage goals which
must be satisfied during simulation. Ideally, satisfaction of
all coverage goals should indicate that all possible design
errors are detected. A coverage metric can be used to eval-
uate a test sequence by determining the fraction of cover-

age goals which are satisfied when the design is simulated
with the test sequence.
Existing coverage metrics have their origins in either the

hardware [19] or the software [1] domains. Finite state ma-
chines (FSMs) are the classic method of describing the be-
havior of a sequential system and fault models have been
defined to be applied to state machines. State machine cov-
erage metrics assume that a design error impacts the struc-
ture of the state machine, the states and the transitions be-
tween them. The commonly used fault models [2, 17, 16]
are the state coverage model which requires that all states
be reached, and transition coverage which requires that
all transitions be traversed. The problems associated with
state machine testing are understood from classical switch-
ing theory [14] and are summarized in a thorough survey of
state machine testing [15].
A number of coverage metrics are based on the traver-

sal of paths through the CFG representing the system be-
havior. Applying these metrics to the CFG representing a
single process is a well understood task. The application of
CFG metrics to the behavior of an entire system would re-
quire that all component CFGs be merged into one. For this
reason, CFG metrics are currently restricted to the testing
of single processes. The earliest CFG coverage metrics in-
clude statement coverage, branch coverage and path cov-
erage [1] models used in software testing. There are many
notable uses of CFG coverage metrics for hardware vali-
dation [23, 11, 5, 25]. Many CFG coverage metrics con-
sider the requirements for fault activation without explic-
itly considering fault effect observability. Researchers have
developed observability-based behavioral coverage metrics
[6, 8, 21, 22] to alleviate this weakness.
Interacting finite state machines are a computational

model which has been used for hardware/software codesign
[10, 3]. The majority of research on interacting FSMs has
investigated synthesis optimization either using sequential
don’t cares [24] or by identifying redundant faults [9]. Val-
idation of an FSM network has been investigated in [13].
The problem addressed in [13] is the use of simulation to
verify that a network of FSMs is equivalent to a given pro-
toype FSM. The outputs of the prototype machine and the
FSM network are compared while acheiving 100% transi-
tion coverage on the prototype machine. The reserach in
[13] is not applicable if a prototype machine does not ex-
ist for comparison.
Research in the field of software engineering has pro-

duced coverage metrics for the testing of concurrent soft-
ware. In [20] a set of coverage metrics are formulated in
terms of paths in the concurrency graph which represents
the communication possibilities between threads. A set of
testing criteria for rendezvous communication are presented
in [18]. A metric for multi-threaded Java programs is pre-
sented [7] which requires that each method be interrupted

by other methods in the same class. The relationship be-
tween these concurrency metrics and the detection of bugs
in concurrent code has not been demonstrated empirically.
In addition, the coverage produced by applying these met-
rics to benchmark systems has not been published. As a re-
sult, it is impossible to determine whether or not these ear-
lier metrics actually correlate to bug detection.

3. Interaction Definition

The set of interactions must describe all of the ways in
which the behavior of a set of processes can affect the be-
havior of another set of processes. For the purposes of this
paper we will only consider interactions between pairs of
processes.When considering only pairs of processes, the set
of interactions must describe all the ways in which the be-
havior of one process can impact the behavior of another
process. The execution of one process may impact the ex-
ecution of another process through its effect on the global
state, which in VHDL is the set of signals connecting the
processes. The global state can be seen as the ������� in
which a process is executed. To evaluate the interactions be-
tween processes we need to execute each control-flow path
of each process in a range of different contexts. An inter-
action between two processes is a sequence of control-flow
path executions, one path in the first process and one in the
second. The interaction is of interest if the execution of the
first process alters the context of the execution of the sec-
ond process.
To formalize the notion of an interaction, we need to enu-

merate the set of all behaviors of a process. We will assume
that the set of all control-flow paths in a process can be used
to describe all of the possible behaviors of that process. We
assume that there is a set of concurrent processes � , and
that each process � � � has a set of control-flow paths ��.
Each path � � �� is defined by a set of predicates encoun-
tered along the path in the CFG. The set of conditional pred-
icates which are encountered and satisfied along a path � is
	�. Without loss of generality, each conditional predicate
� � 	� is expressed so that it is satisfied along the path
�. For example, the VHDL in Figure 1a contains a path �
which involves two predicates which evaluate to FALSE,

 � � and � � �. Since we define 	� to contain only con-
ditional predicates which are positively asserted, both pred-
icates are inverted, so 	� � ��
 � �� ��� � ��.
Each path � contains a set of signal assignments � � ��

, a set of signals � � �� whose values are used in the path,
and a set of signals � � �� whose values are assigned in
the path. For example, refer to the path � in Figure 1a de-
fined by predicates 	� � ��
 � �� ��� � ��. This path con-
tains assignments�� � �� � ��� ��� ��, it reads signals
�� �
 �, and writes signals�� � � �. Since we are only
interested in interactions between processes, the sets ��,

signal a, b, c, x, y : integer;

if (b < 3) then
 a <= b;
else
 y <= in;
end if;
if (c > 1) then
 x <= 1;
else
 x <= 5;

if (x > 2)
 out <= y;
else
 out <= 1;

(a) (b)

Figure 1. VHDL example, (a) process 1, (b)
process 2

��, and �� only involve internal signals which are used
to communicate between processes. In Figure 1 this means
that signals � and
 and input and output ports �� and ���
are not considered.
We refer to the set of all interactions between a pair of

processes �� and �� as ������ . We define an interaction be-
tween a pair of processes as a sequence of paths, one in
each process, � � ������ � ��� ��� �� � ��� �� � ��� .

3.1. Path Dependencies

The set of all interactions between a pair of processes ��
and �� is a subset of the cross-product between ��� and ��� .
The set of all interactions should be a small subset of the
cross-product because many path pairs are not interesting
for testing purposes. Each interaction captures a functional
dependency between the interacting processes. To capture
dependencies, the second path involved in an interaction
must be ��������� on the first path in the sequence via a
set of signals. This requirement is stated formally in Equa-
tion 1. An example of dependency can be seen between path
�� in Figure 1a where 	�� � �
 � �� ��� � ��, and path ��
in Figure 1b where	�� � �� � ��. Path �� depends on path
�� through their mutual access of signal �.

��� ��� ���� ���� � ��� � � � (1)

An interaction is considered to be ������� during test-
ing if its two paths �� and �� are executed in sequence and
no path �� is executed in between the paths which assigns a
value to a signal which is both assigned by �� and read by
��. This can be described using paths in Figure 1a and 1b.
Consider two paths in Figure 1a, �� and ��, where 	�� �
�
 � �� ��� � �� and 	�� � ��
 � �� ��� � ��. Both paths
�� and �� assign signal � and therefore form interactions

with path �� in Figure 1b where 	�� � �� � ��. If the exe-
cution sequence of paths during testing is �� �� �� then the
interaction ��� ��� is covered but the interaction ��� ��� is
not covered since �� was executed closer to �� in sequence.

3.2. Interaction Feasibility

In addition to the dependency requirement between
the paths of an interaction, the interaction must also
be �����
�� in terms of the possibility of executing
the interacting paths in sequence. Consider an interac-
tion involving the path �� in Figure 1a described by
	�� � �
 � �� �� � �� and the path the path �� in Fig-
ure 1b described by 	�� � �� � ��. This interaction
is infeasible because path �� cannot be executed imme-
diately prior to the execution of path ��. The path se-
quence ��, �� is infeasible because �� assigns signal � to 1
while �� requires signal � � �.
In general, an interaction between two paths �� and ��

is infeasible if the signal assignments ��� collectively im-
ply the inverse of one or more of the conditional predicates
in 	�� . Identifying this condition in the most general way is
intractable because the SATISFIABILITY problem can eas-
ily be reduced to it. Instead, we simplify the problem in a
way which is sufficient to identify infeasible interactions in
most practical designs.
A conditional expression can be easily evaluated if all of

its signals and/or variables are bound to constant values. If
all of the unbound signals of � � 	�� are assigned to con-
stant values by some assignment � � ��� then path �� is
said to uniquely determine conditional expression �. When
a conditional is uniquely determined the evaluation of the
conditional expression is trivial. We determine if an inter-
action between two paths �� and �� is infeasible by substi-
tuting the assigned signal values of �� into each conditional
expression in ��. If a conditional in �� is uniquely deter-
mined and evaluates to FALSE then the interaction is infea-
sible. This computation is stated formally in Equation 2.

�� ��� ���� �� � 	�� !"�� ���� (2)

In Equation 2, the function !"�� ���� evaluates to
TRUE iff the conditional expression � is uniquely deter-
mined by path �� and � evaluates to TRUE upon substitu-
tion of its unbound signals with corresponding assignments
in ��� .

4. System Overview

We have implemented a system to compute interaction
coverage. The structure of the system is shown in Figure
2. The system takes a behavioral VHDL description and
a VHDL testbench as its inputs. Our implementation is
currently limited to accept only VHDL which contains no

structural constructs in the form of PORT MAP (except in
the testbench) and no variable-length loops. The Path Anal-
ysis block in Figure 2 is the code which extracts the set of
all control-flow paths in each VHDL process, and the set
of all system interactions which are feasible. The VHDL
is simulated with its testbench to generate trace informa-
tion which indicates the control-flow paths executed at each
time step. While we used Synopsys vhdlsim for simulation,
any VHDL simulator could have been used. We manually
inserted write and writeline statements into the VHDL de-
scription to generate trace information during simulation.
The Trace Analysis step examines the trace information to
determine which paths and interactions were executed dur-
ing simulation, thereby computing interaction coverage and
path coverage for comparison.

Path
Analysis

VHDL
Description

Trace
Information

Interaction
Set

Path
Set

Interaction
Coverage

Path
Coverage

Path
Analysis

Trace
Analysis
Trace
Analysis

Simulator
VHDL

Testbench

Figure 2. Interaction Coverage System

5. Experimental Results

We evaluate our interaction coverage metric by estimat-
ing its ability to model the detection of interaction-related
design errors. We also estimate the detection ability of the
traditional path coverage metric for the same set of design
errors for comparison. We assume that an ideal coverage
metric would exactly reflect the fraction of all possible de-
sign errors detected. We refer to the fraction of all possible
design errors detected by a test sequence as the Error Cov-
erage. Our interaction coverage metric can be evaluated by
observing how close its coverage value is to the true error
coverage for a given test sequence. Error coverage cannot
be determined exactly because it would require the enumer-
ation of all possible design errors. Instead, we approximate
error coverage by injecting potential errors into a design,
one at a time. An error is detected if the output sequence
of its corresponding machine is different from the output of
the correct machine. By sequentially simulating many erro-
neous machines we produce an estimate of the error cover-
age.
The accuracy of the error coverage is dependent on the

nature of the errors which are injected into the design. Since

LOC Processes Signals

569 4 7

Table 1. Information about
��

our metric estimates the detection of error related to inter-
actions between components, we restrict our error insertion
to those which impact the signals which pass data between
processes. This means that errors are not injected which di-
rectly impact the primary inputs, primary outputs, or the
variables internal to each process.
The errors which we inject are signal assignments of the

form ��# � ���	, where ��# is an internal signal and ��� is
a value in the domain of that signal. Insertion of these er-
rors models the impact of performing system design with-
out complete and correct understanding of the operaton of a
component. An error reflects some operation performed by
a process which was not considered during system design.
These errors are inserted randomly but their insertion is re-
stricted to those which produce correct VHDL; errors are in-
serted between the BEGIN and END of a process, and ��#
is a signal which is assigned by the process in which the er-
ror is inserted.

5.1. Benchmark Information

We have evaluated our coverage metric by applying it
to the
�� example which is part of the ITC99 benchmark
suite [4]. The
�� example was chosen because it is com-
posed of multiple concurrent processes, unlike the bench-
marks earlier in sequence,
�� through
��. The
�� bench-
mark also does not contain structural constructs (i.e. PORT
MAP) as do the largest benchmarks in the suite.
Information about the
�� benchmark is presented in Ta-

ble 5.1. In the Table 5.1, LOC refers to the number of lines
of VHDL code, Processes is the number of processes, and
Signals is the number of signals in the example. Only sig-
nals which are used to communicate between processes are
considered, so input and output ports are not counted.

5.2. Interaction Coverage Results

Table 5.2 presents a summary of the results of interac-
tion coverage computation and path coverage computation
for comparison. In the table, Paths is the total number of
control-flow paths in the the individual processes and Inter-
actions is the number of interactions which were found to
be feasible and involved dependent paths. CPU is the CPU
time required to perform Path Analysis and Trace Analysis
on a 867MHz PowerPC G4 processor machine with 640MB
RAM, running Mac OS X version 10.3.9.

Interactions Paths CPU (sec)

94 76 3.18

Table 2. Result Summary

Figure 3 shows the interaction coverage, path coverage,
and error coverage results. The horizontal axis of the graph
is the number of test patterns applied, and the vertical axis
is the coverage percentage. Three curves are shown in Fig-
ure 3 which show interaction coverage, path coverage, and
error coverage. Error coverage was computed by injecting
50 random errors. A total of 20,000 test patterns were ap-
plied. All input bits were random except for the ����� and
����� input signals whose probabilities were reduced to pre-
vent the system from being reset too frequently. After all
test patterns are applied, the Interaction Coverage achieved
is 56.4%, Path Coverage is 85.5%, and Error Coverage is
38.0% . The relative positions of the three curves in Fig-
ure 3 shows that interaction coverage consistently provides
a much better estimate of error coverage than path cover-
age does.

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0
ErrorPathInteract

Figure 3. Interaction Coverage and Path Cov-
erage Results

6. Conclusions

We have presented a coverage metric to model the inter-
actions between multiple concurrent processes. Interactions
between complex components are difficult for any one de-
signer to understand, making design errors related to com-
ponent interaction difficult to detect. Our coverage metric

models the meaningful interactions between components,
while ignoring those interactions which are infeasible or
unlikely to reveal errors. In this way, the number of inter-
actions for evaluation is reduced, making coverage com-
putation tractable. The work presented in this paper is re-
stricted to interactions between process pairs but it is eas-
ily extended to consider larger sets of interacting processes
at greater computational expense.

References

[1] B. Beizer. Software Testing Techniques, Second Edition. Van
Nostrand Reinhold, 1990.

[2] K.-T. Cheng and J.-Y. Jou. A functional fault model for se-
quential machines. IEEE Transactions on Computer-Aided
Design, 11(9):1065–1073, September 1992.

[3] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh,
A. Sangiovanni-Vincentelli, and L. Lavagno. Hardware-
software codesign of embedded systems. IEEE Micro, pages
26–36, August 1994.

[4] F. Corno, M. S. Reorda, and G. Squillero. Rt-level itc 99
benchmarks and first atpg results. IEEE Design and Test of
Computers, pages 44–53, July-August 2000.

[5] F. Corno, M. S. Reorda, G. Squillero, A. Manzone, and
A. Pincetti. Automatic test bench generation for validation
of RT-level descriptions: an industrial experience. In Design
Automation and Test in Europe, pages 385–389, 2000.

[6] S. Devadas, A. Ghosh, and K. Keutzer. An observability-
based code coverage metric for functional simulation. In
International Conference on Computer-Aided Design, pages
418–425, November 1996.

[7] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Framework for testing multi-threaded java programs.
Concurrency and Computation: Practice and Experience,
15(3-5):485–499, July 2003.

[8] F. Fallah, S. Devadas, and K. Keutzer. Occom: Efficient com-
putation of observability-based code coverage metrics for
functional verification. In Design Automation Conference,
pages 152–157, June 1998.

[9] F. Ferrandi, F. Fummi, E. Macii, M. Poncino, and D. Sciuto.
Symbolic optimization of interacting controllers based on re-
dundancy identification and removal. IEEE Transactions on
Computer-Aided Design, 19(7):760–772, July 2000.

[10] D. D. Gajski and F. Vahid. Specification and design of em-
bedded hardware-software systems. IEEE Design and Test
of Computers, 12(1):53–67, 1995.

[11] A. Hajjar, T. Chen, and A. von Mayrhauser. On statistical be-
havior of branch coverage in testing behavioral vhdl models.
In High Level Design Validation and Test Workshop, pages
89–94, 2000.

[12] I. G. Harris. Hardware-software covalidation: Fault mod-
els and test generation. IEEE Design and Test of Computers,
20(4):40–47, July-August 2003.

[13] Z. Hasan and M. Ciesielski. Functional verification & sim-
ulation of fsm networks. In VLSI Test Symposium, pages
326–332, April 1993.

[14] Z. Kohavi. Switching and Finite Automata Theory. McGraw
Hill, 1978.

[15] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - a survey. IEEE Transactions on
Computers, 84(8):1090–1123, August 1996.

[16] N. Malik, S. Roberts, A. Pita, and R. Dobson. Automaton: an
autonomous coverage-based multiprocessor system verifica-
tion environment. In IEEE International Workshop on Rapid
System Prototyping, pages 168–172, June 1997.

[17] D. Moundanos, J. A. Abraham, and Y. V. Hoskote. Abstrac-
tion techniques for validation coverage analysis and test gen-
eration. IEEE Transactions on Computers, 47(1):2–14, Jan-
uary 1998.

[18] T. K. Shih, C.-M. Chung, Y.-H. Wang, Y.-F. Kuo, and W.-
C. Lin. Software testing and metrics for concurrent compu-
tation. In Third Asia-Pacific Software Engineering Confer-
ence, pages 336–344, 1996.

[19] S. Tasiran and K. Keutzer. Coverage metrics for functional
validation of hardware designs. IEEE Design and Test of
Computers, 18(4):36–45, July/August 2001.

[20] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural test-
ing of concurrent programs. IEEE Transactions on Software
Engineering, 18(3):206–215, March 1992.

[21] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul. Validation
vector grade (VVG): A new coverage metric for validation
and test. In VLSI Test Symposium, pages 182–188, 1999.

[22] S. Verma, K. Ramineni, and I. G. Harris. An efficient control-
oriented coverage metric. In Asian-Pacific Design Automa-
tion Conference, 2005.

[23] A. von Mayrhauser, T. Chen, J. Kok, C. Anderson, A. Read,
and A. Hajjar. On choosing test criteria for behavioral level
harware design verification. In High Level Design Validation
and Test Workshop, pages 124–130, 2000.

[24] H. Y. Wang and R. K. Brayton. Exploitation of input don’t
care sequences in logic optimization of fsm networks. In
International Conference on Computer-Aided Design, pages
728–735, November 1995.

[25] Q. Zhang and I. G. Harris. A data flow fault coverage met-
ric for validation of behavioral hdl descriptions. In Inter-
national Conference on Computer-Aided Design, November
2000.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

