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Abstract
Modern microprocessors feature wide datapaths to sup-
port large on-chip memory and to enable computation on
large-magnitude operands. With device scaling and rising
clock frequencies, energy consumption and power density
have become critical concerns, especially in datapath cir-
cuits. Datapaths are typically designed to optimize delay for
worst-case operands. However, such operands rarely occur;
the most frequently occurring input operand words (com-
prising long strings or subwords of 0’s and 1’s) present two
major opportunities for energy optimization: (1) avoiding
unnecessary computation involving such “special” input
operand subword values and (2) exploiting timing slack in
circuits (designed to accommodate worst-case inputs) aris-
ing due to such values. Previous techniques have exploited
only one or the other of these factors, but not both simul-
taneously. Our new technique, dynamic multi-VDD, which is
capable of dynamically switching between supply voltages
in hardware submodules, simultaneously exploits both fac-
tors. Using the computation bypass framework and multiple
supply voltages, we estimate data-dependent slack based on
submodules that will be bypassed and exploit this slack by
operating active submodules at a lower supply voltage. Our
analysis of SPEC CPU2K benchmarks shows energy sav-
ings of up to 55% (and 46.53% on average) in functional
units with minimal performance overheads.

1. Introduction
The increasing use of wider datapaths in microprocessors

has helped support growing memory requirements of pro-
grams and computation on large-magnitude operand values
to improve processor performance. With unprecedented lev-
els of device integration due to technology scaling and de-
sign and application trends moving towards multiple cores
on a single chip, the number of components per chip, and
hence total on-chip capacitance, has risen steadily. Further,
increasing clock frequencies lead to higher switching ac-
tivity in these components, especially in functional units,
which as a result have power densities up to twenty times
higher than that of large second-level caches [10, 2]. Datap-
ath circuits consume up to one-third of the total power and
constitute some of the most active components on-chip [15].
Static power has also been steadily increasing, both during
sleep and active modes—sub-threshold and gate leakage are
increasing due to decreasing device threshold voltage (VT)
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and gate-oxide thickness, respectively. Thus, it has become
necessary to curb energy consumption in datapath circuits.

Operand values that typically occur during a program run
are not uniformly distributed across the broad range of val-
ues supported. Most of them consist of leading 1’s or 0’s
or have subwords within them consisting of strings of 1’s
or 0’s [4, 13, 12]. The use of wider datapaths thus presents
opportunities to reduce energy consumption in datapath cir-
cuits by: (1) avoiding unnecessary computation involving
such “special” input operand subword values and (2) ex-
ploiting data-dependent timing slack arising due to these
values in circuits designed for worst-case inputs. Previous
techniques have focused on only one or the other of these
two factors, whereas we exploit both factors simultaneously
to effectively curtail datapath energy consumption.

On the one hand, computation bypass techniques have
focused on reducing switching activity in functional sub-
units by avoiding computation in them on inputs involv-
ing narrow operands (operands that can be represented in
32, 16, or fewer bits) [3, 8, 9, 1] or non-narrow operands
[12]. Computation in a functional subunit involving such
“exploitable” input subwords is bypassed by either clock
gating its inputs and/or power/ground gating the subunit’s
constituent logic gates to save energy, while its output is de-
termined through simpler, faster, lower-power means. These
exploitable input subwords are encoded for easy identifica-
tion and exploitation in hardware using additional encod-
ing bits [12]. On the other hand, low-power techniques such
as static multi-VDD, dynamic voltage scaling (DVS), and
Razor exploit circuit timing slack, but to different extents.
Static multi-VDD operates gates in a subset of the non-
critical paths in a circuit at a lower supply voltage without
affecting its critical path delay [16]. It only exploits slack
available in the worst case determined during design time.
DVS lowers both clock frequency and supply voltage dur-
ing phases of low throughput operation in a system [6]. This
technique relies on complicated control circuitry and volt-
age regulation to achieve energy savings. Both static multi-
VDD and DVS do not exploit data-dependent slack. In Razor
DVS, only the supply voltage is lowered to save energy [11].
The technique is designed such that any error that occurs as
a consequence of lowering the supply voltage is detected af-
ter the computation completes and a recovery mechanism is
triggered. It thus exploits data-dependent slack. The supply
voltage is regulated using a control system that employs a
voltage regulator and maintains a tolerable error rate. How-
ever, any change in the supply voltage incurs a very long
delay penalty ( ∼ 10’s of µs) [11]. Therefore, it cannot ini-
tiate a change in supply voltage on a per-operation basis.
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Our technique, dynamic multi-VDD, which is capable of
dynamically switching between supply voltages in func-
tional subunits on a per-operation basis, uses the com-
putation bypass framework and multiple supply voltages
to simultaneously exploit both operand values and data-
dependent slack for energy efficiency in datapath circuits.
Since computation is bypassed in functional subunits, the
delay originally incurred by these subunits contributes to-
wards slack. This slack is exploited by operating active sub-
units at a lower supply voltage such that the critical path
delay is unaffected. Two kinds of data-dependent slack are
exploited: the slack that existed in the original circuit but
that the computation bypass framework helps easily iden-
tify, and new slack created because of computation bypass;
more details are in Sec. 4. We estimate data-dependent slack
based on the number of bypassed functional subunits, and
operate the active ones at a lower supply voltage if enough
slack is available. Since we employ discrete supply volt-
ages, which are available to each submodule, switching be-
tween supply voltages is possible on a per-operation basis.
Combining both computation bypass and data-dependent
slack exploitation yields energy savings of 55% maximum
and 46.53% average in functional units, while our encod-
ing scheme for operands provides 27.45% and 17% energy
savings in the ALU result bus and pipeline registers, respec-
tively.

In the remainder of the paper, we describe our simula-
tion methodology in Section 2, followed by an overview of
the computation bypass framework in Section 3. We then
present our new design technique, dynamic multi-VDD, and
discuss how to optimize it in Section 4. Following that, we
provide results and discuss related work in Section 5, and
finally conclude in Section 6.

2. Simulation methodology
We used SimpleScalar to simulate a processor system

similar to the Alpha 21264 [7]. The sim-outorder sim-
ulator was modified to analyze input operands just before
they were operated on in the execute stage. Details of the
simulation setup, architectural configuration, and inputs are
presented in Table 1. The integer computational modules
(ripple-carry adder, carry-lookahead tree adder, comparator,
array multiplier, and bit-wise logical operation functional
units) were designed as static CMOS circuits using Cadence
design tools and simulated using the Spectre simulator. The
designs were implemented in 0.18 µm technology.

For estimating energy savings, we used an energy model
similar to the one presented in [12]. This model estimates
energy consumption based on input patterns and also distin-
guishes between consumption at different bit positions of a
module. We employ this model to estimate energy savings
in bypassed functional subunits. For the remaining (active)
functional subunits, we use a similar model but with modi-
fied functional subunits that have PMOS header transistors
to select between different supply voltages (see Fig. 1(a)).

3. Computation bypass framework
We now discuss the framework necessary to facilitate op-

eration bypass in functional units. Input operand words are
partitioned into g contiguous subwords (SWs), numbered 0

Table 1: Processor configuration to trace operand values.
Category Details
Benchmarks All integer and floating point SPEC CPU2000 benchmarks
Inputs Reference inputs for each benchmark
Instruction
count

Simulation window of 100 million committed instructions based on
single standard simulation points from SimPoint [14]

Processor core RUU size: 16 instructions, LSQ size: 8 entries, Fetch queue size:
4 inst/cycle, Fetch width: 4 inst/cycle, Decode width: 4 inst/cycle,
Issue width: 4 inst/cycle, Functional units: 4 integer ALUs, 1 integer
multiply unit

Branch predic-
tion

2048-entry bimodal predictor

L1 instruction
cache

512 KB, 32 byte blocks, direct-mapped

L1 data cache 128 KB, 32 byte blocks, 4-way set associative
L2 cache Unified, 1024 KB, 64 byte blocks, 4-way set associative

through g−1 from least to most significant. SW values are
characterized as either special (i.e., SW bits are either all 0
or all 1) or regular (all other values). Each SW is encoded
using an extra bit called the special value (SV) bit to indi-
cate whether all its bits are identical (SV = 1 for special) or
not (SV = 0 for regular). The least significant bit (LSB) of a
SW along with its SV bit can be used to determine a special
valued SW.

A functional unit (FU) is similarly partitioned into func-
tional subunits (FSUs) that operate on the input operand
SWs, and possibly outputs from other FSUs, to produce
output SWs that can be combined to form the FU’s output.
When an FSU has certain combinations of special input SW
values or special and regular input SW values (described
later in this section), its operation can be either fully or
mostly bypassed, i.e., the FSU operates in bypass mode; in
this case, the FSU is put in a low power state (e.g., by clock
gating or power and ground gating it) and its output is deter-
mined via some alternative, faster, lower-power means. For
example, the output SW of a bypassed FSU can be formed
by either extending its least significant bit output to the re-
maining output SW bits or by copying one of the input SWs
to the output. Such input SW combinations for which the
output can be generated in a simpler manner (i.e., for which
an FSU is bypassed) are referred to as exploitable. Other-
wise, the FSU operates normally (i.e., in active mode).

Our operand encoding scheme differs from that pre-
sented in [12] in the following way. A single additional
status bit indicates whether an operand word is encoded or
not. An operand word is encoded only if its most significant
SW is special valued (97-99.9% of encountered values, see
Fig. 1d). In the encoded format, the status bit takes a value
of 1 and all the bits in the most significant SW other than its
LSB are replaced by SV bits of other SWs. If the most sig-
nificant SW is not special valued, the status bit will be 0 and
all the operand SWs will be treated as regular SWs. Hence,
the encoding overhead is minimized to 1-bit per operand
word (1.56% for 64-bit operands for any number of parti-
tions as long as all the SV bits of remaining SWs can be ac-
commodated in the most significant SW), whereas previous
approaches, which use one bit per SW, incur 12% overhead
for byte-wise partitioning [8].

Exploitable SW combinations are similar to those iden-
tified in [12] and are classified as follows. Class I: combi-
nations of special SW values with special SW values; Class
II: class I combinations plus combinations of special SW



values with special or regular SW values but depending
on input from adjacent FSU; Class III: class II combina-
tions plus combinations of special SW values with special
or regular SW values and independent of input from adja-
cent FSU; and Class IV: class III combinations plus com-
binations of sub-subwords (SSWs)—SWs are partitioned
further into SSWs to increase bypass opportunities within
a SW when a SW combination does not trigger a bypass
mode from class III. Results for bypass opportunities in in-
teger FUs are plotted in Fig. 1(d) for SPEC CPU2K bench-
marks and all the four classes of SW combinations men-
tioned above. Without loss of generality, we perform our
analysis on byte-wise partitions. It can be extended to any
other kind of partitioning that a user may prefer. Next, we
discuss our new technique and how it can be incorporated
into the framework discussed above.

4. Dynamic multi-VDD
Since computation bypass exhausts opportunities to fur-

ther reduce energy in bypassed FSUs, we target active FSUs
for further energy savings. Active FSUs are more likely to
be found at low-order bit positions, where the per-bit en-
ergy consumption is also higher [12]. Dynamic multi-VDD

operates such active FSUs at a lower supply voltage when-
ever sufficient data-dependent slack is available to ensure
critical path delay is not affected. At the same time, compu-
tation is bypassed in inactive FSUs. Two kinds of slack are
exploited in dynamic multi-VDD: (a) Slack that already ex-
isted in the original FU (without any low-power technique)
but that the encoding bits of input SWs helps easily iden-
tify, e.g., when the input SWs to an FSU in two consecutive
cycles of operation are identical exploitable SV combina-
tions and thus its output SW remains unchanged. For in-
stance, output changes in address arithmetic operations are
restricted mostly to low-order bits. This existing slack was
neither identified nor exploited by previous computation by-
pass techniques [3, 8, 9, 1, 12]. (b) New slack that is created
because of computation bypass, e.g., when input SW com-
binations from classes II, III, and IV occur and that result in
FSU output changes; in such cases, the slack occurs because
an FSU is bypassed.

We primarily consider static CMOS circuits for the fol-
lowing reasons. First, static CMOS is well-suited for contin-
ued operation during supply voltage transitions in the same
clock cycle, while this is not so for dynamic CMOS logic
[5]. Second, due to technology scaling, dynamic logic cir-
cuits, which rely on the storage of charge on a precharged
gate output capacitance, become increasingly susceptible to
soft errors because of leakage, and hence the popularity of
static CMOS circuits is expected to grow in the future.

4.1. Switching between supply voltages
There are two possible ways in which multiple supply

voltages can be provided on-chip. They can be created on-
chip using dc-dc converters. This method is not suitable for
our approach since changing the voltage level incurs delays
of up to 10 µs [11] and we require a change during the cy-
cle of operation itself. Alternatively, a dual supply network
can be used to provide fast switching between supply volt-
ages. Header PMOS transistors with complementary control

signals can be used to select between multiple supply volt-
ages (see Fig. 1(a)). The control signals are determined be-
fore each cycle of computation commences. Modern ASICs
and microprocessors already employ multiple on-chip sup-
ply networks and so we assume that multiple supply volt-
ages are available. Note that, unlike DVS, clock frequency
is not changed while operating at a lower voltage. This is be-
cause the available data-dependent slack is used to accom-
modate both the delay overheads due to switching between
multiple supply voltages, which is a small portion, and the
slower operation of FSUs due to this change.

4.2. Data-dependent slack
We implemented FUs as static CMOS circuits and con-

sidered different topologies (linear, array, and tree) because
data-dependent slack depends upon hardware topology, and
analysis of other similar topologies can be performed by a
simple extension of our analysis. Computation in a linear
topology proceeds in a sequential manner. For example, in
a ripple-carry adder, the carry bit propagates from one full-
adder to the next in increasing order of bit position. If com-
putation in an FSU is bypassed, then the delay of that FSU,
which it would have otherwise incurred, contributes towards
slack. An array topology is very similar to a linear topol-
ogy, the only difference being that the computation propa-
gates along two dimensions. Therefore, the amount of slack
available in both these topologies is directly proportional to
the number of bypassed FSUs. But this is not so for a tree
topology since FSUs at the same level in the tree operate
in parallel. Here, the slack depends on the number of levels
within the tree where computation can be bypassed.

We assume that active FSUs require their worst-case de-
lays and thus estimate slack conservatively. For linear and
array topologies, slack is estimated based on number of by-
passed FSUs. For tree topologies, the number of bypassed
FSUs and the number of levels within the tree where com-
putation can be avoided is used to determine the amount
of slack. In reality, we underestimate slack because an ac-
tive FSU may take much less time to compute its output
compared to its worst-case delay; we defer this analysis of
estimating delay much more accurately to future work.

To study the variation of delay of FSUs w.r.t. hardware
topology, we analyzed the three topologies under considera-
tion (see Fig. 2(b)). Array topologies behave just like linear
topologies; for brevity, we only show plots for linear and
tree topologies. In a linear topology, the maximum bit-width
of a submodule operating at a lower supply voltage that has
a delay less than or equal to a 64-bit module operating at a
higher supply voltage is 32 bits (compare curves V DDH to
V DDL (linear) and V DDH (linear) in Fig. 2(b)). Whereas,
for a tree topology, it is only 8 bits (compare curves V DDH
to V DDL (tree) and V DDH (tree) in Fig. 2(b)). Therefore,
when exploiting slack in a linear structure, we must ensure
that the total bit-width of all bypassed FSUs is at least 32
bits. For a tree topology, we must ensure that all active FSUs
complete their operation such that the total delay of comput-
ing the output is less than or equal to that of an 8-bit FSU
operating at a lower supply voltage.

Fig. 2(a) shows the fraction of FSUs for 64-bit byte-
wise partitioned FUs that can be bypassed based on the ex-
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Figure 1: (a) Multiple supply voltages: PMOS header transistors P1 and P2 are used to select between two supply voltages. (b) Level-converting
register: The master stage has the capability to sample outputs at two different times (using CLK and delayed CLK). The active clock is selected
using a multiplexor and the slave stage performs level conversion. (c) Voltage-level selection circuit: Submodule bypass bits (B0, . . . ,B7) are
selectively shorted through multiplexors to provide the input to an inverter. The charge stored on the input gate capacitance of the inverter is
proportional to the number of bypassed modules and the output of the inverter is used as a control signal to select between supply voltages
as shown in (a). (d) Bypass opportunities: Bypass frequencies for integer FUs based on various partitioning schemes and exploitable SW
combinations.
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Figure 2: (a) Availability of data-dependent slack: Distribution of number of bypassed submodules per operation. (b) Delay variation: Worst case
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decrease with increasing supply voltage. A higher supply voltage provides smaller savings per operation although the opportunities to exploit
slack may increase.

ploitable SW combinations discussed in Sec. 3. For address
arithmetic, we find that four or more FSUs can be bypassed
99% of the time. Further, all eight FSUs can be bypassed
20% of the time because the base address has its least sig-
nificant byte equal to 0, while the offset only has 8 signif-
icant bits. In contrast to Razor, where the slack that can be
exploited is restricted to half a clock cycle, we can exploit
slack close to the complete clock cycle. For other opera-
tions, such as comparison, multiplication, and bit-wise logi-
cal operations, four or more FSUs can be bypassed 68-97%
of the time.

4.3. Microarchitectural design issues
Estimating data-dependent slack: Data-dependent slack
is estimated based on the number of bypassed FSUs for
linear and array topologies. For tree topologies (carry-
lookahead tree adder), we estimate slack based on whether
each byte-slice is capable of operating independently. Con-
ditions governing parallel operation of byte-slices for other
FUs implemented as tree topologies can also be identified
by inspecting the input bits to each byte slice. The supply
voltage level to an FSU must be chosen before computation
commences. This decision must be made during the issue
stage for data capture schedulers, i.e., schedulers that store
data values, or after register file read following the issue
stage in non-data capture schedulers. In non-data capture
schedulers, registers are read during the first half of a clock

cycle and written to during the second half of a clock cy-
cle. Therefore, the delay of control circuitry to determine
which FSUs can be bypassed and the voltage level to be
selected can be masked. For designs that use data-capture
schedulers, delay overhead due to the control circuitry can
be offset by a portion of the available data-dependent slack.
Selecting FSU supply voltage levels: We use an analog
counter circuit to determine the number of bypassed FSUs
(see Fig. 1(c)). For tree topologies, it estimates whether the
active FSUs can operate in parallel and complete their op-
eration before the end of the clock cycle when operated
at a lower supply voltage. The bypass bits for the FSUs,
B0, . . . ,B7 (= 1 if an FSU is bypassed and 0, otherwise),
initially charge/discharge the input capacitances of trans-
mission gates. The bypass bits are then isolated from these
capacitances, which are shorted and undergo charge shar-
ing. The final voltage on these capacitances is input to an
inverter. If sufficient number of FSUs are bypassed, the in-
put to the inverter is “high” and its output is “low,” which
causes a low voltage level to be selected (see Fig. 1(a)). The
PMOS and NMOS transistors of the inverter can be sized to
set its switching threshold so that the lower supply voltage
is selected only if a predetermined number of FSUs are by-
passed, or equivalently, only if a predetermined amount of
charge is stored on the input gate capacitance. The output
of the inverter is then used to select the supply voltage for
active FSUs (Fig. 1(a)). A digital counterpart would incur



several gate delays resulting in a longer delay penalty, and
hence our choice of an analog circuit.
Level conversion of outputs: FSUs operating at a lower
supply voltage require voltage conversion of their outputs
for the next stage to perform correctly. For this, synchronous
level converters embedded in the output pipeline registers
are used. Note that no asynchronous level converters are re-
quired because, during any computation, all active FSUs op-
erate at a single supply voltage. Also, there is an additional
need for supporting sampling of outputs before the actual
clock edge to mitigate performance overheads incurred for
the worst-case scenario, wherein all FSUs are active and the
supply voltage transitions from a low to a high level. The
basic idea is to begin such a worst-case operation before its
stipulated time, provided its operands are already available.
However, it must be preceded by a computation that has
data-dependent slack. This way, the low-latency operation
is guaranteed to complete before its deadline and its output
can be sampled at the output register before the active clock
edge arrives. The long latency operation (which requires
slightly more than a clock cycle) can begin earlier without
affecting the output of the computation immediately preced-
ing it and has enough time to complete. Fig. 1(b) illustrates

a master-slave flip-flop, where a C2MOS style logic is used.
On the output side, the master stage has the ability to sam-
ple the output based on two clock signals (global clock and
its delayed version), while the slave stage performs the level
conversion. On the input side, the slave stage has the ability
to sample at two different clock edges (global clock and its
delayed version) to start the long-latency computation ear-
lier.
Supply voltage levels: Two factors contribute towards en-
ergy savings while exploiting data-dependent slack: (1) the
value of the lower supply voltage level and (2) how fre-
quently FSUs operate at the lower supply voltage level. Op-
eration at lower supply voltage levels requires greater slack,
so that computation completes within the required time.
Hence, the frequency with which the lower voltage modes
can be triggered suffers. Alternatively, with higher values
of the low supply voltage, less slack is required since com-
putations would complete faster. Thus, there is a trade-off
between how frequently the low voltage mode can be trig-
gered and the value of the lower supply voltage. In order
to determine the supply voltage, we obtain energy savings
for different levels of the low supply voltage (see Fig. 2(c)).
From this plot, we find that the most energy savings are ob-
tained when the supply voltage is set to 1.2 V. Therefore,
we use the nominal voltage of 1.8 V when data-dependent
slack is not available and 1.2 V, otherwise.

4.4. Mitigating performance overheads
There are three sources of delay overheads: (i) header

transistors used to switch between supply voltages during
an operation add resistance to a charge path from the supply
rail; (ii) the control circuitry used to determine the supply
voltage level; and (iii) the pipeline registers used to con-
vert voltage levels. We adopt the following approach to mit-
igate performance overheads. A computation without data-
dependent slack (which is very rare) can be scheduled af-
ter one for which there is sufficient slack estimated to be

available for exploitation (which is very often the case).
The data-dependent slack in the latter computation is not
exploited and can be passed to the former computation.
Also, operands for a non-slack computation must be avail-
able much before the active clock edge (i.e., the clock edge
at which new inputs are issued to an FU). This is not a prob-
lem in data-capture schedulers where operands are available
in the issue queue itself. In non-data capture schedulers,
operands are read from the register file during the first half
of the clock cycle and therefore operands are available well
before the active clock edge. Since the executing compu-
tation is the one where slack is available, its outputs are
available before the end of the clock cycle and the output
is buffered in the output pipeline register (see Fig. 1(b)).
The master latch can sample data using one of two clock
signals (the global clock and its delayed version) provided
through a multiplexor. The slave latch provides the output to
the next stage at the active clock edge since it is controlled
by the global clock signal. In the worst case, if no other
computation with slack is available, a single cycle penalty
is incurred since the computation would have to extend to
the next cycle; however, this will rarely be the case.

5. Results and discussions
Operand value characteristics: Our analysis of operand
values shows that the three most significant bytes in all oper-
ations under consideration are found to have special values
more than 97% of the time. Thus, computation in high-order
FSUs is mostly bypassed and most of the switching activity
is restricted to the low-order FSUs. This shows that com-
putation bypass is possible in high-order FSUs for 97% of
the operations; this also highlights the abundance of data-
dependent slack that can be exploited by operating low-
order FSUs at a lower supply voltage. Further, high-order
FSUs are shut off for most operations and energy is primar-
ily consumed in the low-order portion. Our technique thus
targets the power-hungry portion of FUs, thereby providing
significant energy savings.
Energy savings: We study energy savings for two design
cases: (1) using two supply voltage levels: VDDH = 1.8 V
and VDDL = 1.2 V and (2) using three supply voltage levels:
VDDH = 1.8 V, VDDM = 1.5 V, and VDDL = 1.2 V. We wanted
to compare the energy savings for a dual supply voltage sys-
tem and the additional benefit of using an intermediate sup-
ply voltage. It is only in tree topologies where we see im-
provements in energy savings by 5-10% because of the ad-
ditional supply voltage level. In a tree topology, often the es-
timated slack is not sufficient to operate at VDDL, and hence
it loses out on opportunities when there are only two supply
voltage levels. Net energy savings of up to 55%, and 46.53%
on average, are possible in various FUs using two supply
voltage levels. Using three supply voltage levels improves
average savings to 48.3% (see Fig. 3). While computation
bypass can provide energy savings close to 30%, further en-
ergy savings are only possible from active FSUs. Dynamic
multi-VDD is able to reduce energy consumption in active
FSUs in addition to savings from computation bypass. Al-
though the focus of the paper is on FUs, using our encoding
scheme we also achieve energy savings in ALU buses and
pipeline registers. Since special-valued SWs are represented



by SV bits (special-value bits), they are not written to the re-
sult bus or the pipeline latches, resulting in 21% and 27.45%
self and coupling energy savings, respectively, in the integer
ALU result bus, and 17% reduction in switching activity in
pipeline registers.
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Figure 3: Energy savings: Energy savings in different FUs using dy-
namic multi-VDD averaged across SPEC CPU2000 benchmarks.

Performance overhead: Recall that we only apply lower
supply voltages to active FSUs when sufficient slack is
available. However, as discussed in Sec. 4.4, the worst-case
scenario can lead to performance overheads which can be
mitigated by slack borrowing. To evaluate the performance
overhead of our technique, we pessimistically assumed an
additional cycle delay penalty for every computation with-
out data-dependent slack. We find that, on average, a per-
formance overhead of less than 1% reduction in instructions
per cycle (IPC) is incurred. Note that, unlike Razor DVS, no
error detection or correction measures are required and this
helps us avoid expensive performance overheads.

Related work: Previously-proposed operand-value ex-
ploitation techniques focus solely on computation bypass
to reduce switching activity in computational modules [3,
8, 9, 1, 12]. Our new encoding scheme for operand values
has the least overhead compared to all other techniques and
also helps reduce switching activity in the ALU result bus
and pipeline registers. One of the most significant contribu-
tions is recognizing and availing of opportunities provided
by operation bypass to exploit data-dependent slack in FUs.
In contrast to static multi-VDD, in which a subset of gates on
non-critical paths always operate at a lower supply voltage
and which exploits only the worst-case slack determined
at design time, we are able to exploit data-dependent slack
(which may change on a cycle-to-cycle basis) in both crit-
ical and non-critical paths. Other techniques, such as DVS,
rely on frequency and voltage scaling to save energy during
low throughput phases of an application. In contrast, dy-
namic multi-VDD is not constrained by such requirements.
Compared to Razor, which lowers supply voltage and then
checks for error conditions, dynamic multi-VDD relies on a
priori estimation of data-dependent slack, thus eliminating
the need for error detection and recovery. Thus our perfor-
mance overheads are smaller: maximum of 1% compared to
3% incurred by Razor [11]. Further, Razor exploits slack up
to only half a clock cycle, whereas our technique can exploit
slack close to the complete clock cycle. Finally, Razor im-
plicitly assumes the availability of voltage regulators to vary

supply voltage and does not include the energy overheads
incurred as we do while estimating net energy savings.

6. Conclusion
In this paper, we presented a design approach that uti-

lizes the computation bypass framework to not only shut-
off inactive FSUs to save energy, but that also simulta-
neously exploits data-dependent slack by operating active
FSUs at a lower supply voltage. Net energy savings of up
to 55% in FUs and 27.45-17% reduction in ALU result bus
and pipeline register energy are achieved with minimal per-
formance overheads. Datapaths in modern microprocessors
contribute towards 30-33% of total chip power; therefore
our technique could potentially reduce energy consumption
of a chip by approximately 12% (average of 46.53% in the
ALU and 27.5-17% in other datapath circuits). With designs
moving towards multiple cores having more datapaths, ben-
efits from our technique will be even greater. Compared to
previous techniques, which either exploit only operand val-
ues through computation bypass or only timing characteris-
tics, we are able to take advantage of both using dynamic
multi-VDD.
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