
Fast-prototyping Using the BTnode Platform

Jan Beutel∗

Swiss Federal Institute of Technology (ETH) Zurich
8092 Zurich, Switzerland

beutel@tik.ee.ethz.ch

Abstract

The BTnode platform is a versatile and flexible platform
for functional prototyping of ad hoc and sensor networks.
Based on an Atmel microcontroller, a Bluetooth radio and
a low-power ISM band radio it offers ample resources to
implement and test a broad range of algorithms and appli-
cations ranging from pure technology studies to complete
application demonstrators. Accompanying the hardware is
a suite of system software, application examples and tu-
torials as well as support for debugging, test, deployment
and validation of wireless sensor network applications. We
discuss aspects of system design, development and deploy-
ment based on our experience with real wireless sensor net-
work experiments. We further discuss our approach of a
deployment-support network that tries to close the gap be-
tween current proof-of-concept experiments to sustainable
real-world sensor network solutions.

1. Introduction

In their seminal articles, Estrin [4] and Kahn [9] pre-
sented a far-reaching vision of wireless sensor networks
(WSNs), where collections of tiny autonomous computers
would collaboratively and unobtrusively monitor a variety
of real-world phenomena with unprecedented quality and
scale, bringing substantial benefits to a variety of applica-
tion areas. Since then, numerous hardware platforms have
been developed, operating system abstractions have been
established, a large number of protocols and algorithms
for networking, communication, and information process-
ing have been proposed, and various fundamental capabili-
ties and limitations of these sensor networks have been ex-
amined. Based on these ingredients, prototypical applica-
tions, e.g. [8, 14, 15], have been developed, some of which

∗ The work presented here was supported by the National Competence
Center in Research on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss National Sci-
ence Foundation under grant number 5005-67322.

consist of more than 100 sensor nodes. Such networks are
formed from a set of small sensor devices, the nodes, that
are deployed in an ad hoc fashion and cooperate in sens-
ing a physical phenomenon.

Initially, these demo applications form a proof-of-
concept of the visions and suggest the basic feasibility
and applicability of this novel platform class of tiny, wire-
less embedded systems to real applications. On the other
hand, these experiments have revealed the complexity of
cross-layer design on extremely resource constrained de-
vices with their tight coupling of application, nodes and the
environment. However, taking a closer look at the devel-
opment process of such prototypical applications reveals
that putting such a running sensor network in place is cur-
rently an art. Reports from implementations such as Great
Duck Island (GDI) [16] or the macroscope in the red-
woods [17] document in an impressive way the differ-
ence between the rather clean and easy world of simulations
and theoretical studies opposed to the outdoors deploy-
ment case with many sources for errors, failures and imper-
fections found in the real world. While GDI suffered from
random node failures and the need for additional hard-
ware deployments for calibration and monitoring of the
wireless sensor network, the redwood forest deployment re-
ported on being only able to retrieve 40% of the sensor
data in usable form due to many influences on the sys-
tem and various sources of error.

Nevertheless, such experiments are valuable sources of
experience and necessary to validate concepts that cannot
be accounted for in models and simulations where access
to and interaction with the environment is limited. In order
to close the gap between current proof-of-concept and real-
world sensor networks, this artwork has to be replaced with
an efficient, coordinated design and development process
to be able to achieve industry-grade quality in applications.
The BTnode platform [3] has been specifically designed for
functional prototyping of wireless networking applications
at different layers: Initially both ubiquitous computing sce-
narios characterized by interaction with human users and
ad hoc and sensor networking experiments characterized by

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



Figure 1. The BTnode rev3 uses a four layer
PCB with all components mounted on the top
and a 2xAA battery case underneath.

large amounts of devices and self-organization necessitated
design goals such as flexibility, easy of use, a steep learning
curve, accessibility, transparent debugging capability, visi-
bility and versatility.

2. The BTnode Platform

The BTnode is an versatile, lightweight, autonomous
wireless communication and computing platform based
on a Bluetooth radio and a microcontroller. The BTn-
ode rev3 [1] features an additional low-power radio,
generic IO peripherals and switchable power conver-
sion and distribution systems. The low-power radio is the
same as on the Berkeley Mica2 Motes [5], making the BTn-
ode rev3 a twin of both the Mica2 Mote and the older
BTnode rev2. Both radios can be operated simultane-
ously or be independently powered off completely when
not in use, considerably reducing the idle power con-
sumption of the device. Being the only dual-radio plat-
form for sensor networks available today, the BTnode
rev3 is ideally suited for versatile and flexible func-
tional prototyping of a broad range of applications with
the tradeoff possibility of the two radios and the flexibil-
ity offered by ample memory resources (see Figure 2).
The dual-radio approach provides opportunities to cre-
ate tiered architectures with high-bandwidth nodes bridg-
ing ultra-low-power devices like the Berkeley Motes to
Bluetooth-enabled gateway appliances [5], or to investi-
gate duty-cycled multi-front-end devices with wake-up
radios [13] or bandwidth-power-latency trade-offs.

2.1. BTnode rev3 Features at a Glance

• Microcontroller – Atmel ATmega 128L (8 MHz @ 8
MIPS)

• Memories – 64 + 180 Kbyte SRAM, 128 Kbyte
FLASH ROM, 4 Kbyte EEPROM

GPIO Analog Serial IO

System
Bluetooth LEDs

SRAM
Radio

Low-power

Power Supply

Microcontroller
ATmega128L

Figure 2. The BTnode rev3 is based on
two wireless communication systems, an At-
mel microcontroller computational core and
generic IO peripherals.

Ethernut Nut/OS core

BTnode 

RTC UART I2C GPIO Analog

...Bluetooth
Stack

Application
Threads

Drivers

Hardware

Thread 1 Thread 2 Thread iThread 3

Terminal

Thread
Scheduler

Figure 3. The BTnut operating system
provides cooperative multi-threading with
POSIX-like C interfaces.

• Bluetooth subsystem –Zeevo ZV4002, supporting
AFH/SFH scatternets with max. 4 piconets/7 slaves,
Bluetooth v1.2 compatible

• Low-power radio – Chipcon CC1000 operating in
ISM band 433-915 MHz

• External interfaces – ISP, UART, SPI, I2C, GPIO,
ADC, Timer, 4 LEDs

• Dual power supply – 2xAA cells with step up con-
verter or DC input 3.6-5.0 V

2.2. BTnut: Lightweight Software Support

Based on the requirements outlined in the introduction,
the software support for the BTnodes is designed for func-
tionality and versatility across different applications and
catering to the needs of different developers. Therefore,
simple and intuitive programming without the need for spe-
cial development tools, languages or compilers are of pri-
mary importance.

The C-based BTnut system software is built on top of
a threaded OS core for embedded systems, the Opensource
Ethernut Nut/OS (see Figure 3). The basic support of this



Figure 4. The BTnut OS tracer allows to
track critical real-time issues (interrupts and
thread switches shown here) on a target de-
vice without minimal interference.

OS core are primitives for scheduling multiple threads, ba-
sic memory management, events, synchronization, stream-
ing IO and device drivers that allows an extremely fast
jump-start, even on complex applications.

Compared to the popular TinyOS operating system [6],
the BTnut system software does not require to install and
learn new languages and tools (nesC) but uses plain C based
programming and is based on standard operating systems
concepts that are familiar to most developers. In combina-
tion with a developer kit and accompanying tutorial as well
as community support through a Wiki based project web
page and an archived mailing list this ensures a quick jump-
start and accelerated learning curve.

2.3. Debugging with Event Traces

Event traces are a versatile and uncomplicated way to
debugging and profile applications at different levels of ab-
straction. A separate library can be included to a BTnut ap-
plication under investigation. It allows to detect and log ar-
bitrary events, e.g. interrupts, context switches, critical sec-
tions, application context etc. All events are simply time-
stamped and recorded in an internal buffer from where they
are retrieved for offline analysis (see Figure 4). This strat-
egy allows maximum transparency for profiling and tracing
while only minimally altering the timing behavior of an ap-
plication and so allows to debug complex, interactive appli-
cations between multiple communicating nodes.

2.4. In-situ Power Profiling

The switchable power supply on the BTnode rev3 (see
Figure 2 offers direct current access for in-situ profiling of
the power consumption of both the radio systems and the
microcontroller core under real-life operating conditions.
This can be used for detailed performance analysis and the
tuning of operating mode and parameters, e.g. of communi-
cation protocols [11] (see Figure 5).

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45

50

Slave sniff

Master sniff

Slave active

Master active

mA

samplesStandby

Figure 5. Detailed power profile of the Blue-
tooth radio at different operating modes.

3. State of the Art Platforms Compared

When comparing other state of the art platforms for sen-
sor networks (Crossbow Mica2 and Mica2Dot Motes [5],
Moteiv Tmote Sky [12] and Intel Imote [10]) a consider-
able bias towards specific niche application requirements
becomes apparent (see Figure 6). The investigation of the
properties of the radio systems used shows that there are
two different paradigms followed by the competitors plat-
forms; either a low-level ”modem-like” bit-stream oriented
radio (Chipcon CC1000) or a high-level, packet-oriented ra-
dio (Chipcon CC2420 or Bluetooth) is used. The features of
the system core reveal in part considerably high processing
capabilities and the ability to store complex programs while
there is an apparent lack of program memory (SRAM) and
thus a lack of flexibility for the application developer. Plat-
forms allowing for≥128 Kbyte program sizes but only sup-
porting a few kilobytes of program memory are clearly lim-
ited in versatility and functionality not only during the de-
velopment but also in a production phase.

The BTnode rev3 (shown on the left in Figure 6) offers a
more balanced set of system resources with ample program
memory and draws the best of both worlds with the two ra-
dio systems either operating in a tradeoff according to the
performance requirements or simultaneously.

4. Next-Generation Deployment-Support for
Sensor Networks

Classic approaches to develop and deploy wireless sen-
sor networks use serial or ethernet cables for program
download, control and monitoring [18]. Although success-
ful in lab setups, this approach is limited due to scalabil-
ity issues and completely infeasible for deployment in the
field. Distributing firmware updates within a sensor net-
work [7] requires nodes to be equipped with buffering and



ImoteTmote SkyMica2DotMica2BTnode rev3

System Core

Radio Systems

Figure 6. The BTnode rev3 offers a balanced resource mix with ample memory resources and two
radio interfaces whereas competing platforms are more biased towards a specific application.

self-reprogramming support and often exhibit an excessive
burden on the network itself, with heavy traffic compared to
the average network operation and long latencies due to low
power duty-cycling.

4.1. Deployment-Support Network

The deployment-support network (DSN) (see Figure 7)
is a new methodology for the development, test, deploy-
ment, and validation of wireless sensor networks [2]. A
DSN is a robust, wireless cable replacement offering re-
liable and transparent connections to arbitrary sensor net-
work target devices. DSN nodes are battery powered nodes
that are temporarily attached to some or all target nodes in
a sensor network deployment under test. A target adapter
on the DSN node is responsible for target control, (re-) pro-
gramming and logging while a small monitor running on
the target sensor node is responsible to output events and
status information to the DSN node where it is logged and
timestamped. Examples of such logged context are packet

arrivals, sensor values as references for calibration, inter-
rupts on the target node or error codes for debugging. Com-
pared to traditional serial-cable approaches, this approach
results in enhanced scalability and flexibility with respect
to node location, density, and mobility. This makes the co-
ordinated deployment and monitoring of sensor networks
possible.

4.2. Sensor Network Maintenance Toolkit

In order to employ deployment-support network for the
development and deployment of a sensor network appli-
cation, the sensor network maintenance (SNM) toolkit has
been devised as a set of sophisticate services that can be eas-
ily adapted and customized according to the maintenance
and monitoring requirements. The SNM toolkit contains
services for:

• Target Control

• Remote Programming



WSN Target
Application

JAWS Application
 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control
 Programming
 Logging

Monitor
 Threads/IRQs
 High level context

Codesize 100 kB

4 kB

2 kBWSN Target
Application

JAWS Application
 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control
 Programming
 Logging

Monitor
 Threads/IRQs
 High level context

Codesize 100 kB

4 kB

2 kBWSN Target
Application

JAWS Application
 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Target Adapter
 Target Control
 Programming
 Logging

Monitor
 Threads/IRQs
 High level context

Codesize 100 kB

4 kB

2 kBWSN Target
Application

JAWS Application
 Topology Control

 Connection Management

 Data Transport

 Caching

 Node Management

Monitor
 Threads/IRQs
 High level context

Codesize 100 kB

2 kB

Target Adapter
 Target Control
 Programming
 Logging

4 kB

Deployment-Support NetworkDeveloper
Access

Target Sensor Network

Figure 7. A deployment-support network is temporarily attached to as experimental target net-
work and facilitates long-term surveillance and maintenance using the sensor network maintenance
toolkit. Developers can access the DSN resources using the Bluetooth backbone network.

• Generic DSN Access

• Remote Logging and Event Detection

• Long Term Logging and Data Analysis

The current reference implementation of a deployment-
support network is called JAWS and runs on 30 BTn-
ode rev3 devices in a permanent installation at ETH Zurich.

4.3. BTnode Platform Success

The BTnode platform has been successfully used for
both research and engineering education. To date, the hard-
ware has been used by 30+ research groups leading to many
successful student projects, courses and labs (e.g. a graduate
lab in embedded systems design with 120 participants) re-
search demos and publications (40+ scientific publications
at ETH Zurich alone). The BTnode rev3 has been made
commercially available through an industrial partner that is
responsible for the logistics, manufacturing and testing of
the hardware.

Due to it’s reliability and versatility the BTnode platform
has been especially popular in ubiquitous computing exper-
iments and long-term ad hoc networking deployments. Al-
though the early Bluetooth hardware has been arguably not
optimal in terms of power consumption, the available Blue-
tooth devices have matured considerably and have proven a
good and legitimate choice for the design goals of the BTn-
ode platform: (i) The high-level abstraction of the event-
based interface makes the radio easy to use with relaxed
real-time constraints when compared to a ”modem-like” bit-
stream interface on the CC1000 radio where the microcon-
troller is responsible both for the control-flow of the appli-
cation and the (low-level) protocol processing. (ii) When

transferring larger amounts of data in a duty-cycled fash-
ion, the increased throughput of the Bluetooth radio adds
favorably to the power-performance figures when regarded
from a system and application perspective. Moreover the
Bluetooth interface relieves the application developer from
many low-level implementation issues and offers reliable,
buffered link-layer data transfers with advanced features
such as error correction and authentication.

In retrospective, the BTnode platform is living up to the
initial design requirements and sets standards within the
wireless sensor network community in terms of function-
ality and a sound mix of resources that allow for timely de-
velopment, easy debugging and reliable function. In combi-
nation with the deployment-support network and the sensor
network maintenance toolkit it forms a powerful and effec-
tive suite of fast-prototyping and validation tools offering
full life-cycle support for sensor network applications.

Acknowledgments

I would like to acknowledge the invaluable hard work
and tireless debugging of the BTnode core team, it’s many
student contributors as well as Luca Negri (power profiling)
and Philipp Blum (event tracer) that have made the BTn-
ode platform into a success.

References

[1] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald.
Next-generation prototyping of sensor networks. InProc.
2nd ACM Conf. Embedded Networked Sensor Systems (Sen-
Sys 2004), pages 291–292. ACM Press, New York, Nov.
2004.



[2] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable
topology control for deployment-sensor networks. InProc.
4th Int’l Conf. Information Processing in Sensor Networks
(IPSN ’05), pages 359–363. IEEE, Piscataway, NJ, Apr.
2005.

[3] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund,
and L. Thiele. Prototyping wireless sensor network applica-
tions with BTnodes. InProc. 1st European Workshop on Sen-
sor Networks (EWSN 2004), volume 2920 ofLecture Notes
in Computer Science, pages 323–338. Springer, Berlin, Jan.
2004.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: Scalable coordination in sensor net-
works. In Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile
Computing and Networking (MobiCom ’99), pages 263–270.
ACM Press, New York, Aug. 1999.

[5] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. Wire-
less sensor networks: The platforms enabling wireless sensor
networks. Communications of the ACM, 47(6):41–46, June
2004.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. InProc. 9th Int’l Conf. Architectural Support Pro-
gramming Languages and Operating Systems (ASPLOS-IX),
pages 93–104. ACM Press, New York, Nov. 2000.

[7] J. Hui and D. Culler. The dynamic behavior of a data dissem-
ination protocol for network programming at scale. InProc.
2nd ACM Conf. Embedded Networked Sensor Systems (Sen-
Sys 2004), pages 81–94. ACM Press, New York, Nov. 2004.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with Ze-
braNet. InProc. 10th Int’l Conf. Architectural Support Pro-
gramming Languages and Operating Systems (ASPLOS-X),
pages 96–107. ACM Press, New York, Oct. 2002.

[9] J. Kahn, R. Katz, and K. Pister. Next century challenges:
Mobile networking for smart dust. InProc. 5th ACM/IEEE
Ann. Int’l Conf. Mobile Computing and Networking (Mo-
biCom ’99), pages 271–278. ACM Press, New York, Aug.
1999.

[10] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel.
The Intel mote platform: A Bluetooth-based sensor network
for industrial monitoring. InProc. 4th Int’l Conf. Informa-
tion Processing in Sensor Networks (IPSN ’05), pages 437–
442. IEEE, Piscataway, NJ, Apr. 2005.

[11] L. Negri, J. Beutel, and M. Dyer. The power consumption of
Bluetooth scatternets. InProc. IEEE Consumer Communi-
cations and Networking Conference (CCNC 2006), page to
appear. IEEE, Piscataway, NJ, Jan. 2006.

[12] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. InProc. 4th Int’l Conf. In-
formation Processing in Sensor Networks (IPSN ’05), pages
364–369. IEEE, Piscataway, NJ, Apr. 2005.

[13] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless: An event
driven energy saving strategy for battery operated devices. In
Proc. 6th ACM/IEEE Ann. Int’l Conf. Mobile Computing and
Networking (MobiCom 2001), pages 160–171. ACM Press,
New York, Sept. 2002.

[14] G. Simon, G. Balogh, G. Pap, M. Maróti, B. Kusy, J. Sallai,
Á. Lédeczi, A. Ńadas, and K. Frampton. Sensor network-
based countersniper system. InProc. 2nd ACM Conf. Em-
bedded Networked Sensor Systems (SenSys 2004), pages 1–
12. ACM Press, New York, Nov. 2004.

[15] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton,
A. Mainwaring, and D. Estrin. Habitat monitoring with sen-
sor networks. Communications of the ACM, 47(6):34–40,
June 2004.

[16] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.
Lessons from a sensor network expedition. InProc. 1st Eu-
ropean Workshop on Sensor Networks (EWSN 2004), volume
2920 ofLecture Notes in Computer Science, pages 307–322.
Springer, Berlin, Jan. 2004.

[17] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A macroscope in the redwoods. InProc. 3rd ACM
Conf. Embedded Networked Sensor Systems (SenSys 2005),
pages 51–63. ACM Press, New York, 2005.

[18] G. Werner-Allen, P. Swieskowski, and M. Welsh. Mote-
Lab: A wireless sensor network testbed. InProc. 4th Int’l
Conf. Information Processing in Sensor Networks (IPSN
’05), pages 483–488. IEEE, Piscataway, NJ, Apr. 2005.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



