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Abstract 
Concurrent programs are difficult to write, reason about, 
re-use, and maintain. In particular, for system-level 
descriptions that use a shared memory abstraction for 
thread or process synchronization, the current practice 
involves manual scheduling of processes, introduction of 
guard conditions, and clocking tricks, to enforce memory 
dependencies.  This process is tedious, time consuming, 
and error-prone. At the same time, the need for a 
concurrent programming model is becoming ever essential 
to bridge the productivity gap that is widening with every 
manufacturing process generation.  In this paper, we 
present two novel techniques to automatically enforce 
memory dependencies in platform FPGAs using on-chip 
memories, starting from a system-level description. Both 
the techniques utilize static analysis to generate circuits for 
enforcing these dependencies. This paper will investigate 
these two techniques for their generality, overhead in 
implementation, and usefulness or otherwise for different 
application requirements.   

 

1. Introduction 
Concurrent programs allow multiple computations to occur 
simultaneously in cooperation with each other. How this 
cooperation between concurrent computations is expressed 
and eventually realized in platform FPGA implementations 
determines whether it is advantageous to exploit available 
concurrency for a given application or not.  In this paper, 
we focus on shared memory abstraction for such 
cooperation between concurrent computations. In 
particular, we investigate mapping of synchronization 
mechanisms for a shared memory abstraction on to platform 
FPGAs for networking applications.  

The search for application-specific solutions with ever 
decreasing time-to-market is pushing system designers 
away from the risky time-consuming ASIC design process 
towards programmable platforms, such as FPGAs. An 
example of platform FPGA is the Xilinx Virtex-II Pro 
family of programmable logic devices that include hard IP 
cores such as the PowerPC microprocessor and RocketIO 
serial transceivers, and true dual-ported on-chip embedded 
block RAM (BRAM) memories [4].  The current state-of-

the-art design flow for platform FPGAs in the networking 
domain involves starting with HDLs, which are not well 
suited for describing systems. Thus a productivity gap is 
widening with every new process generation. To close this 
gap, we need methods and tools that can transform higher-
level concurrent semantics into HDL implementations (at 
the register-transfer level). A primary goal of this work is to 
enable a higher abstraction for mapping applications in the 
networking domain to platform FPGAs. Current shared 
memory abstractions based on locks and mutual exclusions 
are difficult to use, scale, and generally result in a tedious 
and error-prone design process.  

To alleviate some of these difficulties, transactional 
memories have been proposed [1].  Transactional memories 
allow programmers to define customized read-modify-write 
operations to apply to multiple independent memory 
locations [1]. The well known advantages of using a 
transactional memory are: a lock-free programming 
abstraction, avoiding problems from deadlock, priority 
inversion, and convoying, and the ability to roll back after 
exceptions and timeouts.  Software transactional memories 
[2,3] address the above-stated problems using language 
constructs and operating system support, whereas hardware 
transactional memories use additional logic to carry out the 
guarded (atomic) operations. The main drawback of 
software transactional memory is the overhead incurred by 
operating system (or virtual machine) run time. For 
hardware transactional memories [1], the area overhead 
comes mainly from the additional memory needed to store 
the transactions, the memory state, and the logic to compare 
and copy or discard.  To date, all such proposals have been 
implemented in simulations.  Hence no real area overhead 
data is available for hardware transactional memory 
implementation.  In addition, existing work in transactional 
memory has not leveraged programmable fabrics such as 
FPGAs for customizing memory-associated control for a 
given application since their focus has been on pre-defined 
instruction-set processors.  

In this context, this paper investigates two techniques to 
implement memory dependence enforcement in memory 
controllers associated with on-chip BRAM memories in 
FPGAs.  The main difference between our approach and 
that of related existing work [1,2,3] is that: our approach 
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handles the inter-process communication/synchronization 
problem as a memory dependence enforcement problem; 
and our approach does not store copy(ies) of memory 
location(s) currently being modified, so we do not perform 
roll-back operations. The latter condition results in 
exclusion of a class of applications that require strict 
atomicity to be enforced in the event of external events (or 
interrupts).  However, for our application domain we 
believe that this is a reasonable restriction.  From a 
programming model view point, the programmer does not 
need to use locks (and mutual exclusions) and the blocking 
semantics are enforced by the implementation, thus 
retaining the advantages of a transactional memory.  In 
addition, deadlocks are identified statically since the user 
explicitly specifies producer(s) and consumer(s).  

The remainder of the paper is organized as follows: Section 
2 introduces the experimental language, hic, in which we 
implement our new techniques.  Section 3 discusses the 
semantics and tool flow aspects of starting from a system-
level description in hic and generating the desired 
implementations onto platform FPGAs.  Section 4 presents 
the results and related discussion.  Section 5 presents a brief 
overview of related work.  We end the paper with the main 
conclusions and directions for future work. 

2. Background 
Hic is a concurrent asynchronous language for describing 
networking applications.  At the core of this language are 
two main concepts: concurrency expressed in threads, and a 
logical global shared memory model that represents a tub of 
packets (or cells). The global shared memory is presented 
using a pre-defined data type called message. Threads 
receiving and transmitting at the network interface keep 
writing and reading messages, one at a time. Threads 
performing computation have at most one message in-flight 
and each thread runs to completion processing a message.  
This logical global shared memory is then mapped on to a 
physically distributed on- and off-chip memory 
organization as is found on FPGAs.  This mapping is done 
based on a memory access graph and an operation order 
graph that is generated by the front-end compiler.  This 
mapping is not the focus of the current paper and hence we 
will not discuss it further.  Each thread has an internal 
structure similar to a high-level language.  It comprises of: 
declaration of internal variables, currently the three 
supported types are: integer, character, and a user defined 
type (eg: with fixed bit width or a union of existing types); 
statements performing operations on these variables, 
support for conditions, state machines (case statements), 
and looping constructs (for and while loops) are present.  In 
addition, there are four pragmas provided for describing 
additional aspects of system that will help compiler perform 
useful (and necessary) optimizations. The four pragmas 
describe interfaces (eg: Gigabit Ethernet), constants (eg: 
host address), producer data, and consumer data.  The latter 

two are specified by the user to indicate inter-thread 
memory dependencies that need to be obeyed.  This in turn 
helps the compiler to explore ways to implement this 
dependency and the user can select different 
implementations based on constraints s/he sets for the 
specified system.  This is the focus of current paper, namely 
exploring how to implement inter-thread memory 
dependencies. It is important to note that in our parlance 
thread means a hardware thread, that is, each thread is 
synthesized in to logic. This is based on the concept of 
multi-threading in logic as introduced by Brebner [5].  

Figure 1 shows a pseudo-example that uses the producer 
and consumer pragmas that are used to specify the inter-
thread memory dependencies.  Here x1 is the producer and 
y1 and y2 are the consumers.  In thread t1, the pragma 
#consumer{mt1, [t2,y1], [t3,z1]} prior to the assignment 
says that x1 is consumed in thread t2 by y1 and in thread t3 
by z1. Similarly, in thread t2 and t3, the #producer{mt1, 
[t1,x1]} indicates the producer of particular data. The 
additional identifier, mt1, in the pragmas is used to identify 
multiple dependencies on same variable in threads. Based 
on this language background, we will now introduce two 
techniques that we intend to use as an implementation for 
given inter-thread communication and the resulting memory 
dependencies. It is necessary to recognize that the particular 
syntax used here is not central to our techniques but is used 
to make analysis easier for the front-end tools. In practice, 
one can use standard compiler use-def analysis [7] and 
other lifetime analysis methods [9] to extract producers and 
consumers from a given specification. The next section 
describes the tool flow starting from hic, and the 
implementation of aforementioned techniques.  

thread t1 ()
{

int x1, xtmp, x2; 
...
#consumer{mt1,[t2,y1],[t3,z1]}
x1 = f(xtmp, x2); 
...

}

thread t2 ()
{

int y1, y2; 
...
#producer{mt1,[t1,x1]}
y1 = g(x1, y2); 
...

}

thread t3 ()
{

int z1, z2; 
...
#producer{mt1,[t1,x1]}
z1 = h(x1, z2); 
...

}

 

Figure 1 Example hic description 

 



3. Memory centric thread synchronization 
The design flow used in this paper comprises describing an 
application in hic, from which a RTL HDL description is 
generated. This RTL code is then is fed into standard 
synthesis, place, and route tools to obtain the final 
implementation of the design on a FPGA device. 

We describe two techniques to implement inter-thread 
synchronization based on thread-level analysis (here, based 
on hic). In the hic front-end compilation, a series of 
synthesis steps are applied that transform the hic threads 
into state machines. These steps are well researched in the 
behavioral synthesis community [6]. These state machines 
are cycle accurate and we have knowledge of the particular 
state where memory accesses happen. However the 
underlying assumption until this point is that the memory 
accesses are all single cycle and happen in that particular 
state (in the FSM). This assumption has been critical for 
applying different transformations to either deduce a 
memory organization, share operations, and to build cycle 
accurate FSMs. However in practice to enforce memory 
dependency, the user has to either syntactically provide 
enough hints or architect so to explicitly schedule these 
concurrent operations. This process is tedious and error-
prone.  

From the hic description, we derive the producer-consumer 
relationships as specified by the user. Thus with each thread 
there is an associated list that indicates whether there is a 
producer and/or a consumer in the particular thread (in a 
particular state).  This list is a subset of the total memory 
needed by the particular thread and it aids in memory 
allocation and assignment decisions.  In this design process 
the user makes memory allocation decisions based on the 
memory size analysis and a partial order of operations.  We 
term the order as a partial order since at this stage we do 
not know which memory accesses are going to take multiple 
cycles due to dependencies on other threads.  However the 
memory allocation process takes into account available 
physical memory size (eg: BRAM size of 18 Kb) and 
number of ports (eg: dual ports on each BRAM).  Different 
approaches to similar problems have been researched in the 
past [8,9,10].  Given such a memory allocation, we have 
enough information in the above-mentioned lists about 
which memory locations have dependencies that need to be 
enforced.  

Based on a list of these relationships we can now generate 
points in the design where we need to insert memory 
dependence enforcement on a per-BRAM basis. We will 
now describe two techniques that are used to implement 
memory dependence enforcement (in memory controller) 
based on the above analysis information.  

3.1 Arbitrated memory organization 
The first technique used to enforce memory dependencies is 
termed as arbitrated memory organization. An instance of 
the base architecture of such a memory organization is 

shown in Figure 2.  In the following, we now describe how 
we map inter-thread memory dependencies on to such an 
architecture starting from hic.  

Based on the producer-consumer relationships and memory 
allocation (as determined by the user) obtained from static 
analysis we can automatically generate the allocation and 
access to particular ports of a BRAM (on-chip block RAM 
memory) that is common to two or more threads. The port 
details of how this gets implemented are given next.  

BRAM

Arbitration

Port A Port B Port C Port D

Port 0 Port 1

…

dn base address
dn = dependency number derived from hic
base address = address of data in BRAM

 

Figure 2 Arbitrated memory organization 

 

The actual implementation of the arbitration scheme 
comprises the use of a wrapper around the physical BRAM 
structures as shown in Figure 2. This wrapper comprises 
two additional ports apart from the standard dual ports of a 
BRAM.  Of these two additional ports, one is a read port 
(labeled C) and the other a write port (labeled D).  The 
other two ports, labeled A and B, perform both read and 
write as in a normal BRAM.  Of the two standard ports one 
port has a direct access to the physical BRAM port. The 
remaining three have priority-based access, wherein the 
write port (port D) gets highest priority, the read port (port 
C) gets second priority, and the remaining standard port has 
lowest priority.  In addition, the access to port C and port D 
is arbitrated.  This is because there can be more than one 
thread as a client on these ports, as in the case of multiple 
producer and consumers sharing the same memory (and 
ports).  Thus they share separate buses.  This arbitration is 
not shown in Figure 2.  In such a case, there will be an 
additional layer of multiplexer(s) on port D and port C. The 
use model for the base architecture is given below: 

• All single cycle non-dependent accesses (read/write 
requests) to data that are in the BRAM use port A. 



• The read accesses to data in BRAM that are 
consumers (means they are dependent on a certain 
write(s) in another thread) are done via port C.  

• The write accesses to data by producers use port D.  
• Port B is used for accesses to data that are either 

independent of those done via port C and/or port D or 
other non-time critical accesses.  

In our experiments we have not used port B.  In addition to 
the arbitration between ports, another important aspect is 
the dependency list. This is a list that contains a list of 
producers with data in this BRAM. This list is populated at 
configuration time since they are determined at design time 
using static analysis.  Each entry in the list has two parts. 
The first part contains a dependency number, which is the 
number of threads that are dependent on this producer. This 
is used to count the number of consumer reads following 
each producer write, to determine completion of a produce-
consume cycle and hence ending of the need for the address 
to be guarded.  The second part of the entry is the base 
address of the data structure in BRAM. This is the address 
that consumer threads will provide to read the data. For 
multiple producer-consumer dependencies on a single 
address, we store the associated dependency number in 
each producer thread, which writes to the list using port D. 
Thus there are three different cases for access now:  

• There is a read access on port C and if this address is 
present in list with a dependency number greater than 
zero, the access will be granted else it will block until 
a write happens that is related to this consumer 

• A write on port D is allowed if there is a 
corresponding entry in the dependency list with a 
dependency number greater than zero.  

• A read or write on port B is allowed as long as there 
are no current requests on port C or D. A blocking 
read request on port C is treated as a waiting request 
and can be overridden.  

A content addressable memory (CAM) like structure is 
used for performing comparisons on all the addresses in 
the dependency list.  
 
Thus at a meta-level the memory ports are being used as if 
one port is for general accesses as in any standard memory. 
The second port is providing a guarded access for those 
accesses that are dependent. Thus the second port is 
implementing the guard condition(s) that the user would 
have to write to implement such dependencies. In this 
particular technique the semantics followed are that of an 
arbitrated (bus-style) access to port C that introduces 
dynamic scheduling since one can add new consumers on 
this port without altering the base architecture. The latter 
aspect also introduces non-deterministic timing for cases 
where more than one producer-consumer pairs are mapped 
to the same BRAM structure.  This is because the read 
accesses on port C are arbitrated as on a bus.  Thus the 
arbitration scheme will determine the particular delay once 

the write happens. In our experiments we have 
implemented a simple round robin arbitration scheme.  For 
our application domain of packet processing, the writes 
happen when packets arrive from a network and are 
probabilistic in nature. 

We will now investigate another memory organization that 
eliminates part of the non-determinism, namely the delay 
on read operations once the producer performs a write 
operation.  

3.2 Event-driven statically scheduled memory 
organization 
We term the second memory organization as event-driven 
statically scheduled.  Figure 3 shows the block diagram of 
an instance of such a memory organization. Unlike in the 
first organization, in this case we use a much more static 
interconnection organization.  In this case, the first port 
(labeled A) behaves similarly to the earlier memory 
organization, namely for any generic (single cycle) access, 
and needs to be scheduled accordingly.  The second port 
(labeled B) is connected to a more elaborate network and is 
reserved for inter-thread shared memory accesses.  These 
accesses are the producer-consumer pairs that we have 
identified earlier.  

BRAM

Port A Port B

Port 0 Port 1

ca …
… …

select

…

to threads

 

Figure 3 Event-driven statically scheduled memory 
organization 

 

In this organization, a set of input and output signals related 
to reading and writing data from BRAM are routed via 
multiplexers (labeled c) and de-multiplexers (labeled a) that 
in turn form the required signals for port 1 on the BRAM. 
These multiplexers are driven by selection logic which is 
generated based on the producer-consumer relationships 
that we have obtained from the hic description. The 
selection logic uses modulo scheduling method to schedule 



the producer and consumer memory accesses. Modulo 
scheduling happens at two levels: between different 
producers and between different consumers of a given 
producer.  Thus, at any given instant, modulo scheduling is 
in effect between a set of producers.  Once a producer 
performs a write operation, modulo scheduling takes effect 
between different consumers of this producer.  This 
scheduling however is implemented as an event from the 
producer thread into the first consumer thread, from the first 
consumer thread into the second, and so on.  

For example, in the case of the example in Figure 1, first 
the selection will enable access to thread t1 only.  Once the 
write related to x1 happens, then the corresponding reads 
for y1 and z1 will happen, in that order.  The order in which 
y1 and z1 happen is determined at compile time.  This in 
turn determines the nature of interconnection and is thus 
quite static.  In addition, to ensure validity of operations, 
the consumer read accesses are initiated only when the 
selection logic generates the corresponding slot number. 
Thus the value output from selection logic is used as an 
event into the consumer threads.  Based on this event the 
consumer threads perform read accesses.  The producer 
thread starts the selection logic – until this point the 
selection logic is blocking, as required by our programming 
model.  Thus the write by a producer is treated as an event 
by the consumers to which they respond.  The order in 
which the consumer threads receive these events is 
statically scheduled. Thus we have accurate timing 
information once the write from the producer thread occurs. 
Note however that this does not mitigate the meta-level 
timing estimation problem related to the producer thread 
since that is a function of the input network traffic pattern.  

The main advantage of this method is the better estimation 
of timing information.  However if one needs to add new 
consumer threads, we have to modify both the multiplexing 
structure (as in arbitrated memory organization) as well as 
the state machine related to the thread since the producer 
event handlers need to be implemented. Use of FPGA 
programmability enables the latter aspect. We will now 
quantify the area overhead for both the memory 
organizations.  

 

4. Preliminary Results and Analysis 
To test the feasibility of our approach, we generated some 
simple designs that exercised both the memory controllers. 
First, we implemented the baseline architecture for the 
arbitrated memory organization.  On top of this baseline 
architecture, we have mapped three different scenarios 
based on a simple Internet Protocol (IP) packet forwarding 
application.  The three different scenarios scale the number 
of pseudo-ports that get mapped on to the read port (port C) 
and in turn impact the overhead in area and latency due to 
arbitration and scheduling.  Second, we have implemented 
similar application scenarios for the event-driven statically 

scheduled memory organization.  The three different 
scenarios comprise mapping two, four, and eight, pseudo-
ports representing varying number of consumers for a single 
producer on to the consumer read port (i.e. port C for the 
first memory organization) for both the memory 
organizations respectively. Thus we have a single BRAM 
memory with different number of threads as consumers and 
a single thread as a producer.  

In these experiments we used the Xilinx Virtex-II Pro as the 
target FPGA device. In particular we used a XC2VP20 part 
and the Xilinx ISE 6.3 (SP3) for the synthesis, placement, 
and routing, steps.  The area and timing estimates are after 
placement and routing. The two-port IP forwarding 
application from which we derived the following cases used 
a total of 5430 slices, of which around 1000 slices were for 
the core forwarding function. The numbers presented here 
are the addition made to this total slice count.  

Table 1 Required area for arbitrated memory organization 

P/C LUT FF Slices 

1/2 145 66 92 

1/4 231 66 135 

1/8 319 66 179 

 

Table 1 lists the different area figures obtained for the three 
cases stated above. The first column represents the number 
of producers and number of consumers (the second row has 
1 producer and 2 consumers, and so on), the second column 
represents the number of lookup tables used on the FPGA 
fabric, the third column represents the number of flip-flops 
used, and the last column represents the total number of 
slices used by the memory organization.  Note that these 
numbers are the overhead per-BRAM and are measured for 
a single BRAM. For each case, 125 MHz was the target 
clock rate.  We achieved timing of 125.6 MHz, 130 MHz, 
and 158 MHz for the 8, 4, and 2 consumer thread cases 
respectively. The constant flip-flop count is due to the 
baseline architecture (as in Figure 2) which requires 66 flip-
flops.  The additional multiplexing of pseudo-ports does not 
contribute to the flip-flop count but only to the LUT count 
(and hence slice count).  

Table 2 Required area for event-driven statically scheduled 
memory organization 

P/C LUT FF Slices 

1/2 94 4 49 

1/4 143 7 74 

1/8 292 13 149 

 

Table 2 lists the different area figures using similar 
conventions as above for the event-driven statically 
scheduled memory organization. In this scheme too, for all 
the three cases the synthesis, place and route was done 



unconstrained and we achieved timing of 129 MHz, 136 
MHz, and 177 MHz for 8, 4, and 2 consumer thread cases.   

As stated above, the total amount of area devoted to the 
core functionality of the IP forwarding is about 1000 slices. 
Thus depending upon the partitioning (of threads) and 
complexity of the functions the area overhead can vary 
from 5-20%. Hence this overhead needs to be considered a 
priori in the design partitioning process.  

In addition, the latency of consumer read accesses once the 
corresponding producer write happens is not deterministic 
for the arbitrated memory organization. However, the 
arbitrated memory organization is simpler to implement 
since the base architecture is fixed and only the 
multiplexing required to support new consumer thread 
needs to be added and no changes need to be made to the 
thread related state machine(s). Thus for designs where 
there is enough slack in timing and a need to scale up in the 
future, the arbitrated memory organization is useful. For 
designs where timing is critical and needs more 
optimization, the event-driven memory organization is 
useful. In our design methodology we envisage providing 
the user with access to either of these implementations 
based on design time implementation constraints and 
parameters.  

 

5. Related Work 
There are three domains of prior art for the work presented 
in this paper: FPGA design tools, memory design and 
optimization, and programming languages.  

In the domain of system-level FPGA and reconfigurable 
systems design tools, there has been prior work on 
automatically synthesizing memory organization for loop-
oriented descriptions [10,11]. There has been significant 
prior art in the design automation community for generating 
memory architecture and related optimizations [8,9,10,11]. 
In both these domains, the majority of the effort has focused 
on estimation of memory size and, based on this estimation, 
allocation and scheduling (optimization) of memory 
accesses for a particular cost function.  

Our work complements existing work in that we start with a 
concurrent specification and provide the user with different 
implementation paths to quickly generate a functionally 
correct RTL description by synthesizing inter-thread 
communication via shared memory utilizing existing 
memory size estimation and access pattern optimization 
techniques. In the programming languages community, 
software transaction memories (STM) have been proposed 
[2,3]. Complementary to STM, hardware transactional 
memories have also been researched [1].  We have 
discussed the main differences with them earlier in the 
introduction.  

 

6. Conclusions and Future Work 
In this paper, we have presented two techniques that allow 
users to implement inter-thread communication using a 
shared memory abstraction. We have illustrated the 
mapping process starting from a domain specific concurrent 
description and going onto a FPGA fabric utilizing the 
dedicated on-chip memory resources.  We have quantified 
the overhead of implementing both these memory 
organizations as well as examining the benefits of each one.  
We have not yet investigated the impact of large amount of 
data dependencies on the size of list in arbitrated memory 
organization and this is part of current research.  In 
addition, we are investigating the advantages of the 
arbitrated memory organization for reusability with respect 
to existing code (given the behavior analogous to that of 
bus-based systems).  
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