
Memory centric thread synchronization on platform FPGAs

Chidamber Kulkarni

Xilinx Inc
San Jose, Ca

Chidamber.Kulkarni@xilinx.com

Gordon Brebner
Xilinx Inc

San Jose, Ca

Gordon.Brebner@xilinx.com

Abstract
Concurrent programs are difficult to write, reason about,
re-use, and maintain. In particular, for system-level
descriptions that use a shared memory abstraction for
thread or process synchronization, the current practice
involves manual scheduling of processes, introduction of
guard conditions, and clocking tricks, to enforce memory
dependencies. This process is tedious, time consuming,
and error-prone. At the same time, the need for a
concurrent programming model is becoming ever essential
to bridge the productivity gap that is widening with every
manufacturing process generation. In this paper, we
present two novel techniques to automatically enforce
memory dependencies in platform FPGAs using on-chip
memories, starting from a system-level description. Both
the techniques utilize static analysis to generate circuits for
enforcing these dependencies. This paper will investigate
these two techniques for their generality, overhead in
implementation, and usefulness or otherwise for different
application requirements.

1. Introduction
Concurrent programs allow multiple computations to occur
simultaneously in cooperation with each other. How this
cooperation between concurrent computations is expressed
and eventually realized in platform FPGA implementations
determines whether it is advantageous to exploit available
concurrency for a given application or not. In this paper,
we focus on shared memory abstraction for such
cooperation between concurrent computations. In
particular, we investigate mapping of synchronization
mechanisms for a shared memory abstraction on to platform
FPGAs for networking applications.

The search for application-specific solutions with ever
decreasing time-to-market is pushing system designers
away from the risky time-consuming ASIC design process
towards programmable platforms, such as FPGAs. An
example of platform FPGA is the Xilinx Virtex-II Pro
family of programmable logic devices that include hard IP
cores such as the PowerPC microprocessor and RocketIO
serial transceivers, and true dual-ported on-chip embedded
block RAM (BRAM) memories [4]. The current state-of-

the-art design flow for platform FPGAs in the networking
domain involves starting with HDLs, which are not well
suited for describing systems. Thus a productivity gap is
widening with every new process generation. To close this
gap, we need methods and tools that can transform higher-
level concurrent semantics into HDL implementations (at
the register-transfer level). A primary goal of this work is to
enable a higher abstraction for mapping applications in the
networking domain to platform FPGAs. Current shared
memory abstractions based on locks and mutual exclusions
are difficult to use, scale, and generally result in a tedious
and error-prone design process.

To alleviate some of these difficulties, transactional
memories have been proposed [1]. Transactional memories
allow programmers to define customized read-modify-write
operations to apply to multiple independent memory
locations [1]. The well known advantages of using a
transactional memory are: a lock-free programming
abstraction, avoiding problems from deadlock, priority
inversion, and convoying, and the ability to roll back after
exceptions and timeouts. Software transactional memories
[2,3] address the above-stated problems using language
constructs and operating system support, whereas hardware
transactional memories use additional logic to carry out the
guarded (atomic) operations. The main drawback of
software transactional memory is the overhead incurred by
operating system (or virtual machine) run time. For
hardware transactional memories [1], the area overhead
comes mainly from the additional memory needed to store
the transactions, the memory state, and the logic to compare
and copy or discard. To date, all such proposals have been
implemented in simulations. Hence no real area overhead
data is available for hardware transactional memory
implementation. In addition, existing work in transactional
memory has not leveraged programmable fabrics such as
FPGAs for customizing memory-associated control for a
given application since their focus has been on pre-defined
instruction-set processors.

In this context, this paper investigates two techniques to
implement memory dependence enforcement in memory
controllers associated with on-chip BRAM memories in
FPGAs. The main difference between our approach and
that of related existing work [1,2,3] is that: our approach

3-9810801-0-6/DATE06 © 2006 EDAA

handles the inter-process communication/synchronization
problem as a memory dependence enforcement problem;
and our approach does not store copy(ies) of memory
location(s) currently being modified, so we do not perform
roll-back operations. The latter condition results in
exclusion of a class of applications that require strict
atomicity to be enforced in the event of external events (or
interrupts). However, for our application domain we
believe that this is a reasonable restriction. From a
programming model view point, the programmer does not
need to use locks (and mutual exclusions) and the blocking
semantics are enforced by the implementation, thus
retaining the advantages of a transactional memory. In
addition, deadlocks are identified statically since the user
explicitly specifies producer(s) and consumer(s).

The remainder of the paper is organized as follows: Section
2 introduces the experimental language, hic, in which we
implement our new techniques. Section 3 discusses the
semantics and tool flow aspects of starting from a system-
level description in hic and generating the desired
implementations onto platform FPGAs. Section 4 presents
the results and related discussion. Section 5 presents a brief
overview of related work. We end the paper with the main
conclusions and directions for future work.

2. Background
Hic is a concurrent asynchronous language for describing
networking applications. At the core of this language are
two main concepts: concurrency expressed in threads, and a
logical global shared memory model that represents a tub of
packets (or cells). The global shared memory is presented
using a pre-defined data type called message. Threads
receiving and transmitting at the network interface keep
writing and reading messages, one at a time. Threads
performing computation have at most one message in-flight
and each thread runs to completion processing a message.
This logical global shared memory is then mapped on to a
physically distributed on- and off-chip memory
organization as is found on FPGAs. This mapping is done
based on a memory access graph and an operation order
graph that is generated by the front-end compiler. This
mapping is not the focus of the current paper and hence we
will not discuss it further. Each thread has an internal
structure similar to a high-level language. It comprises of:
declaration of internal variables, currently the three
supported types are: integer, character, and a user defined
type (eg: with fixed bit width or a union of existing types);
statements performing operations on these variables,
support for conditions, state machines (case statements),
and looping constructs (for and while loops) are present. In
addition, there are four pragmas provided for describing
additional aspects of system that will help compiler perform
useful (and necessary) optimizations. The four pragmas
describe interfaces (eg: Gigabit Ethernet), constants (eg:
host address), producer data, and consumer data. The latter

two are specified by the user to indicate inter-thread
memory dependencies that need to be obeyed. This in turn
helps the compiler to explore ways to implement this
dependency and the user can select different
implementations based on constraints s/he sets for the
specified system. This is the focus of current paper, namely
exploring how to implement inter-thread memory
dependencies. It is important to note that in our parlance
thread means a hardware thread, that is, each thread is
synthesized in to logic. This is based on the concept of
multi-threading in logic as introduced by Brebner [5].

Figure 1 shows a pseudo-example that uses the producer
and consumer pragmas that are used to specify the inter-
thread memory dependencies. Here x1 is the producer and
y1 and y2 are the consumers. In thread t1, the pragma
#consumer{mt1, [t2,y1], [t3,z1]} prior to the assignment
says that x1 is consumed in thread t2 by y1 and in thread t3
by z1. Similarly, in thread t2 and t3, the #producer{mt1,
[t1,x1]} indicates the producer of particular data. The
additional identifier, mt1, in the pragmas is used to identify
multiple dependencies on same variable in threads. Based
on this language background, we will now introduce two
techniques that we intend to use as an implementation for
given inter-thread communication and the resulting memory
dependencies. It is necessary to recognize that the particular
syntax used here is not central to our techniques but is used
to make analysis easier for the front-end tools. In practice,
one can use standard compiler use-def analysis [7] and
other lifetime analysis methods [9] to extract producers and
consumers from a given specification. The next section
describes the tool flow starting from hic, and the
implementation of aforementioned techniques.

thread t1 ()
{

int x1, xtmp, x2;
...
#consumer{mt1,[t2,y1],[t3,z1]}
x1 = f(xtmp, x2);
...

}

thread t2 ()
{

int y1, y2;
...
#producer{mt1,[t1,x1]}
y1 = g(x1, y2);
...

}

thread t3 ()
{

int z1, z2;
...
#producer{mt1,[t1,x1]}
z1 = h(x1, z2);
...

}

Figure 1 Example hic description

3. Memory centric thread synchronization
The design flow used in this paper comprises describing an
application in hic, from which a RTL HDL description is
generated. This RTL code is then is fed into standard
synthesis, place, and route tools to obtain the final
implementation of the design on a FPGA device.

We describe two techniques to implement inter-thread
synchronization based on thread-level analysis (here, based
on hic). In the hic front-end compilation, a series of
synthesis steps are applied that transform the hic threads
into state machines. These steps are well researched in the
behavioral synthesis community [6]. These state machines
are cycle accurate and we have knowledge of the particular
state where memory accesses happen. However the
underlying assumption until this point is that the memory
accesses are all single cycle and happen in that particular
state (in the FSM). This assumption has been critical for
applying different transformations to either deduce a
memory organization, share operations, and to build cycle
accurate FSMs. However in practice to enforce memory
dependency, the user has to either syntactically provide
enough hints or architect so to explicitly schedule these
concurrent operations. This process is tedious and error-
prone.

From the hic description, we derive the producer-consumer
relationships as specified by the user. Thus with each thread
there is an associated list that indicates whether there is a
producer and/or a consumer in the particular thread (in a
particular state). This list is a subset of the total memory
needed by the particular thread and it aids in memory
allocation and assignment decisions. In this design process
the user makes memory allocation decisions based on the
memory size analysis and a partial order of operations. We
term the order as a partial order since at this stage we do
not know which memory accesses are going to take multiple
cycles due to dependencies on other threads. However the
memory allocation process takes into account available
physical memory size (eg: BRAM size of 18 Kb) and
number of ports (eg: dual ports on each BRAM). Different
approaches to similar problems have been researched in the
past [8,9,10]. Given such a memory allocation, we have
enough information in the above-mentioned lists about
which memory locations have dependencies that need to be
enforced.

Based on a list of these relationships we can now generate
points in the design where we need to insert memory
dependence enforcement on a per-BRAM basis. We will
now describe two techniques that are used to implement
memory dependence enforcement (in memory controller)
based on the above analysis information.

3.1 Arbitrated memory organization
The first technique used to enforce memory dependencies is
termed as arbitrated memory organization. An instance of
the base architecture of such a memory organization is

shown in Figure 2. In the following, we now describe how
we map inter-thread memory dependencies on to such an
architecture starting from hic.

Based on the producer-consumer relationships and memory
allocation (as determined by the user) obtained from static
analysis we can automatically generate the allocation and
access to particular ports of a BRAM (on-chip block RAM
memory) that is common to two or more threads. The port
details of how this gets implemented are given next.

BRAM

Arbitration

Port A Port B Port C Port D

Port 0 Port 1

…

dn base address
dn = dependency number derived from hic
base address = address of data in BRAM

Figure 2 Arbitrated memory organization

The actual implementation of the arbitration scheme
comprises the use of a wrapper around the physical BRAM
structures as shown in Figure 2. This wrapper comprises
two additional ports apart from the standard dual ports of a
BRAM. Of these two additional ports, one is a read port
(labeled C) and the other a write port (labeled D). The
other two ports, labeled A and B, perform both read and
write as in a normal BRAM. Of the two standard ports one
port has a direct access to the physical BRAM port. The
remaining three have priority-based access, wherein the
write port (port D) gets highest priority, the read port (port
C) gets second priority, and the remaining standard port has
lowest priority. In addition, the access to port C and port D
is arbitrated. This is because there can be more than one
thread as a client on these ports, as in the case of multiple
producer and consumers sharing the same memory (and
ports). Thus they share separate buses. This arbitration is
not shown in Figure 2. In such a case, there will be an
additional layer of multiplexer(s) on port D and port C. The
use model for the base architecture is given below:

• All single cycle non-dependent accesses (read/write
requests) to data that are in the BRAM use port A.

• The read accesses to data in BRAM that are
consumers (means they are dependent on a certain
write(s) in another thread) are done via port C.

• The write accesses to data by producers use port D.
• Port B is used for accesses to data that are either

independent of those done via port C and/or port D or
other non-time critical accesses.

In our experiments we have not used port B. In addition to
the arbitration between ports, another important aspect is
the dependency list. This is a list that contains a list of
producers with data in this BRAM. This list is populated at
configuration time since they are determined at design time
using static analysis. Each entry in the list has two parts.
The first part contains a dependency number, which is the
number of threads that are dependent on this producer. This
is used to count the number of consumer reads following
each producer write, to determine completion of a produce-
consume cycle and hence ending of the need for the address
to be guarded. The second part of the entry is the base
address of the data structure in BRAM. This is the address
that consumer threads will provide to read the data. For
multiple producer-consumer dependencies on a single
address, we store the associated dependency number in
each producer thread, which writes to the list using port D.
Thus there are three different cases for access now:

• There is a read access on port C and if this address is
present in list with a dependency number greater than
zero, the access will be granted else it will block until
a write happens that is related to this consumer

• A write on port D is allowed if there is a
corresponding entry in the dependency list with a
dependency number greater than zero.

• A read or write on port B is allowed as long as there
are no current requests on port C or D. A blocking
read request on port C is treated as a waiting request
and can be overridden.

A content addressable memory (CAM) like structure is
used for performing comparisons on all the addresses in
the dependency list.

Thus at a meta-level the memory ports are being used as if
one port is for general accesses as in any standard memory.
The second port is providing a guarded access for those
accesses that are dependent. Thus the second port is
implementing the guard condition(s) that the user would
have to write to implement such dependencies. In this
particular technique the semantics followed are that of an
arbitrated (bus-style) access to port C that introduces
dynamic scheduling since one can add new consumers on
this port without altering the base architecture. The latter
aspect also introduces non-deterministic timing for cases
where more than one producer-consumer pairs are mapped
to the same BRAM structure. This is because the read
accesses on port C are arbitrated as on a bus. Thus the
arbitration scheme will determine the particular delay once

the write happens. In our experiments we have
implemented a simple round robin arbitration scheme. For
our application domain of packet processing, the writes
happen when packets arrive from a network and are
probabilistic in nature.

We will now investigate another memory organization that
eliminates part of the non-determinism, namely the delay
on read operations once the producer performs a write
operation.

3.2 Event-driven statically scheduled memory
organization
We term the second memory organization as event-driven
statically scheduled. Figure 3 shows the block diagram of
an instance of such a memory organization. Unlike in the
first organization, in this case we use a much more static
interconnection organization. In this case, the first port
(labeled A) behaves similarly to the earlier memory
organization, namely for any generic (single cycle) access,
and needs to be scheduled accordingly. The second port
(labeled B) is connected to a more elaborate network and is
reserved for inter-thread shared memory accesses. These
accesses are the producer-consumer pairs that we have
identified earlier.

BRAM

Port A Port B

Port 0 Port 1

ca …
… …

select

…

to threads

Figure 3 Event-driven statically scheduled memory
organization

In this organization, a set of input and output signals related
to reading and writing data from BRAM are routed via
multiplexers (labeled c) and de-multiplexers (labeled a) that
in turn form the required signals for port 1 on the BRAM.
These multiplexers are driven by selection logic which is
generated based on the producer-consumer relationships
that we have obtained from the hic description. The
selection logic uses modulo scheduling method to schedule

the producer and consumer memory accesses. Modulo
scheduling happens at two levels: between different
producers and between different consumers of a given
producer. Thus, at any given instant, modulo scheduling is
in effect between a set of producers. Once a producer
performs a write operation, modulo scheduling takes effect
between different consumers of this producer. This
scheduling however is implemented as an event from the
producer thread into the first consumer thread, from the first
consumer thread into the second, and so on.

For example, in the case of the example in Figure 1, first
the selection will enable access to thread t1 only. Once the
write related to x1 happens, then the corresponding reads
for y1 and z1 will happen, in that order. The order in which
y1 and z1 happen is determined at compile time. This in
turn determines the nature of interconnection and is thus
quite static. In addition, to ensure validity of operations,
the consumer read accesses are initiated only when the
selection logic generates the corresponding slot number.
Thus the value output from selection logic is used as an
event into the consumer threads. Based on this event the
consumer threads perform read accesses. The producer
thread starts the selection logic – until this point the
selection logic is blocking, as required by our programming
model. Thus the write by a producer is treated as an event
by the consumers to which they respond. The order in
which the consumer threads receive these events is
statically scheduled. Thus we have accurate timing
information once the write from the producer thread occurs.
Note however that this does not mitigate the meta-level
timing estimation problem related to the producer thread
since that is a function of the input network traffic pattern.

The main advantage of this method is the better estimation
of timing information. However if one needs to add new
consumer threads, we have to modify both the multiplexing
structure (as in arbitrated memory organization) as well as
the state machine related to the thread since the producer
event handlers need to be implemented. Use of FPGA
programmability enables the latter aspect. We will now
quantify the area overhead for both the memory
organizations.

4. Preliminary Results and Analysis
To test the feasibility of our approach, we generated some
simple designs that exercised both the memory controllers.
First, we implemented the baseline architecture for the
arbitrated memory organization. On top of this baseline
architecture, we have mapped three different scenarios
based on a simple Internet Protocol (IP) packet forwarding
application. The three different scenarios scale the number
of pseudo-ports that get mapped on to the read port (port C)
and in turn impact the overhead in area and latency due to
arbitration and scheduling. Second, we have implemented
similar application scenarios for the event-driven statically

scheduled memory organization. The three different
scenarios comprise mapping two, four, and eight, pseudo-
ports representing varying number of consumers for a single
producer on to the consumer read port (i.e. port C for the
first memory organization) for both the memory
organizations respectively. Thus we have a single BRAM
memory with different number of threads as consumers and
a single thread as a producer.

In these experiments we used the Xilinx Virtex-II Pro as the
target FPGA device. In particular we used a XC2VP20 part
and the Xilinx ISE 6.3 (SP3) for the synthesis, placement,
and routing, steps. The area and timing estimates are after
placement and routing. The two-port IP forwarding
application from which we derived the following cases used
a total of 5430 slices, of which around 1000 slices were for
the core forwarding function. The numbers presented here
are the addition made to this total slice count.

Table 1 Required area for arbitrated memory organization

P/C LUT FF Slices

1/2 145 66 92

1/4 231 66 135

1/8 319 66 179

Table 1 lists the different area figures obtained for the three
cases stated above. The first column represents the number
of producers and number of consumers (the second row has
1 producer and 2 consumers, and so on), the second column
represents the number of lookup tables used on the FPGA
fabric, the third column represents the number of flip-flops
used, and the last column represents the total number of
slices used by the memory organization. Note that these
numbers are the overhead per-BRAM and are measured for
a single BRAM. For each case, 125 MHz was the target
clock rate. We achieved timing of 125.6 MHz, 130 MHz,
and 158 MHz for the 8, 4, and 2 consumer thread cases
respectively. The constant flip-flop count is due to the
baseline architecture (as in Figure 2) which requires 66 flip-
flops. The additional multiplexing of pseudo-ports does not
contribute to the flip-flop count but only to the LUT count
(and hence slice count).

Table 2 Required area for event-driven statically scheduled
memory organization

P/C LUT FF Slices

1/2 94 4 49

1/4 143 7 74

1/8 292 13 149

Table 2 lists the different area figures using similar
conventions as above for the event-driven statically
scheduled memory organization. In this scheme too, for all
the three cases the synthesis, place and route was done

unconstrained and we achieved timing of 129 MHz, 136
MHz, and 177 MHz for 8, 4, and 2 consumer thread cases.

As stated above, the total amount of area devoted to the
core functionality of the IP forwarding is about 1000 slices.
Thus depending upon the partitioning (of threads) and
complexity of the functions the area overhead can vary
from 5-20%. Hence this overhead needs to be considered a
priori in the design partitioning process.

In addition, the latency of consumer read accesses once the
corresponding producer write happens is not deterministic
for the arbitrated memory organization. However, the
arbitrated memory organization is simpler to implement
since the base architecture is fixed and only the
multiplexing required to support new consumer thread
needs to be added and no changes need to be made to the
thread related state machine(s). Thus for designs where
there is enough slack in timing and a need to scale up in the
future, the arbitrated memory organization is useful. For
designs where timing is critical and needs more
optimization, the event-driven memory organization is
useful. In our design methodology we envisage providing
the user with access to either of these implementations
based on design time implementation constraints and
parameters.

5. Related Work
There are three domains of prior art for the work presented
in this paper: FPGA design tools, memory design and
optimization, and programming languages.

In the domain of system-level FPGA and reconfigurable
systems design tools, there has been prior work on
automatically synthesizing memory organization for loop-
oriented descriptions [10,11]. There has been significant
prior art in the design automation community for generating
memory architecture and related optimizations [8,9,10,11].
In both these domains, the majority of the effort has focused
on estimation of memory size and, based on this estimation,
allocation and scheduling (optimization) of memory
accesses for a particular cost function.

Our work complements existing work in that we start with a
concurrent specification and provide the user with different
implementation paths to quickly generate a functionally
correct RTL description by synthesizing inter-thread
communication via shared memory utilizing existing
memory size estimation and access pattern optimization
techniques. In the programming languages community,
software transaction memories (STM) have been proposed
[2,3]. Complementary to STM, hardware transactional
memories have also been researched [1]. We have
discussed the main differences with them earlier in the
introduction.

6. Conclusions and Future Work
In this paper, we have presented two techniques that allow
users to implement inter-thread communication using a
shared memory abstraction. We have illustrated the
mapping process starting from a domain specific concurrent
description and going onto a FPGA fabric utilizing the
dedicated on-chip memory resources. We have quantified
the overhead of implementing both these memory
organizations as well as examining the benefits of each one.
We have not yet investigated the impact of large amount of
data dependencies on the size of list in arbitrated memory
organization and this is part of current research. In
addition, we are investigating the advantages of the
arbitrated memory organization for reusability with respect
to existing code (given the behavior analogous to that of
bus-based systems).

7. REFERENCES
[1] M. Herlihy, J.E.B. Moss, “Transactional memory:

architectural support for lock-free data structures,” in Proc.
20th Annual Symposium on Computer Architecture (1993),
ACM Press, pp. 289-300.

[2] N. Shavit, D. Touitou, “Software transactional memory,” in
Proc. 14th Annual ACM Symposium on Principles of
distributed computing (1995), ACM Press, pp. 204-213.

[3] Tim Harris, Simon Marlow, et. al., “Composable memory
transactions,” in Proc. of ACM Symposium on Principles
and Practice of Parallel Programming, June 2005.

[4] VirtexTM-II Pro Platform FPGA Handbook (v1.0), Xilinx,
January 2002.

[5] G. Brebner, “Multi-threading for logic-centric systems,” in
Proc. of 12th International Symposium on Field-
Programmable Logic and Applications (FPL 2002), LNCS
2438, Springer-Verlag.

[6] D.W.Knapp, “Behavioral synthesis,” Kluwer Academic
Publishers, 1996.

[7] A. Aho, R. Sethi, J. Ullman, “Compilers,” Addison Wesley,
1986.

[8] P. Panda, F. Catthoor, et. al., “Data and memory
optimization techniques for embedded systems,’ ACM
Transactions on Design Automation of Electronic Systems,
6(2), April 2001.

[9] F. Catthoor, S. Wuytack, et. al., “Custom memory
management methodology: Exploration of memory
organisation for embedded multimedia system design,”
Kluwer Academic Pulishers, October 1998.

[10] M. Weinhardt and W. Luk, “Memory access optimization
and RAM inference for pipeline vectorization,” in Proc. of
9th International Workshop on Field-Programmable Logic
and Applications FPL'99, LNCS 1673, Springer-Verlag.

[11] G. Venkataramani, W. Najjar, et. al., “Automatic compilation
to a coarse-grained reconfigurable system-on-chip,” in Proc.
of ACM transactions on Embedded Computing Systems,
Vol. 2, Issue 4, November 2003, pp. 560-589.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

