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Abstract

Eigenvalue computation is essential in many fields of sci-
ence and engineering. For high performance and real-time
applications, this may need to be done in hardware. This
paper focuses on the exploration of hardware architectures
which compute eigenvalues of symmetric matrices. We pro-
pose to use the Approximate Jacobi Method for general case
symmetric matrix eigenvalue problem. The paper illustrates
that the proposed architecture is more efficient than previ-
ous architectures reported in the literature. Moreover, for
the special case of 3× 3 symmetric matrices, we propose to
use an Algebraic Method. It is shown that the pipelined ar-
chitecture based on the Algebraic Method has a significant
advantage in terms of area.

1. Introduction

Eigenvalue computation for symmetric matrices plays an
important role in science and engineering. It is the core en-
gine of many algorithms such as the Principal Component
Analysis and a variety of applications including real-time
operations such as optical flow computation [1]. Jacobi-like
methods for eigenvalue computation have inherent paral-
lelism and this underlying property makes them particu-
lar suitable for distributed resource system. Systolic array
of processors [2] was originally proposed for VLSI and
the advent of FPGA popularized this architecture [3, 4].
While previous implementations employed the Exact Ja-
cobi Method, Gotze et al [5] proposed an approximation
to the Exact Jacobi method and claimed that it is more
efficient. Besides the Jacobi-based method, the Algebraic
Method [6] offers an alternative approach that may be more
efficient for some restricted classes of eigenvalue problems.
All of these reported hardware architectures lack solid com-
parative data to allow a system designer to choose between
them with confidence. In particular, modern FPGAs have
rich hardware resources that are particularly suitable for
high throughput eigenvalue computation. This paper pro-

vides the first comparative evaluation of these three differ-
ent methods for computing eigenvalues in terms of resource
utilization, performance and accuracy. It demonstrates that
the Approximate Jacobi Method is more efficient than the
exact Jacobi method. The novel contributions of this pa-
per are: 1) The proposed architecture achieves one order
of magnitude speed up compared with previous implemen-
tation for eigenvalue computation and it requires less area
in the meantime; 2) A high throughput architecture is de-
veloped based on the Algebraic Method which is area effi-
cient; 3) On implementing the Algebraic Method, we pro-
pose a hybrid algorithm to efficiently solve the arcsin(q/p)
subproblem.

2. Hardware efficient eigenvalue computation
methods

Three algorithms for eigenvalue computation using hard-
ware are described in this section. These are the Exact Ja-
cobi, the Approximate Jacobi and the Algebraic Method.

2.1. Exact Jacobi Method

Given a symmetric n × n matrix A, Jacobi methods
[7] work by systematically reducing the ”norm” of the off-
diagonal elements (1).

F(A) =

√√√√ n∑
i=1

n∑
j=1,j �=i

a2
ij (1)

This is accomplished by a sequence of orthogonal similar-
ity transformations as in (2).

A(k+1) = JT
pqA

(k)Jpq, k = 0, 1, 2, ... (2)

with A(0) = A

Jpq is called Jacobi rotation and is defined by the parame-
ters (c, s,−s, c) in the (pp, pq, qp, qq) entries of an n × n
identity matrix. c = cos(θ) and s = sin(θ), where θ is
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the rotation angle. By applying (2) iteratively to make off-
diagonal element zero, the diagonal elements tend to the
eigenvalues of A, denoted as λi.

Since Jpq is an orthogonal transformation, (3) holds,

‖A(k+1)‖F = ‖A(k)‖F (3)

where ||...||F denotes the Frobenius norm. Each update in
(2) affects only the p and q rows and columns of A(k), thus

[F(A(k+1))]2 = [F(A(k))]2 − 2[(a(k)
pq )2 − (a(k+1)

pq )2] (4)

With the exact Jacobi rotation, the coefficients c and s at
each iteration are computed using (5) and (6) so that a

(k+1)
pq

becomes zero and hence maximal reduction of F(A(k)) is
achieved.

t = tan θ =
sign(τ)

|τ | + √
1 + τ2

(5)

c =
1√

1 + t2
, s = t · c (6)

where τ = (a(k)
pq − a(k)

pp )/2a(k)
pq

2.2. Approximate Jacobi Method

Approximate Jacobi Method [5] do not annihilate off-
diagonal element a

(k+1)
pq but reduce it by d as in (7).

a(k+1)
pq = da(k)

pq (7)

where d =
1 − 2τt − t2

1 + t2
(8)

The maximal value of |d|, denoted as |d|max, is a measure
for the quality of the approximation. Exact Jacobi Method,
with t computed as in (5), yields d = 0 at each update.
On the contrary, Approximate Jacobi Method approximate t
with hardware efficient operators and hence

t̃ = sign(τ) · 2−l ≈ t, l ∈ {0, 1, 2, ..., b} (9)

where b is the wordlength of the hardware system. The aim
of the Approximate Jacobi Method is to choose l such that
the approximate angle θ̃ = arctan(2−l) is the closest to the
exact rotation angle θ and |d|max is minimized.

Gotze et al [5] provide the following formulae which re-
quire at most three comparisons to find l while guarantee-
ing |d|max ≤ 1/3.

k = exp(|aqq − app|) − exp(|apq|) (10)

⎧⎨
⎩

if k ≤ −2, then l = 0
if − 2 < k ≤ 0, then l ∈ {0, 1}
if k > 0, then l ∈ {k − 1, k, k + 1}

(11)

where exp denotes the exponent of a number.

2.3. Algebraic Method for 3 × 3 symmetric matri-
ces

For a special case of 3 × 3 symmetric matrix M, the
eigenvalues can be calculated algebraically.

M =

⎛
⎝ a d e

d b f
e f c

⎞
⎠

The eigenvalues can be expressed as roots of a third de-
gree characteristic polynomial p(λ) = det (M − λI) [7].
Let this characteristic equation be

λ3 + kλ2 + lλ + m = 0 (12)

where

k = −(a + b + c) (13)
l = ab + bc + ac − f2 − e2 − d2

m = af2 − abc − 2fde + be2 + cd2

We substitute λ = x − k/3 to remove the λ2 term in (12).

x3 + px + q = 0 (14)

where

p = −1
3
k2 + l, q =

2
27

k3 − 1
3
lk + m (15)

The condition of symmetric matrix M assures that all eigen-
values are real numbers [7]. Following [6], we substitute

x =
√
− 4p

3 y, yielding

4y3 − 3y =
3q

p
√
− 4p

3

Using the trigonometric relation cos 3α = 4 cos3 α−3 cos α
and substituting y = cos α, we have

cos 3α =
3q

p
√
− 4p

3

The three real solutions to (14) are computed and the eigen-
values of M are

λ1 = x1 − k

3
= β cos α − k

3

λ2 = x2 − k

3
= β cos

(
α − 2π

3

)
− k

3

λ3 = x3 − k

3
= β cos

(
α +

2π

3

)
− k

3

where

β =

√
−4p

3
, α =

1
3

(
π

2
− arcsin

3q

pβ

)
(16)

The range of α, α ∈ (0, π/3), imposes an ordering to the ac-
quired eigenvalues which is λ1 ≥ λ2 ≥ λ3. This provides
the designer of the system the flexibility to choose a partic-
ular eigenvalue.



3. Hardware realization of the eigenvalue
methods

All three methods described in the last sections
rely on the CORDIC algorithm for trigonometric func-
tions. The CORDIC algorithm rotates a vector [x, y] by an
arbitrary angle θ in a hardware friendly way since it re-
quires only iterations of shifts and additions. This is ob-
tained by performing successive iterations of elementary
angles, ± arctan 2−i with i = 0, 1, ...b. The CORDIC iter-
ation equations are shown in (17) to (19).

xi+1 = xi − di · yi · 2−i (17)
yi+1 = yi + di · xi · 2−i (18)
τi+1 = τi + di · arctan(2−i) (19)

where di = sign(τi)

The resulting vector after b+1 iterations has to be scaled
by

1
Kb

=
b∏

i=0

1√
1 + 2−2i

(20)

3.1. Scaling factor of exact Jacobi rotations

The exact Jacobi rotations employ the CORDIC algo-
rithm faithfully and the scaling factor Kb in (20) depends
only on the wordlength b and can be pre-computed. The
scaling can be executed with approximately b/4 shifts and
additions [4].

3.2. Scaling factor of approximate Jacobi rotations

From (9), an approximate Jacobi rotation is equivalent to
one iteration of the CORDIC algorithm. The scaling factor
varies with l and it is given in (21).

1
Kl

=
1√

1 + 2−2l
(21)

As l increases, the scaling factor converges to unity. The
number of 1/Kl needs to be stored is around b/2.

3.3. Architecture of the Approximate Jacobi
Method

We adopted an upper triangular array rather than a full
square array of processors in order to take full advantage
of the symmetry of the matrix as illustrated in Figure 1.
Each diagonal processor processes 3 elements of the ma-
trix and each off-diagonal processor processes 4. Proces-
sors are only interconnected to their nearest neighbors to
prevent broadcasting of signals.

Figure 1. Upper triangular array of processors for
8 × 8 symmetric matrix eigenvalue computation

3.3.1. Diagonal Processor The block diagram of a diag-
onal processor is shown in Figure 2. On receiving an in-
put matrix, all the diagonal processors compute the quan-
tity l in parallel according to (10) and (11). l computed
by each diagonal processor is transmitted to its neighbor-
ing off-diagonal processors in both horizontal and vertical
directions. sign(τ) is transmitted in the identical way. Fol-
lowing analogous derivation to the update equations of Ex-
act Jacobi Method [2], the approximate rotation blocks ex-
ecute the update operations shown below.

a(k+1)
pp = a(k)

pp − sign(τ)2−l+1a(k)
pq + 2−2la(k)

qq

a(k+1)
pq = 2−2la(k)

pp + sign(τ)2−l+1a(k)
pq + a(k)

qq

a(k+1)
qq = sign(τ)2−l(a(k)

pp − a(k)
qq ) − 2−2la(k)

pq + a(k)
pq

In the diagonal processor, the scaling factor 1/Kl has to
be applied twice and hence the square root in (21) is re-
moved. Therefore, we can execute scaling recursively using
(22) with only shifts and additions [8].

1/K2
i+1 = K2

i (1 + 2−2i+1l), K2
1 = 1 − 2−l (22)

Given wordlength b, the recursion stops when 2i+1l <
b. After the scaling, the updated matrix elements are ex-
changed with those in the adjacent processors.

3.3.2. Off-diagonal Processor The block diagram of an
off-diagonal processor is shown in Figure 3. Each off-
diagonal processor has to wait for the arrival of l and
sign(τ) signals from the adjacent processors in both hor-
izontal and vertical directions. In the next clock cycle, it
passes on the signals to its vertical and horizontal neighbor-
ing off-diagonal processors.

Firstly, input matrix elements are subject to approximate
rotation determined by the horizontally transmitted lh and
sign(τ)h signals, which have been generated by the diago-
nal processor on the same row. The update operations con-
sist of right-shifts and additions/subtrations are governed by
the equations shown below.

a11h = a11 − sign(τ)h2−lha21
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Figure 2. Block diagram of a Diagonal Processor

a12h = a12 − sign(τ)h2−lha22

a21h = a21 + sign(τ)h2−lha11

a22h = a22 + sign(τ)h2−lha12

The scaling is carried out by multiplying one of the pre-
computed 1/Kl as in (21) selected by lh via a multiplexer.

Secondly, the scaled results are subject to similar oper-
ations controlled by vertically transmitted signals to com-
plete the matrix elements update. Finally, the updated ma-
trix elements are exchanged with adjacent processors.
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Figure 3. Block diagram of an Off-diagonal
Processor
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Figure 4. Overview of the eigenvalue computation
system using the Algebraic Method.

3.4. Architecture of the Algebraic Method

We developed a pipelined architecture based on the Al-
gebraic Method described in Section 2.3. Without loss of
generality, the design computes the smallest eigenvalue of a
3 × 3 matrix. The overview of the design is shown in Fig-
ure 4.

3.4.1. ALU and Square Root modules ALU mod-
ule contains adders and multipliers and it computes p, q
and k/3 from (15) and (13) respectively. This module is
the very first stage of the system so the wordlengths of out-
put variables are determined such that early stage truncation
error is avoided. Existence of common terms has been ex-
plored to reduce the number of operators in the ALU. The
square root module adopts the successive approximation al-
gorithm [9]. It is an iterative process that achieves one bit
of accuracy per iteration.

3.4.2. Hybrid arcsin module We propose a hybrid
method of general rotations and conventional CORDIC ro-
tation to calculate arcsin(q/p) in (16), while avoid-
ing the wide division. General rotations can be achieved
by CORDIC rotations with the scaling factor compen-
sated at every iteration as opposed to one scaling factor
(20) at the end. Conventional arcsin CORDIC algo-
rithm [8] has the same iteration equations as (17), (18) and
(19) but different expression to calculate di and initial con-
ditions as shown in (23) and (24).

di =
{

+1, yi < Kb · q
−1, otherwise

(23)

x0 = p, y0 = 0, τ0 = 0 (24)

After b iterations, τb returns the value of arcsin(q/p). How-
ever, due to scaling factor at each iteration, incorrect deci-
sions can be made and may lead to large errors as shown
in Figure 5. The proposed hybrid algorithm ensures correct
decision making for the first few rotations by compensat-
ing the scaling factors, i.e. general rotations, and applying
the conventional CORDIC rotations in the subsequent ro-
tations. With the proposed approach, a reasonable trade-off
between computation and accuracy is achieved. In princi-
ple, accuracy is attained from the general rotation and the
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Figure 5. arcsin by conventional CORDIC rota-
tions and hybrid algorithm

low computation cost is acquired from the CORDIC algo-
rithm. Evidently, comparison from Figure 5 demonstrates
the greatly reduced error achieved by the hybrid algorithm.

4. Performance Evaluation of Architectures

In this section, we firstly carry out architecture ex-
ploration on efficient implementation of the Approximate
Jacobi Method. Then we compare pipelined architec-
tures of the Approximate Jacobi Method and the Alge-
braic Method. The target system is the Xilinx XC2V6000-6
Virtex-II FPGA chip. In this paper, 16-bits system means
that the inputs are 16-bits fixed-point numbers.

4.1. Area

Using the architecture in Section 3.3, systems that com-
pute eigenvalues of matrices in various sizes have been gen-
erated and Table 1 shows that the proposed architecture uses
less area than the Exact Jacobi architecture [4]. Our experi-
mental data also shows that the area of the Approximate Ja-
cobi architecture scales linearly with the wordlength of the
input variables.

A diagonal processor occupies 1235 slices and an off-
diagonal processor uses 2255 slices. Therefore, given a ma-
trix size, we can predict the total area of the system for com-
puting the eigenvalues by summing the processors area.

4.2. Speed

4.2.1. Exact Jacobi method The computation time for
one step of exact Jacobi method is given by (25), where b is
the wordlength, Te is the latency for matrices interchange

Matrix size Exact Jacobi [4] Approximate Jacobi
4 × 4 5507 4474
6 × 6 11296 10006
8 × 8 19013 17735

Table 1. Area comparison (in FPGA slices) of two
architectures in 16-bits systems

between processors and Tsc is the latency of the scaling
compensation in (20) [4].

Texact = 23b + Tsc + Te + 111 (25)

4.2.2. Approximate Jacobi Method The Approxi-
mate Jacobi Method takes significantly less computa-
tion time. This is due to the fact that it is less depen-
dent on b. Exact Jacobi method takes b CORDIC iterations
to compute the cosine-sine pair in (6) and 2b CORDIC ro-
tations to update the matrix. The Approximate Jacobi
Method takes at most 3 comparisons to compute l in
(11), which is the cosine-sine counterpart. Only one it-
eration of CORDIC is needed for every approximate
rotation. The computation time for one step of our imple-
mentation of the Approximate Jacobi Method is given by
(26).

Tapproximate = 16 + log2

(
b

2

)
+ Te (26)

For 16-bits systems under the same accuracy require-
ment for eigenvalues, the number of sweeps for the Approx-
imate Jacobi Method is at most twice of that of the Exact
Jacobi Method [5]. While using smaller area shown in Ta-
ble 1, the proposed architecture is at least 12 times faster
than the previously published exact Jacobi architecture [4]
estimated from (25) and (26).

4.3. Truncation and Rounding Error of the Ap-
proximate Jacobi Method

With finite fixed-point accuracy, we discovered that al-
though F(A) in (1) decreases to a certain minimum with
approximate Jacobi rotations, the eigenvalues computed
with excessive sweeps depart from the actual eigenval-
ues. This is due to truncation error propagating to the next
sweep. If instead of executing truncation, we execute round-
ing, the eigenvalue instability is rectified. This improvement
can be seen from Figure 6, where the maximum percentage
error is calculated from (27).

errormax % =
|λ̃ − λ|max

2b
(27)

λ̃ is the computed eigenvalue, λ is the quantized true eigen-
value and b is the system wordlength.

For 3000 random 4 × 4 matrices in 16-bits system, the
maximum percentage errors are shown in Figure 6 for the
proposed architecture. It is clear that the rounding stabilize
the eigenvalue result.

However, the overhead in terms of area incurred by the
rounding operation can not be ignored. For 4 × 4 16-bits
systems, the area increase by 27% for the proposed archi-
tecture.
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4.4. Hardware multiplier

For some hardware architectures, e.g. FPGAs, that have
logic and embedded multipliers, the available resources can
be exploited for multiplication operations. This is beneficial
since the scaling in the off-diagonal processors is achieved
through multiplication. In a 4 × 4 16-bits system, two 18 ×
18 embedded multipliers trade for 1343 slices.

4.5. Pipelined architectures for 3 × 3 symmetric
matrices

In very high speed applications, such as real time opti-
cal flow computation [1], massive throughput of the small-
est eigenvalues of 3 × 3 matrices is required. We compare
the Algebraic Method and the Approximate Jacobi Method.
Both architectures have been pipelined and designed to re-
turn the smallest eigenvalue of a matrix at every clock cy-
cle. In order to minimize area, there is no need to imple-
ment the systolic array but to lay off the redundant opera-
tion of the off-diagonal processor.

Inputs of the optical flow computation are normally 8-
bits. Empirically, 13-bits is sufficient for eigenvalue com-
putation in order to render accurate optical flow. The com-
parison between the Algebraic Method and the Approximate
Jacobi Method on such 13-bits systems is summarized in
Table 2. The Approximate Jacobi Method is unrolled and

Scheme Algebraic
Method

Approximate Jacobi
Method

Area (slices) 4556 20591
Max Frequency 62MHz 70MHz
Max % error 13.8×10−3 2.44 × 10−3

Table 2. Comparison of two pipelined architec-
tures in 13-bits accuracy

pipelined and its behavior is equivalent to 3 sweeps of its
un-pipelined version.

The results show that the Algebraic Method implemen-
tation is considerably smaller than the Approximate Jacobi
Method. However, due to its “open loop” characteristic, its
maximum percentage error is 5.65 times that of the Approx-
imate Jacobi Method.

5. Conclusion

This paper explores efficient architectures for eigenvalue
computation based on the Approximate Jacobi Method and
the Algebraic Method. In terms of area and speed, the pro-
posed Approximate Jacobi architecture is smaller than the
implementations that are reported in the literature while
achieving one order of magnitude speed up. We also pro-
pose an architecture resorting to the Algebraic Method to
compute the smallest eigenvalues for 3 × 3 symmetric ma-
trices and successfully achieve very high throughput with
much smaller area compared to the Jacobi methods.

Future work will focus on more thorough error analysis
and numerical stability of the three methods in the context
of efficient hardware architecture.
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