
 
Dynamic Code Overlay of SDF-Modeled Programs 

on Low-end Embedded Systems 
 
 

Hae-woo Park   Kyoungjoo Oh   Soyoung Park   Myoung-min Sim   Soonhoi Ha 

 

School of EECS, Seoul National University, Seoul, Korea 
{starlet, kjoh, soy, min, sha}@iris.snu.ac.kr 

 
 

Abstract 
In this paper we propose a dynamic code overlay 

technique of synchronous data-flow (SDF) –modeled 
program for low-end embedded systems which lack MMU-
support. With this technique, the system can utilize 
expensive SRAM memory more efficiently by using flash 
memory as code storage. SRAM is divided into several 
regions called overlay slots. A data-flow block or a cluster 
of data-flow blocks is loaded into the corresponding 
overlay slot on demand at run-time. Which blocks are 
clustered together and which overlay slots are allocated to 
the clusters are statically decided by the clustering and 
placement algorithm. We also propose an automatic code 
generation framework that generates the C-program code, 
dynamic loader and linker script files from the given SDF-
modeled blocks and schematic, so we can run or simulate 
the program immediately without any additional coding 
effort. Experiments report that we can reduce the SRAM 
size significantly with a reasonable amount of time 
overhead for several real applications. 
 
 
1. Introduction 
 

A typical memory architecture for low-end embedded 
systems consists of ROM (i.e. NOR flash memory, NAND 
flash memory or mask ROM) for bootstrapping and 
SRAM for working memory. Depending on where to put 
the code, there are various memory architectures [2]. 

In this paper we are interested in the architecture 
where the code is also stored in NAND flash memory. 
Because of long access latency and sequential access 
requirement, a NAND flash memory cannot be used for 
code storage of execute-in-place (XIP) applications. 
Therefore the shadowing technique [3] is used to copy the 
whole code into SRAM at boot time. This architecture 
gives the best performance at run time while it slows down 
the boot process. But it has a serious drawback: SRAM 
should be big enough to store the whole code as well as 
the working data. Since SRAM is a cost and power 
bottleneck, reducing the SRAM size is a major concern for 

cost-sensitive low-end embedded system design. 
In this paper, we propose a code overlay technique 

without compiler assistance, based on synchronous data-
flow (SDF) –modeled programs [1]. Data-flow programs 
have been successfully used for specifying multimedia 
applications. A key advantage of an SDF program is that 
the schedule can be determined at compile-time. In 
addition, the proposed technique can find the optimal copy 
overhead by compile time analysis. 

 
2. Related Work 

 
Overlay technique has been widely used in computer 

systems where virtual memory system could not be used. 
Park et al. [2] proposed a compiler-assisted demand 

paging technique. They presented a code clustering 
algorithm taking advantage of page-based load operation 
in NAND. Compared with that approach, our proposed 
technique utilizes the schedule information of the given 
SDF-modeled program so that the overlay cost is 
minimized. 

Recently, various compiler techniques that exploit 
software-exposed speed-differentiated memory (a.k.a. 
scratch-pad memory) have been proposed [4] [5]. Most 
techniques for scratch-pad memory analyze the program at 
compile time and locate some parts of it on the scratch-pad 
memory to save energy or to improve performance. Those 
techniques differ from ours in that all programs need not 
be copied into SRAM before execution. 

 
3. Proposed Code Generation Framework 

 
The overall flow of the proposed code generation 

framework is shown in Figure 1. An SDF-modeled 
program composed of well-defined functional blocks is 
fed into the framework as input. We assume that each 
function block is written in C code, and the code size of 
the block is given from the block library. We first 
determine a static schedule of the SDF program graph 
using existent SDF scheduling algorithms. 

In the proposed approach, execution buffer space in 

 

1

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



SRAM is divided into regions called overlay slots. A data-
flow block or a cluster of blocks is loaded into the overlay 
slots on demand at run-time. The clustering and placement 
algorithm puts together data-flow blocks into clusters, and 
determines where each cluster is placed in NAND and 
SRAM so that the overall run-time copy overhead is 
minimized and/or the required SRAM size is minimized. 
The optimal clustering and placement decision is delivered 
to the code generator. The proposed clustering and 
placement algorithm is based on genetic algorithm which 
gives a good result in reasonable time while a general 
branch-and-bound algorithm consumes too much time. 

 
SDF-Block Library SDF Schematic

Scheduler

Static ScheduleClustering &
Placement Algorithm

Clustering &
Placement Info. Code Generator main(), Loader &

Linker Script

Memory Config.

 
Figure 1: Overall flow of the proposed framework 

 
Then our framework generates the main() function by 

stitching the codes of blocks according to the schedule 
sequence. Before calling a block, the loader function is 
called to load the cluster which includes the block from 
NAND flash memory to SRAM if needed. We enforce 
main() function to be always resident in SRAM and make 
it supervise the control transfer between blocks. The linker 
script file is also automatically generated. This file informs 
the linker of the clustering and placement information. 

After all, the framework builds the executable binary 
with the generated files. 

 
4. Experimental Results 

 
We implemented the proposed code generation 

framework in PeaCE environment [6], and use ARM 
developer suite (ADS) as compiler and simulator with the 
following parameters: ARM7TDMI, 35ns NAND access 
time, and 512/2048 byte NAND page size. Applications 
we have used for experiments and their characteristics are 
as shown in Table 1. 

Table 1: Test applications 
Application Number 

of Blocks 
Largest Block Size 

(Code) 
Total Block Size

(Code) 
butterfly 17 144 828 
cd2dat 12 376 2,004 

JPEG encoder 7 1,156 2,992 
H.264 decoder 32 20,872 59,636 

Figure 2 show the total running cycles of each 
application as the overlay region size and NAND page size 
vary. The graphs show that the total cycle increases as the 
overlay region size decreases because of the increasing 
copy overhead. The result shows that the result shows that 
we can save on average significant amount of SRAM with 
relatively small performance degradation. 

5. Conclusion 
 
In this paper, we presented an automatic code 

generation framework for dynamic code overlay. The 
proposed framework generates not only the program code, 
the loader, and the linker script automatically from the 
data-flow program graph, so the programmer may be 
ignorant of the overlay technique. 

The framework has been tested on well-known 
applications. Experiments report that the SRAM size used 
for code region can be reduced significantly with a 
reasonable amount of performance degradation. 

 
butterfly

190
192
194
196
198
200
202
204
206
208
210

14
4(

17
%

)

22
9(

28
%

)

31
5(

38
%

)

40
0(

48
%

)

48
6(

59
%

)

57
1(

69
%

)

65
7(

79
%

)

74
2(

90
%

)

82
8(

10
0%

)

overlay region size (byte)
to

ta
l r

un
ni

ng
 c

yc
le

s (
M

)
512 2048

cd2dat

87
87.5

88
88.5

89
89.5

90

37
6(

19
%

)

57
9(

29
%

)

78
3(

39
%

)

98
6(

49
%

)

11
90

(5
9%

)

13
93

(7
0%

)

15
97

(8
0%

)

18
00

(9
0%

)

20
04

(1
00

%
)

overlay region size (byte)

to
ta

l r
un

ni
ng

 c
yc

le
s (

M
)

512 2048

JPEG encoder

7

7.5

8

8.5

9

9.5
11

56
(3

9%
)

13
85

(4
6%

)

16
15

(5
4%

)

18
44

(6
2%

)

20
74

(6
9%

)

23
03

(7
7%

)

25
33

(8
5%

)

27
62

(9
2%

)

29
92

(1
00

%
)

overlay region size (byte)

to
ta

l r
un

ni
ng

 c
yc

le
s (

M
)

512 2048

H.264 decoder

0
200
400
600
800

1000
1200
1400

20
.3

(3
5%

)

25
.1

(4
3%

)

29
.8

(5
1%

)

34
.6

(5
9%

)

39
.3

(6
7%

)

44
.0

(7
6%

)

48
.8

(8
4%

)

53
.5

(9
2%

)

58
.2

(1
00

%
)

overlay region size (KB)

to
ta

l r
un

ni
ng

 c
yc

le
s (

M
)

512 2048  
Figure 2: Total Running Cycles 

 
Acknowledgment 

This work was supported by National Research 
Laboratory Program (No. M1-0104-00-0015), Samsung 
Electronics, IT leading R&D Support Project funded by 
Korean MIC, and ITSoC Project. 

 
References 
 
[1] Edward A. Lee and David G. Messerschmitt., Synchronous 

Data Flow. IEEE Proceedings, 1987. 
[2] Chanik Park et al., Compiler Assisted Demand Paging for 

Embedded Systems with Flash Memory. Fourth Int. Conf. on 
Embedded Software (EMSOFT04), Pisa, Italy, 2004. 

[3] Jean Chao et al., Cost Savings with NAND Shadowing 
Reference Design with Motorola™ MPC8260™ and 
Toshiba™ CompactFlash™., July 2002. 

[4] Oren Avissar and Rajeev Barua., An Optimal Memory 
Allocation Scheme for Scratchpad-Based Embedded Systems. 
IEEE Transactions on Embedded Computing Systems, 
1(1):6-26, 2002. 

[5] Manish Verma et al., Dynamic Overlay of Scratchpad 
Memory for Energy Minimization. In Proceedings Int. Conf. 
HW/SW codesign and system synthesis, pp. 104-109, 2004. 

[6] http://peace.snu.ac.kr 

 

2


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



