
Dynamic Scratch-Pad Memory Management for Irregular Array Access
Patterns∗

G. Chen, O. Ozturk, M. Kandemir
Computer Science and Engineering Department

Pennsylvania State university
University Park, PA 16802, USA

{gchen,ozturk,kandemir}@cse.psu.edu

M. Karakoy
Department of Computing

Imperial College
London, SW7 2AZ, UK

m.karakoy@ic.ac.uk

Abstract

There exist many embedded applications such as those
executing on set-top boxes, wireless base stations, HDTV,
and mobile handsets that are structured as nested loops
and benefit significantly from a software managed memory.
Prior work on scratchpad memories (SPMs) focused pri-
marily on applications with regular data access patterns.
Unfortunately, some embedded applications do not fit in
this category and consequently conventional SPM manage-
ment schemes will fail to produce the best results for them.
In this work, we propose a novel compilation strategy for
data SPMs for embedded applications that exhibit irregular
data access patterns. Our scheme divides the task of opti-
mization between compiler and runtime. The compiler pro-
cesses each loop nest and insert code to collect informa-
tion at runtime. Then, the code is modified in such a fashion
that, depending on the collected information, it dynamically
chooses to use or not to use the data SPM for a given set of
accesses to irregular arrays. Our results indicate that this
approach is very successful with the applications that have
irregular patterns and improves their execution cycles by
about 54% over a state-of-the-art SPM management tech-
nique and 23% over the conventional cache memories. Also,
the additional code size overhead incurred by our approach
is less than 5% for all the applications tested.

1. INTRODUCTION AND MOTIVATION

Recent research shows that scratch-pad memories
(SPMs) can be very useful for data-intensive embed-
ded applications that exhibit regular, compiler-analyzable
data access patterns. This is because, for such an appli-
cation, a compiler can strategize data movements in and
out of an SPM and this eliminates the potential over-
heads (e.g., those due to dynamic tag matching) associated

∗ This work is supported in part by NSF Career Award #0093082 and a
fund from GSRC.

with conventional cache memories. Several recent com-
mercial products (e.g., ARM11 [1] and StrongARM [2])
give support for SPMs.

Most of the prior efforts that study compiler support for
data SPMs focused explicitly on applications with regular
data access patterns. While such applications certainly con-
stitute a large fraction of embedded applications, there also
exist a number of embedded applications whose data ac-
cess patterns do not lend themselves well to accurate com-
piler analysis and optimization. In this paper, we use the
terms “irregular arrays” and “irregular access patterns” to
describe these types of cases. One option for such applica-
tions is to use conventional cache memories; but, this in-
curs large power consumption and, in some cases, one may
still need to execute such an application (with irregular data
access pattern) in an SPM-based embedded architecture.
Therefore, it would be very useful in practice to have a tech-
nique that enables optimization of such applications in the
SPM-based embedded systems.

Our goal is to present and quantify the benefits of a novel
scheme that addresses this problem. Our scheme divides the
task of optimization between compiler and runtime. The
compiler processes each loop nest and insert code to col-
lect information at runtime. Then, the code is modified in
such a fashion that, depending on the collected information,
it dynamically chooses to use or not to use the data SPM for
a given set of accesses to irregular arrays.

We implemented this approach within an optimizing
compiler and performed extensive experiments with several
embedded applications with irregular data access patterns.
Our results indicate that the proposed approach is extremely
successful with embedded applications that have irregular
data access patterns and improves their execution cycles by
about 54% over a state-of-the-art SPM management tech-
nique and 23% over conventional cache memories. The re-
sults also show that the extra code size overheads incurred
by our approach are very small (less than 5% for all the ap-
plications tested).

We organized the rest of this paper as follows. Section 2
presents the architectural modeling of an embedded system
with a data SPM. Section 3 describes the irregularity in ar-
ray references contained in the applications targeted by our

3-9810801-0-6/DATE06 © 2006 EDAA

Figure 1. An embedded architecture with an on-
chip scratch-pad memory (SPM).

approach. Section 4 presents the details of our approach to
SPM management for irregular applications. Section 5 dis-
cusses the results of our experimental evaluation. Section 6
briefly reviews the related work on SPM management. Sec-
tion 7 summarizes the major observations we made.

2. ARCHITECTURE MODELING

Figure 1 shows the architecture of an embedded sys-
tem with a scratch-pad memory (SPM). Like a conven-
tional cache, SPM is tightly coupled with the processor
core. However, while a cache is normally transparent to the
software, an SPM is visible to the software. From the soft-
ware viewpoint, accessing data in an SPM is the same as
accessing data in the main memory except that the SPM is
much faster than the off-chip main memory. To accelerate
data transfers between the main memory (off-chip) and the
SPM, a direct memory access (DMA) channel is also pro-
vided. Using this DMA channel, we can transfer data be-
tween the main memory and the SPM in bulk without trans-
ferring the data through the datapath of the processor. The
cost for such a DMA transfer can be expressed as:

CDMA = C0 + C1S,

where C0 is the initialization cost for a DMA transaction,
C1 is the per byte transfer cost, and S is the size of the
data to be transfered. Further, we assume that the per ac-
cess costs for the main memory and the SPM are C2 and
C3, respectively. If a data structure in the main memory is
accessed n times, the total cost for accessing this data struc-
ture without using the SPM is Cmemory = nC2. If, on the
other hand, we first load this data structure into the SPM
and then access it from there, the total access cost becomes
CSPM = C0 + C1S + nC3, where S is the size of this
data structure. If the number of accesses, n, is greater than
(C0 + C1S)/(C2 − C3), we have CSPM < Cmemory; that
is, loading this data structure into the SPM and accessing it
from there is a better option than accessing it directly from
the main memory.

3. IRREGULARITY IN ARRAY REFER-
ENCES

The body of a loop nest in array-based embedded appli-
cations may contain instructions that access the elements of
different arrays. A reference to an array can be either regu-
lar or irregular. An array reference is called regular if the
subscript of this reference is computed without using the
values of any other arrays. On the other hand, a reference to

for i1 = 1 to N1
for i2 = 1 to N2
S = S + X[i1, i2];

for ii1 = 1 to N1 step T1
for ii2 = 1 to N2 step T2 {
X′[1..T1, 1..T2] // in SPM

⇐ X[ii1..ii1 + T1, ii2..ii2 + T2];
for i1 = ii1 to max{N1, i1 + T1 − 1}
for i2 = ii2 to max{N2, i2 + T2 − 1}
S = S + X′[i1 − ii1, i2 − ii2];

}
(a) Original loop nest. (b) Tiled version.

Figure 2. An example loop nest (a) and its tiled ver-
sion (b). In the tiled version, the loops ii1 and ii2
are the inter-tile loops, and the loops i1 and ii are
the intra-tile loops.

Figure 3. Dividing a two-dimensional array into
data blocks (tiles). All the data blocks have the
same size except possibly at the boundaries of the
array.

an array is said to be irregular if the subscript of this refer-
ence is computed using the values of other arrays. Let us ex-
plain these concepts using the following example loop nest:

for i1 = u1 to v1
for i2 = u2 to v2

for i3 = u3 to v3
...A[i1 + X[i1 + i2 + 2][i1 + 3i3]][2i1 + i3 + 2Y [i1][i2] + 1]...

The body of this loop nest contains three array references:
X[i1 + i2 + 2][i1 + 3 ∗ i3], Y [i1][i2], and A[i1 + X[i1 +
i2 + 2][i1 + 3i3]][2i1 + i3 + 2Y [i][j] + 1]. The references
to arrays X and Y are regular since the subscript expres-
sions of these references do not depend on the values of any
other arrays. The reference to array A, however, is irregu-
lar since the values of arrays X and Y (which will typically
be known only at runtime) are used in computing the sub-
script of array A. We refer to arrays X and Y as the index
arrays1.

For ease of discussion, we say that vector �I is the iter-
ation vector of loop nest L where each element of �I cor-
responds to the index variable of a loop in the loop nest.
For example, in the loop nest shown above, we have the it-
eration vector �I = (i1, i2, i3)T. In this paper, we assume
that the subscript of a regular array reference in a loop nest
can be expressed using an affine function such as M�I + �o,
where M is a constant matrix (referred as the access ma-
trix), �o is a constant vector (referred as the offset vector),
and �I is the iteration vector of the loop nest [16]. For exam-

1 While in this work we focus on irregularity arising from index arrays,
our approach can be extend with appropriate modifications to handle
the cases where irregularity is due to general functions appearing in
array subscripts.

ple, in the loop nest shown above, the subscript of array X
can be expressed as:(

1 1 0
1 0 3

)(
i1
i2
i3

)
+

(
2
0

)
.

Further, we assume that the subscript of an irregular ar-
ray reference in a loop nest can be expressed using an affine
function as M�I + N �J + �o, where both M and N are con-
stant matrices, �o is a constant vector, �I is the iteration vec-
tor, and �J is a vector of index array references, i.e., each el-
ement of �J is a regular reference to an index array. This is
similar to the notation used in [3]. For example, the sub-
script of array A in the loop nest presented above can be ex-
pressed as:(

1 0 0
2 0 1

)(
i1
i2
i3

)
+

(
1 0
0 2

)(
X[i1 + i2 + 2][i1 + 3i2]

Y [i1][i2]

)
+

(
0
1

)
.

Given two vectors �U = (u1, u2, ..., un) and
�V = (v1, v2, ..., vn), we write �U ≤ �V if and only if
ui ≤ vi for all i = 1, 2, ..., n.2 An important prop-
erty of the affine function M�I + N �J + �o is that, given
�Im ≤ �I ≤ �IM and �Jm ≤ �J ≤ �JM , we can compute two
vectors, �Jm and �JM , such that �Jm ≤ M�I +N �J +�o ≤ �JM .

4. COMPILER ANALYSIS AND TRANS-
FORMATION

4.1. Loop Tiling

Our focus is on array-based embedded applications from
the video/image processing domain. An important charac-
teristic of these applications is that they are constructed
from series of nested loops that access multi-dimensional
arrays of signals. In an SPM-based memory system, the unit
of transfer between the on-chip memory (SPM) and off-chip
memory is a data block (also called tile). Whenever a data
item (element) is accessed, the data block that contains that
item is brought from the off-chip memory to the on-chip
SPM (if it is not already there). Note that, such a transfer
can take multiple bus transfers, depending on the data block
size and shape used.

Figure 2(a) shows an example loop nest that accesses
array X through a reference with affine subscript expres-
sion (X[i1, i2]). This array can be divided into data blocks,
as shown in Figure 3. The code in Figure 2(b) gives the
blocked (tiled) version of the original loop nest shown in
Figure 2(a). Note that the iteration space is divided into
tiles (blocks) based on data tiles. In this blocked code, loops
ii1 and ii2 iterate over the data blocks, and are called the
inter-tile iterators (or block iterators). In comparison, i1
and i2 are referred to as the intra-tile iterators, and iter-
ate over the elements of a given data block (indexed by ii1

2 This ordering relationship is different from lexicographic ordering on
vectors.

for t = ... {
// initialization phase...
X[s1, s2] = ...;
Y [s3, s4] = ...;
...
// execution phase
L: for i = ...

for j = ...
SUM+ = A[2 ∗ X[i, j]][Y [i, j]]

+B[X[i, j] + 1][Y [i, j]] + B[X[i, j]][Y [i, j] + 1];
}

Figure 4. A code fragment with irregular array ref-
erences.

for each loop nest L in program P {
apply loop tiling to L based on the access patterns of

regular array references;
for each assignment to index array X

update the block minimum and maximum values of X;
compute the set of array elements that are irregularly

referenced in the current inter-tile iteration;
compare the memory access costs for using and not using SPM;
if(using SPM is beneficial)

execute the intra-tile loop iterations by using the SPM
else

execute the intra-tile loop iterations by not using the SPM
}

Figure 5. Sketch of our approach.

and ii2). The explicit data block transfers between the SPM
and the off-chip memory occur only across the iterations
of ii1 and ii2. In this paper, when we say “inter-tile itera-
tion”, we mean a vector (iii, ii2)T. Self temporal reuse is
said to exist when an array reference in a loop nest accesses
the same data in different loop iterations. Similarly, if a ref-
erence accesses nearby data in different iterations, we say
that there exists a self spatial reuse [16]. It should be em-
phasized that, in an SPM-based architecture, the most use-
ful forms of data reuse (temporal or spatial) are those that
can be exploited by reusing data from the SPM. Therefore,
a good SPM management strategy is the one that converts
the inherent temporal and spatial data reuses in the applica-
tion code into data locality in the SPM. That is, the avail-
able SPM space should be managed in such a way that a
vast majority of the data requests from the CPU should be
satisfied from the SPM without going to the off-chip mem-
ory.

4.2. Our Approach

Figure 4 shows the structure of a code fragment with ir-
regular array references. Most array-based embedded codes
with irregular accesses have this structure to begin with, and
those without this structure can be transformed to have it.
Loop t is the timing loop, which contains an initialization
phase and an execution phase. In the initialization phase, we
initialize/update the values of only the index arrays. The ex-
ecution phase typically contains a loop nest that accesses ir-
regularly referenced arrays.3 Figure 5 shows the sketch of
our approach. Our approach optimizes each loop nest L in
a given program P using the following three steps.

3 Sometimes we have a single initialization phase and multiple execu-
tion phases within the same timing loop.

Step 1. We tile the target loop nest such that the blocks
of the index arrays accessed by each tile of the loop nest
are small enough to be put in the SPM. Since using loop
tiling to improve data locality of regular array accesses has
been well studied in the compiler literature [16, 17], we do
not elaborate on it any further. The problem we try to solve
is, given a program whose regular array references have al-
ready been optimized for the SPM, how to further optimize
it such that the irregular array references can also benefit
from the SPM.

Step 2. At runtime, when computing the values of an in-
dex array X , we also compute the maximum and minimum
values of the elements in each block (tile) of X and store
these values in two auxiliary arrays XM and Xm. We re-
fer to the maximum and the minimum values of a block of
an array as the block maximum and block minimum values,
respectively.

Step 3. At runtime, at each tile of the loop nest, for each
indirect reference to array A, we conservatively compute
the set of elements of array A that might be accessed dur-
ing the execution of this tile. When computing this set, we
use the maximum and minimum values of the index array
blocks that are used in this tile. Based on the number of ar-
ray elements that need to be loaded into the SPM and the
number of references to the loaded elements (which can be
computed at compilation time), we can decide whether to
load the data used in this tile into the SPM or access the
data directly from the main memory without loading it into
the SPM.

Figure 6 shows an example application of our approach
to the example code shown in Figure 4. Our approach first
splits the loop nest L in the execution phase into tiles of
size T1 × T2. At each inter-tile iteration, (ii, jj)T, we ac-
cess the data blocks X[ii..ii+T1][jj..jj+T2] and Y [ii..ii+
T1][jj..jj + T2] of index arrays X and Y . When updating
the value of an element of an index array in the initializa-
tion phase, we also update the maximum and the minimum
values of the data block that contains this element. For ex-
ample, when we update the value of X[s1, s2], we also up-
date the values XM [s1/T1, s2/T2] and Xm[s1/T1, s2/T2].
Note that XM [s1/T1, s2/T2] and Xm[s1/T1, s2/T2] con-
tain, respectively, the maximum and the minimum values of
the block of array X that contains X[s1, s2].

At each inter-tile iteration in the execution phase, for
each array that is irregularly referenced, we compute the set
of elements that might be referenced by the intra-tile loop it-
erations. As we mentioned above, the subscript of an irreg-
ular array reference is an affine function of the index vari-
ables of the loops and the values of the elements of the in-
dex arrays. Since the range of the index variable for each
loop can be statically determined at compilation time, and
the range of the values of the elements for each index ar-
ray block that can be accessed in this inter-tile iteration has
been computed and stored in the auxiliary arrays, we can
conservatively compute the range of the subscripts of the ir-
regular array references using the techniques presented in
Chapter 8 of [16]. Note that we must be conservative in
computing the set of the elements for an irregularly refer-

enced array; that is, all the elements of an irregularly ref-
erenced array that might be accessed in the intra-tile loop
iterations of the current inter-tile loop iteration must be in-
cluded in the resulting set.

After computing the set of elements of an irregular array,
say A, we can compute the benefit (profit) of using the SPM
for these elements as follows:

CA = NAC2 − (C0 + C1|SA| + NAC3),

where NA is the number of accesses to array A, which
is calculated at compilation time, and C0 through C3 are
the costs, as defined in Section 2. In the transformed code
given in Figure 6, since the body of the loop nest contains
a single instruction that accesses array A and two instruc-
tions that access array B, we have NA and NB equal to
T1T2 and 2T1T2, respectively, where T1T2 gives the num-
ber of intra-tile loop iterations that are executed in the cur-
rent inter-tile iteration. For each array, if the number of data
elements that need to be loaded into the SPM is less than the
total available space in the SPM for the irregular arrays and
the memory access cost for using the SPM is lower than
the cost obtained when not using the SPM (which is indi-
cated by CA > 0 and CB > 0 for arrays A and B, respec-
tively), we load the elements of this array into the SPM and
all the references to this array in the current inter-tile itera-
tion are redirected to the SPM; otherwise, we access the ele-
ments of this array directly from the main memory. Further,
for a loop nest that accesses multiple arrays and the avail-
able space in the SPM cannot contain all the arrays, the ar-
ray with the larger number of accesses has a higher prior-
ity to be loaded into the SPM, though, in principle, our ap-
proach can accommodate any other dynamic SPM manage-
ment strategy. As an example, in the code given in Figure 6,
when the available space in the SPM cannot hold both ar-
rays A and B, we try to load the tile of array B first since
NB > NA.

During the execution phase, we need to check whether
an irregularly referenced array is in the SPM or in the main
memory. Such checks usually involve conditional branches.
Fortunately, the conditions indicated by these branches do
not change across the intra-tile loop iterations within the
same inter-tile loop iteration. Therefore, we can avoid the
overheads due to these conditional branches by dynamic
code modification. For example, in the code given in Fig-
ure 6, the values of θA and θB are determined before enter-
ing loop nest L′ and are never changed during the execu-
tion of L′. Therefore, we can dynamically replace the con-
ditional branches that are based on θA and θB with appro-
priate unconditional jumps before entering loop nest L′.

5. EXPERIMENTAL ANALYSIS

To measure the effectiveness of our approach in improv-
ing performance, we implemented it within an experimen-
tal compilation framework (built upon the SUIF infrastruc-
ture from Stanford University [4]) and tested it using a set of
seven embedded application codes that have irregular data
access patterns. The code size overheads introduced by our

// compute the value of index array X
for t = ... {

// initialization phase...
X[s1, s2] = ...;
if(X[s1, s2] > XM [s1/T1, s2/T2]) XM [s1/T1, s2/T2] = X[s1, s2];
if(X[s1, s2] < Xm[s1/T1, s2/T2]) Xm[s1/T1, s2/T2] = X[s1, s2];
Y [s3, s4] = ...;
if(Y [s3, s4] > YM [s3/T1, s4/T2]) YM [s3/T1, s3/T2] = Y [s3, s4];
if(Y [s3, s4] < Ym[s3/T1, s4/T2]) Ym[s3/T1, s3/T2] = Y [s3, s4];
...
// execution phase
L′: for ii = ...

for jj = ...
SA = {A[2x, y] |Xm[ii, jj] ≤ x ≤ XM [ii, jj]

∧Ym[ii, jj] ≤ y ≤ YM [ii, jj]};
// SA: the set of the elements of A that need to be loaded into the SPM

CA = NAC2 − (C0 + C1|SA| + NAC3)
//CA: the benefit of loading A into the SPM
//NA: the number of references to A in the execution phase

SB = {B[x + 1, y], B[x, y + 1] |Xm[ii, jj] ≤ x ≤ XM [ii, jj]
∧Ym[ii, jj] ≤ y ≤ YM [ii, jj]};

// SB : the set of the elements of B that need to be loaded into the SPM
CB = NBC2 − (C0 + C1|SB | + NBC3)

//CB : the benefit of loading B to the SPM
//NB : the number of references to B in the execution phase

θA = false; θB = false
SSP M = the total size of the SPM available for irregularly referenced arrays;
if(CB > 0 ∧ |SB | ≤ SSP M) {

B′[...] ⇐ SB ; // load data elements into the SPM
θB = true; SSP M = SSP M − |SB |;

}
if(CA > 0 ∧ |SA| ≤ SSP M) {

A′[...] ⇐ SA; // load data elements into the SPM
θA = true; SSP M = SSP M − |SA|;

}
for i = ii to ii + T1

for j = jj to jj + T2 {
if(θA)

r1 = A′[2 ∗ X[i, j]][Y [i, j]] //load from the SPM
else

r1 = A[2 ∗ X[i, j]][Y [i, j]] // load from the main memory
if(θB) {

r2 = B′[X[i, j] + 1][Y [i, j]] //load from the SPM
r3 = B′[X[i, j]][Y [i, j] + 1] //load from the SPM

} else {
r2 = B[X[i, j] + 1][Y [i, j]] //load from the off-chip main memory
r3 = B[X[i, j]][Y [i, j] + 1] //load from the off-chip main memory

}
SUM = r1 + r2 + r3 //access data elements in the SPM

}
}

Figure 6. The optimized code for the example in
Figure 4. During the initialization phase, the code
inserted by our compiler tracks the block maxi-
mum and minimum values for each index array.
Before going into the execution phase, we dynam-
ically determine which arrays need to be loaded
into the SPM.

approach was less than 5% for all the applications tested.
For each of these applications, we collected results with
three different versions, referred to as dynamic, static, and
hybrid. The dynamic scheme makes use of a conventional
cache memory (16KB; direct-mapped; 16 byte block size)
as its on-chip memory. The contents of this on-chip cache
memory are managed by the hardware at runtime. The other
two schemes work with an SPM. The scheme called static
represents the state-of-art in SPM optimization for data ac-
cesses. Specifically, it analyzes the code and identifies, for
each loop nest, the data blocks that would benefit from SPM
placement. Note that, this is, in a sense, also a dynamic
scheme since the contents of the SPM are changed dynam-
ically as we move from one loop nest to another. However,
unlike the case with a conventional cache memory, these
dynamic data movements are decided at compile time (and

Data Execution
Application Description Size Cycles

(KB) (M)
dither Image dithering and resolution tuner 327.31 821.12

power-x Adaptive image recognition 266.88 734.33
ur-direct Motion estimation 505.47 907.66
med 3.0 Medical imaging 492.70 882.63

mesh Parallel mesh generator 617.54 1,117.12
trio-encr Public key encryption 498.09 963.15
terpa 1.1 Medical imaging 673.35 1,306.72

Table 1. Application codes.

this is why we call it static). This implementation is based
on the approach presented in [10]. The third scheme evalu-
ated, hybrid, is the one proposed in this paper.

We evaluated these three SPM management schemes us-
ing a simulation environment built upon SimpleScalar [5].
We assume that the embedded system uses a 2-issue pro-
cessor core with 400MHz clock frequency. The SPM size is
16KB with 1 cycle hit latency and 90ns miss latency.

Table 1 lists the applications used in this study and their
important properties. An important characteristic of these
applications is that the data array accesses in all of them are
dominated by irregular accesses (through index arrays). The
second column of Table 1 gives a description of each ap-
plication and the third column gives the amount of data it
manipulates. The next column gives the number of execu-
tion cycles taken by the dynamic scheme (i.e., the one with
the conventional cache memory). In the rest of this paper,
the execution cycles results of the schemes static and hy-
brid are given as normalized values with respect to those of
the dynamic scheme.

Figure 7 shows the normalized execution cycles for
our applications under the three different schemes ex-
plained above. Our first observation from these re-
sults is that the static scheme (which represents one
of state-of-the-art methods in SPM management) per-
forms very poorly as compared to the dynamic scheme
and slows down the applications in our suite by 67.8%
on the average.4 This shows that the current SPM man-
agement approaches may not be a good choice for this
type of irregular applications, where a compiler can-
not fully extract the data access pattern (due to irregu-
lar data accesses). This general trend is reversed in only
one application (trio-encr) since, in that application, a sin-
gle loop nest, which can partially be analyzable by the
compiler, dominates the execution time. When we com-
pare the dynamic and hybrid schemes on the other hand,
we see that the hybrid scheme generates much better re-
sults than the dynamic scheme. Specifically, it reduces
execution cycles by 23.2% on average. In fact, it gener-
ates better results than the dynamic scheme for all the
application codes we have.

6. RELATED WORK

There exist several prior studies on using SPMs for in-
struction accesses. For example, Sias et al. [13] present

4 This is a completely different result than those obtained with regular
codes by the prior work.

Figure 7. Normalized execution cycles.

compiler techniques, which arrange for 70-99% of the
fetched operations to come from a statically managed
256-instruction loop buffer. Bellas et al. [6] present an SPM
management scheme for instruction accesses. Steinke et al.
[14] focus on a strategy for placing program and data ob-
jects into an SPM for saving energy. Lee et al. [11] focus
on reducing the energy consumption due to instruction ac-
cesses using a software-managed SPM (called loop cache).
As compared to our approach presented in this paper, all
these schemes focus on instruction accesses. In compari-
son, we target data references. On the data accesses side,
several studies focused on the effective use of SPMs. Ab-
sar and Catthoor [3] present a compiler-based approach
for exploiting SPM in presence of irregular array ref-
erences. To our knowledge, this is the only other SPM
work that targets irregular applications. Our approach dif-
fers from theirs in that we use runtime information to de-
cide whether to load data into the SPM and which data need
be loaded, while their approach makes all decisions dur-
ing compilation time. Francesco et al. [8] present an in-
tegrated hardware/software solution to support SPMs.
Panda et al. [12] present a powerful static data partition-
ing scheme for efficient utilization of scratch-pad memo-
ries when they co-exist with conventional caches. Benini
et al. [7] discuss an elegant memory management scheme
that is based on keeping the most frequently used data
items in a software-managed memory (instead of a conven-
tional cache). Kandemir et al. [10] propose a dynamic SPM
management scheme for data accesses. Hallnor and Rein-
hardt [9] present a software-managed cache architecture
and a data replacement algorithm. Wang et al. [15] dis-
cuss a framework for analyzing the flow of values and
data reuse for on-chip memories. In contrast to these stud-
ies, our work exploits both compilation time and run-
time information to improve the behavior of a data SPM in
the presence irregular array references, while the prior ef-
forts do not take irregular array references into account.

7. CONCLUDING REMARKS

Scratch-pad memories (SPMs) are being increasing used
in embedded systems and recent research has studied sev-
eral compiler optimizations, designed specifically for these
software-managed on-chip memories. Most of these tech-

niques are able to handle only applications with regular data
access patterns. Unfortunately, not all embedded applica-
tions exhibit only regular data access patterns (e.g., some
codes from embedded multi-media) and we need compiler
techniques to optimize their behavior when they need to be
executed in the SPM-based architectures. This paper ad-
dresses this problem by proposing a scheme that enlists
both compiler’s and runtime system’s help. Our experi-
ments with seven embedded applications dominated by ir-
regular data access patterns show that this hybrid scheme is
very effective in practice.

References
[1] Arm11 family. http://www.arm.com/products/CPUs/families/

ARM11Family.html.
[2] Intel application processors. http://developer.intel.com/ design/ pca/

applicationsprocessors/.
[3] M. J. Absar and F. Catthoor. Compiler-based approach for exploit-

ing scratch-pad in presence of irregular array access. In Proc. De-
sign, Automation and Test in Europe, volume 2, pages 1162–1167,
2005.

[4] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng.
The SUIF compiler for scalable parallel machines. In the Seventh
SIAM Conference on Parallel Processing for Scientific Computing,
Feb. 1995.

[5] T. M. Austin and D. Burger. The simplescalar architectural research
tool set. http://www.cs.wisc.edu/∼mscalar/simplescalar.html.

[6] N. Bellas, I. N. Hajj, C. Polychronopoulos, and G. Stamoulis. En-
ergy and performance improvements in microprocessor design us-
ing a loop cache. In International Conference on Computer Design,
1999.

[7] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy ef-
ficiency of embedded systems by application-specific memory hier-
archy generation. In IEEE Design & Test of Computers, Apr. 2000.

[8] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and
J. M. Mendias. An integrated hardware/software approach for run-
time scratchpad management. pages 238–243, 2004.

[9] E. G. Hallnor and S. K. Reinhardt. A fully-associative software-
managed cache design. In International Conference on Computer
Architecture, 2000.

[10] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Ka-
dayif, and A. Parikh. Dynamic management of scratch-pad mem-
ory space. In In Proc. the 38th conference on Design automation,
June 2001.

[11] L. H. Lee, B. Moyer, and J. Arends. Instruction fetch energy reduc-
tion using loop caches for embedded applications with small tight
loops. In ISLPED, Aug. 1999.

[12] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
scratch-pad-memory in embedded processor applications. In Euro-
pean Design and Test Conference, Mar. 1997.

[13] J. Sias, H. Hunter, and W. Hwu. Enhancing loop buffering of me-
dia and telecommunication applications using low-overhead predi-
cation. In the Annual International Symposium on Microarchitec-
ture, Dec. 2001.

[14] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning pro-
gram and data objects to scratchpad for energy reduction. In Pro-
ceedings of the conference on Design, automation and test in Eu-
rope, page 409, Washington, DC, USA, 2002. IEEE Computer Soci-
ety.

[15] L. Wang, W. Tembe, and S. Pande. Optimizing on-chip memory us-
age through loop restructuring for embedded processors. In 9th In-
ternational Conference on Compiler Construction, Mar. 2000.

[16] M. Wolf. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, CA, 1996.

[17] M. Wolfe. Parallelizing compilers. ACM Comput. Surv., 28(1):261–
262, 1996.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

