
An Integrated Scratch-Pad Allocator for Affine and Non-affine Code

Sumesh Udayakumaran and Rajeev Barua,
University of Maryland, College Park,

skumaran@glue.umd.edu, barua@eng.umd.edu

Abstract

Scratch-Pad memory (SPM) allocators that exploit the
presence of affine references to arrays are important for sci-
entific benchmarks. On the other hand, such allocators have
so far been limited in their general applicability. In this pa-
per we propose an integrated scheme that for the first time
combines the specialized solution for affine program alloca-
tion with a general framework for other code. We find that
our integrated framework does as well or outperforms other
allocators for a variety of SPM sizes.

1. Introduction

The prevalence of SPM in embedded systems is evident
from the large variety of chips with SPM available today in
the market.(e.g., [1,4]). Such memory is typically software
managed. Software management, apart from avoiding ex-
tra caching hardware, also allows for more predictable pro-
gram execution than when caches are present. Studies have
further shown other benefits of using SPM including reduc-
tions in power consumption, memory latency, area and even
significant runtime gains for embedded applications. Trends
in embedded designs indicate that this dominance of SPM’s
will continue in the future [9].

Compared to caches, the biggest drawback of embed-
ded systems their inability to dynamically adapt to chang-
ing working sets. Towards bridging this gap, recent research
has focussed on developing compiler-guided dynamic allo-
cation strategies [6, 7, 10]. Such research holds out the po-
tential of making SPM’s more competitive with the perfor-
mance of caches. Unfortunately, current solutions have ei-
ther been optimized for programs that contain tightly nested
loops with affine references 1 such as media applications or
have been targeted at general programs. Although, the wide
variety of applications on embedded platforms calls for gen-
eral solutions, the presence of large amount of media/signal

1 An affine reference is a linear combination of the enclosing induction
variables plus a constant, eg: A[2i+j] is affine while A[2*i*j] is not.
For simplicity we term programs with only such references as affine
programs

processing applications means optimizations for such ap-
plications cannot be overlooked either. A naive solution is
that the designer having access to both the strategies, uses
heuristics to choose the one that works best for his applica-
tion. However, such an approach is not only expensive but
fraught with other issues like longer design time. In con-
trast, our integrated scheme simplifies the work of the de-
signer while never performing worse and occasionally per-
forming better than the non-integrated approaches.

In this paper, we for the first time propose a tightly in-
tegrated framework that is optimized for loop dominated
benchmarks while retaining the features of a general frame-
work like handling non-affine references, arbitrary control
flow and scalar variables. We have extended the general
framework proposed by Udayakumaran et al [10] and added
an affine analysis pass. The aim of the pass is to enable allo-
cation of parts of an array, for instance when the whole ar-
ray does not fit into the SPM. The pass essentially identifies
the footprint of array references inside loop nests.2 In do-
ing this, it uses several novel features like flexible transfer
points and scatter-gather copying for non-contiguous ele-
ments that further aid in a improved allocation. The pass re-
sults are then fed into the allocator that is now enhanced to
use such analysis. The result is a general dynamic SPM al-
location strategy that also exploits the presence of affine ac-
cess patterns in the programs.

The rest of the paper is organized as follows. Section 2
overviews related work. Section 3 describes our integrated
method for affine and non-affine code. Section 4 presents an
evaluation of our methodology. Section 5 concludes.

2. Related work

Several researchers have looked at the issue of dynamic
data/code allocation for SPM systems. Among those con-
sidering data allocation for SPM, some have focussed on al-
location strategies for affine programs only [2, 5, 6, 8] while
the rest have proposed more general solutions [7,10]. So far
as we are aware, none of the existing strategies provide an
integrated solution.

2 we will formally define what a footprint is later, but for now consider
it as the set of elements accessed

3-9810801-0-6/DATE06 © 2006 EDAA

Among the proposed strategies handling affine pro-
grams, there are two categories. The first category simi-
lar to ours, identifies the footprint of an affine reference.
The second category of papers rely on data/code transfor-
mations to copy a part of the working set. Some aspects of
these techniques such as precise footprint analysis are com-
plementary to our method. One of the strengths of our
integrated framework is that if so desired it can easily ac-
commodate any of these optimizations.

The papers by Eisenbeis et al [5] and Schreiber et al [8]
find the smallest footprint while Anantharaman et al [2]
similar to us find a bounding rectangle around the footprint.
Certainly, finding the smallest size may improve the utiliza-
tion of the SPM. However, it would also make code gener-
ation for these references extremely difficult and hinder op-
timization of the address generation code.

These solutions also differ from ours in the granularity
of the loop nest at which they work. The granularity is in
terms of loop iterations [5] or the whole loop nest [2, 8].
The granularity of an iteration may mean not only extra
overhead but also large transfer cost due to transfers inside
the loop. On the other hand doing the transfers only outside
loop nests may not provide any benefit of affine handling for
loops that access the entire array. In contrast, our method
although with conservative footprints, generates all possi-
ble footprints for different transfer points in the loop nest.
The choice of the footprint and the corresponding transfer
point is left to our cost-benefit model driven integrated al-
locator. The cost-model takes decisions in a more sophisti-
cated fashion by taking note of the memory contents at that
point. Finding footprints at different loop levels allows us to
leverage this cost-model.

The other category of work is due to Kandemir et al [6].
Their solution involves tiling the loops to reduce working
set and then copying it to the SPM. Such tiling is illegal for
benchmarks with imperfectly nested loops, hand optimized
code, arbitrary control structures and it also means that that
only programs where there is no overlap between succes-
sive working sets can be targeted. So the solution flushes out
the working set before the next tile can be brought in. The
other part of their work determines one common layout for
an array based on how it is accessed in different loop nests.
We circumvent this issue by using copying code that col-
lects non-contiguous elements and scatters them back into
their original addresses when copying back.

3. Method Description

Our integrated method extends the framework proposed
by Udayakumaran et al in [10] to now also handle affine
programs. We first provide an overview of this framework.
The method proposed in [10] provides a dynamic allocation
method for global and stack variables. The method inserts

code at different points which changes the contents of the
SPM at those points.

More formally, the method follows the following steps.
First, it partitions the program into regions where the start
of each region is a program point. Second, the method as-
sociates a timestamp with every program point such that
(i) the timestamps form a partial order; and (ii) the pro-
gram points are reached during runtime roughly in times-
tamp order. Third, the method visits these different points
in a timestamped order and determines memory transfers
for each program point by using the cost-model. The cost-
model takes into account different factors like the present
contents, possible transfer points (eg. just outside the dif-
ferent loops of a loop nest), the transfer costs etc. Since this
framework is used for both affine and non-affine data alloca-
tion by our integrated method, it can leverage its more com-
prehensive cost model to obtain additional benefits. Finally,
the allocator assigns addresses to these variables in differ-
ent regions. Code is then generated to access these variables
using new temporaries. The end result is a modified code
which can change the working set dynamically.

Our integrated method augments the framework in two
parts. The first part involves an initial affine analysis pass to
identify partial variables such as a row, a column or even a
collection of elements belonging to an array variable that is
accessed by a loop nest. These partial variables are then en-
tered as additional variables for our framework to consider
in addition to the original program variables for allocation
into SPM. The other property of these additional variables
is that they can be safely allocated without affecting the cor-
rectness of the program. The second part of the framework
involves modifications to now accommodate these partial
variables. The modifications include checks to avoid copies
of the same array element in the the SPM and appropriate
code generation for these partial variables. We now describe
these two parts in more detail.

3.1. Affine analysis
The affine analysis phase finds partial variables that can

be considered by the dynamic allocator. Potentially, for ev-
ery reference and loop level there can be a partial variable.
Before a potential partial variable can be considered by the
allocator, two questions have to be answered. First, what are
the elements in the variable? Two, is it safe to place the par-
tial variable in the SPM? Two different partial variables can
be intersecting. This then can introduce correctness issues
because of multiple copies of an array element in the SPM.
We call this issue as the intersection problem. We look into
these issues in more detail.

Finding the elements in a partial variable The size of
a partial variable is due to the set of elements accessed by
a reference at a particular loop level. The footprint of a ref-
erence r in loop x, footprint(r, x), is the set of data elements
that can be accessed by the reference r in its enclosing loop

x. For simplicity of our analysis, we over estimate this set
of elements as the entire set of elements along the direc-
tion of the stride. This extended set is called the spanned-
footprint. So when the set of elements is a subset along
a row/column, we estimate the extended set as the whole
row/column. When the set is a subset of a plane, then the
extended set is the whole plane itself. In this way we ex-
tend footprint(r,x) to spanned-footprint(r,x). The shape of
the spanned-footprint is rectangular and so an address can
be generated using base of the array + an offset.

To aid in a more precise identification of the spanned-
footprint, we use the concept of data access matrix and data
offset matrix. The data access function of each reference
can be represented as F= Hz + K where H is the data ac-
cess matrix and K is the data offset matrix. We represent the
loop nest that we want to examine by vector�z= z1,....zk,..zn

where z1 is the outermost loop and zn is the innermost.
As a first step in identifying the spanned-footprint for

loop zk, our method reduces each data access function F of
a reference to a reduced data access function using the fol-
lowing steps. First, H is reduced to H ′ by setting all ele-
ments in columns k <= j <= n to 0. Then K is reduced
to K′ by setting the element of the rows that are all zero in
H ′ to zero. The resulting expression H ′z + K′ represented
by F ′ is our desired reduced data access function at zk. The
reduced access function represents the array subspace af-
fected only by the loop variables zk,..zn. This subspace iden-
tifies the spanned-footprint(r, zk). To illustrate with an ex-
ample, consider a reference A[i][2j][2k+10] in a loop nest
{i, j, k}where i is the outermost and k is the innermost. The
data access function F for this reference is

F =




1 0 0
0 2 0
0 0 2


∗




i
j
k


+




0
0

10


 =




i
2 j

2k + 10




The reduced data function F ′ for loop j which identifies
spanned-footprint(A[i][2j][2k+10], loop j) is

F ′ =




1 0 0
0 0 0
0 0 0


∗




i
j
k


+




0
0
0


 =




i
0
0




In general,

F ′ =




x
y
z




represents element(s) A[x][y][z], except if any of x,y,z are
zero, then it is replaced by ’*’ in the array expression,’*’
representing the range of values for that array dimension.

Intersection analysis The second part of the problem
is examining the intersection between different spanned-
footprints. The intersection between spanned-footprints can
happen in many different ways. The spanned-footprints can
be exactly equal, partially intersecting or one can be the sub-
set of the other. Finding the kind of intersection has two

uses. One, such an analysis is important for the correct-
ness of the program. If two spanned-footprints intersect and
they are both allocated into the SPM at different addresses,
then multiple inconsistent copies of array elements may ex-
ist in the SPM. Two, in the case of equal or subset/superset
spanned-footprints, only one variable needs to be generated.
This in turn eliminates redundant transfers.

To determine the kind of intersection between two refer-
ences, we define three classes of intersection. In the first in-
tersection class, a spanned-footprint of a reference is exactly
equal to the other spanned-footprint. In this case we term
them as being common-spanned-footprint references or in
short CSF references and the intersection class as common-
spanned-footprint class. The second class happens when the
spanned-footprints are intersecting but not subset of each
other. We term these references intersecting but not subset
or in short IBNS references. We now examine how to first
identify and then handle these classes.

The first class we define is when two spanned-footprints
are exactly equal ie. for reference r1, r2 and loop variable
x, spanned-footprint(r1, x) is equal to spanned-footprint(r2,
x). In terms of the mathematical framework that we have
described earlier, two references at a particular loop level
which have the same reduced data function have a common
spanned-footprint. For example references A[i][2j][2k] and
A[i][j][2k] have the same spanned-footprint for only loop
j, the reduced data access function for loop j being (i, 0, 0).
These references from the same common-spanned-footprint
class can be represented by one common partial variable.

The second class we define is due to intersecting but not
subset references and we call it the IBNS class. Two refer-
ences are called IBNS references if for any particular array
dimension, the index expression for that dimension contains
one loop variable in one reference but not in the other. For
example for references A[i][j], A[i][i], dimension 2 contains
j in one reference but not in the other. Such references cause
partial intersection. To handle the spanned-footprints from
IBNS references in the same way as common-spanned-
footprint references needs identifying the precise intersect-
ing elements and accessing them by using conditional code.
To avoid such overhead, we instead adopt one of two ap-
proaches: in the first approach references are not considered
at all for SPM allocation or alternatively we revert to our
default solution of considering these references separately.
The choice of approach is based on whether the IBNS refer-
ences involve true dependence or not. This is since the prob-
lem of inconsistent copies arises only in case of true depen-
dence between two references, when one copy is written to
and thereafter the other copy is read from. For all other de-
pendencies, the references can be handled separately with-
out impacting correctness.

The third class called the subset class occurs when one
spanned-footprint is a subset of the other. This class does

not impact correctness and is discussed in our modifications
to the framework.

int A[10][10], B[10][10], C[10][10]
for i =0 to 10

for j=0 to 10
C[i][j]=A[i][j]+A[i][j+1]+A[i+1][j-1]+A[i+1][j+1]
B[j][j]=B[i][j] + 10
C[j][j]=10

endfor
endfor

Partial Spanned Description Induced by Size
Variables Footprint of CSF ref. words

A 1 loop j Row i in A A[i][j] 10
A[i][j+1]

A 2 loop j Row i +1 in A A[i+1][j-1] 10
A[i+1][j+1]

C 1 loop j Diagonal in C C[j][j] 10
C 2 loop j Row i in C C[i][j] 10

Figure 2. Example loop and output of affine
analysis phase

Example To illustrate these ideas lets consider the loop
in figure 2. The loop has one inner-loop and eight refer-
ences or a possible set of eight partial variables. The out-
put of the analysis is also given in the figure 2. An exam-
ple partial variable is A 1 representing an entire row A[i], of
size 10 and induced by references (A[i][j], A[i][j+1]). For-
mally, the first column gives the 4 different partial variables
prefixed by their parent variable name. The fourth column
gives the references which cause the partial variable to be
generated. The last column gives the size of the spanned-
footprint. Notice that references to variable B are not con-
sidered for SPM allocation since they intersect partially and
involve true dependence between them. On other hand, ref-
erences to variable C can still be considered as there is no
true dependence between them.

The complete algorithm is shown as pseudocode in fig-
ure 3. The algorithm defines two functions find-partial-set
that does the affine analysis we described before and
Compute-sizeof-CSF that finds the size of a common-
spanned-footprint class. Find-partial-set examines uncon-
sidered references in a nested loop in three parts. In the
first part (line 4-7) it determines the CSF-class of r at ev-
ery loop level in the loop nest. Additionally, it also
finds Super-CSF-class, the union of all the individ-
ual CSF-classes of r. In the second part (line 8), it finds the
narrowed IBNS-set, the set of references that intersect par-
tially but involve true dependence with the references in
Super-CSF-class. These references are not handled any fur-
ther. Finally in lines 10-13, for each CSF-class contain-
ing the reference, it generates a new partial variable. In
line 13, the algorithm finds the size of the CSF class us-
ing Compute-sizeof-CSF-class function.

The Compute-sizeof-CSF function returns the size based
on how the particular loop level affects the reference. It first

finds the size at the current loop level (lines 16-23). If the
current loop level does not affect the reference (lines 17-
18) then the size at the level is 1. Otherwise (lines 18-22)
if the iteration progress along the row or column or diag-
onal, then the size of the particular dimension is returned.
Lines 23 uses the idea that the sizes in different loops in-
side a nested structure form a hierarchy. Hence the size of
a spanned-footprint in a outer loop is product of the size at
the current level and size of the spanned-footprint from one
level lower.

3.2. Framework modifications

We now describe the second part of our integrated
framework – the modifications to the framework de-
scribed in [10]. One of the key aspects of integrated
framework is that for most part of the algorithm, the ad-
ditional variables generated can be treated like other vari-
ables. This allows us to retain the biggest advantage of
non-affine frameworks which is their general applicabil-
ity. We now look at two aspects of the original framework
which have to be modified.

The first modification required is due to the hierarchy of
partial variables originating from different loop levels. One
partial variable for a particular reference is a subset of an-
other partial variable generated for the same reference but
at a higher loop level. The first case that needs to be han-
dled differently is when a partial variable is being consid-
ered for swap in, and a variable that includes it is already in
the SPM then the swap in can be ignored. On the other hand,
if after the swap-in has been ignored, the superset variable
itself gets swapped out, then the previous decision to ig-
nore the swap-in has to be reversed and the partial variable
swapped in. The opposite case that can happen is if a su-
perset variable is to be brought in, and a subset variable al-
ready exists, then the subset variable needs to be evicted
out. One another issue is that the cost-model needs to con-
sider that the overhead of invoking the copying call is lesser
in the case of the superset variable.

The second aspect of the original framework that needs
different handling is generating the copying code. The
copying code sometimes needs to collect non-contiguous
elements. This is done by adding an additional parame-
ter to the copy procedure. The parameter describes the
stride between the elements. For contiguous elements
this stride is trivially one. The other part of code gener-
ation - accessing the footprint in SPM, is done as in the
original framework; that is, by using a temporary vari-
able. In most cases this temporary can be referenced us-
ing base of array + offset kind of formula. In cases when
that is not possible we borrow the re-indexing tech-
nique used in [8]. Apart from these changes, the rest of
the framework including the allocation skeleton and ad-
dress assignment remains the same.

Define Set Partial-set /* Set of partial variables */
Set find-partial-set()
1. for each outer loop o loop with i loop as the innermost loop do
2. Unconsidered-references← all affine references ’r’ inside o loop
3. while there are references in Unconsidered-references do
4. Super-CSF-class(r)← r
5. for each loop x loop from i loop -1 to o loop do
6. Find set of references CSF-class(r, x loop) to which r belongs
7. Super-CSF-class(r) = Super-CSF-class(r)

S
CSF-class(r, x loop)

8. IBNS-set(r)← References that in o loop that partially intersect and are true
dependent with any reference in Super-CSF-class(r)

9. if IBNS-set == NULL SET
10. for each loop x loop from i loop -1 to o loop do
11. Generate new variable V(r, x loop) to represent CSF-class(r, x loop)
12. Partial set = Partial set

S
V(r, x loop)

13. Size(r,x loop) = Compute-sizeof-CSF(r, x loop)
14. Unconsidered-references = Unconsidered-references - Super-CSF-class
15. return (Partial-set)

void Compute-sizeof-CSF(r, x loop)
16.Set index set = Index expressions with loop variable

x loop present in them
17.if size of index set == 1
18. size at current loop level = size of dimension
19.else if size of index set == 0
20. size at current loop level = 1
21.else /* direction of iteration not parallel to dimension */
22. size at current loop level=size of dimension
23.size=size at current loop level*size(r, x loop -1) /* size (r,x) is computed in line 13*/
24. return (size)

Figure 3. Pseudo-code for determining partial variables using affine analysis

4. Results

Experimental setup This section presents results com-
paring our integrated method against several other allo-
cation alternatives. These include the static allocation de-
scribed in [3] and the dynamic method for non-affine pro-
grams [10]. We also consider three variations of an
affine-only method that only handles affine loops, flush-
ing the SPM after each loop. The objective is to approx-
imately illustrate how some of the other methods cited
earlier can benefit from being a part of a integrated frame-
work. The three variations named ”Inflexible-Affine1”,
”Inflexible-Affine2” with respect to the affine reference per-
form the transfer before the loop, outside the whole loop
nest respectively. Both of these variations employ a sim-
ple knapsack allocation that is based on a list of spanned-
footprints sorted by their frequency per byte. The third
affine-only method, called the Flexible-Affine method, al-
lows transfers at any of loop levels. The final choice of the
transfer point is left to the framework since it uses a more
sophisticated cost model. The Flexible-Affine method dif-
fers from our integrated method in one it empties the SPM
after each loop nest and two, the integrated method can also
handle non-affine loops.

The applications and experimental setup traits are as
follows. Our experiments study three benchmarks from
MiBench: Lpc, Gsm, G721 (fullname G721.Wendyfung),
one from UTDSP suite: Compress, one from Perfect Club:
Wss and one from Spec95: Tomcatv. In our experiments we
simulate an 1 cycle SPM and a 20 cycle external DRAM.
Our integrated allocation method is implemented in the gcc
4.0 compiler for a MCORE processor.

Figure 4 shows the runtime at some key SPM sizes us-
ing 6 different allocation methods. Sizes are chosen to show
overall trends. Typically the sizes include the first size when
the runtime of the integrated dynamic methods changes sig-
nificantly (by more than 1%), the final size beyond which
the runtime of the integrated method is very close to static

allocation and sizes in between this range where any of
the dynamic methods perform significantly differently than
the other methods. Outside of this SPM-size range dynamic
methods generally perform no better than static methods be-
cause for smaller sizes no variable fit, while for larger sizes
all variables fit in the SPM with no need for dynamic swap-
ping. The figure also shows two important observations in
favor of our integrated method.

The first observation is that the integrated method always
does as good or better than all the other other methods. In
particular, the method does as well or better than both affine
and non-affine method. This can be seen in affine bench-
marks Tomcatv, Compress and Wss where the integrated
method does as well as the Flexible-Affine method while
for benchmarks with no affine loops G721, Gsm and Lpc,
the integrated and non-affine methods do better.

It is instructive to see why different benchmarks have dif-
ferent best-allocation strategies. In the case of benchmarks
with affine loops, the affine and the integrated method can
allocate partial variables to SPM whereas neither the static
nor the non-affine method can do that. On the other for the
same benchmarks but larger SPM sizes like for example
Tomcatv at size 85,000, the integrated method does better
than the affine methods. This happens due to the simple cost
model of the affine methods and higher transfer cost arising
from the flushing of the SPM at the end of the loop nest. The
other three non-affine benchmarks namely Gsm, G721 and
Lpc do not offer any opportunities for partial variable allo-
cation. Hence the integrated and the non-affine method do
equally well and better than the affine alternatives. In con-
clusion, the best-allocation strategy is a function of both the
benchmark characteristic and SPM size, with the integrated
method uniformly being the best.

The second salient observation is that even among the
affine alternatives, flexible transfers makes a difference.
This is supported by the observation that flexible-affine ei-
ther outperforms or equals the other affine alternatives. For
two benchmarks Wss and Compress, the flexible-Affine

Static Inflexible-Affine1 Inflexible-Affine2 Flexible-Affine Non-Affine Integrated

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4 8 80 300
Sram Sizes (in bytes)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

0.2

0.4

0.6

0.8

1

1.2

50 100 200 600
Sram Sizes(in bytes)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 200 400
Sram Sizes (in bytes)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

(a) Lpc (b) Gsm (c) G721.Wendyfung

Static Inflexible-Affine1 Inflexible-Affine2 Flexible-Affine Non-Affine Integrated

0

0.2

0.4

0.6

0.8

1

1.2

2400 42000 85000
Sram Sizes

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 672 780
Sram Sizes (in bytes)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

32 64 252
Sram Sizes (in bytes)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

(d)Tomcatv (e) Wss (f) Compress

Figure 4. Normalized runtime for our integrated method, affine only method, non-affine method and static
method .

does better than the other affine alternatives. These bench-
marks contain triply nested loops and three points where
transfer can be done. Transfers outside the outer loop mean
that the whole variable has to be placed while transfer just
outside the innermost loop causes the transfer cost to be
high. The flexible-Affine method on the other hand com-
pares between all the three transfer points and chooses the
most beneficial one, which in this case is the middle loop. In
case of Tomcatv that contains only doubly nested loops, the
runtime of Flexible-Affine is the same as one of the other
affine methods.

5. Conclusion

In this paper we present an integrated algorithm to al-
locate both affine and non affine programs into SPM. Our
integrated algorithm is an extension of a previously pro-
posed general framework [10]. Besides the advantages of
an non-affine algorithm like general applicability, the algo-
rithm can also places parts of variables when they accessed
using affine functions. Integration also allows for selecting
the transfer point using a cost-model. Our results show that
the integrated algorithm combines the benefits of an affine
and non affine allocator. For a wide range of sizes, the in-
tegrated algorithm does as well or better than either affine
only or non-affine only allocators.

References

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and
H. Wilkinson. The Next Generation of Intel IXP Network

Processors. Intel Technology Journal, 6(3), Aug. 2002.
[2] S. Anantharaman and S. Pande. Compiler optimization for

real time execution of loops on limited memory embedded
systems. In Proc. of the 19th IEEE Real-Time Systems Sym-
posium, 1998.

[3] O. Avissar, R. Barua, and D. Stewart. An Optimal Memory
Allocation Scheme for Scratch-Pad Based Embedded Sys-
tems. ACM Transactions on Embedded Systems (TECS),
1(1), September 2002.

[4] D. Brash. The ARM architecture Version 6 (ARMv6). ARM
Ltd., January 2002. White Paper.

[5] D. C. Eisenbeis, W. Jalby and C. Fran. A strategy for ar-
ray management in local memory. In Technical Report 1262,
INRIA, Domaine de Voluceau, France, 1990.

[6] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrish-
nan, I. Kadayif, and A. Parikh. Dynamic Management of
Scratch-Pad Memory Space. In Design Automation Confer-
ence, 2001.

[7] L. W. M. Verma and P. Marwedel. Dynamic overlay of
scratchpad memory for energy minimization. In Intnl. con-
ference on Hardware/Software Codesign and System Synthe-
sis(CODES+ISIS). ACM, 2004.

[8] D. C. R. Schreiber. Near-optimal allocation of local memory
arrays. In HPL-2004-24, 2004.

[9] Compilation Challenges for Network Processors. Industrial
Panel, ACM Conference on Languages, Compilers and Tools
for Embedded Systems (LCTES), June 2003.

[10] S. Udayakumaran and R. Barua. Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems.
In Proc. of the int’l. conference on Compilers, architectures
and synthesis for embedded systems (CASES), pages 276–
286. ACM Press, 2003.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

