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Abstract: This paper addresses the problem of equiv-
alence verification of RTL descriptions that implement
arithmetic computations (add, mult, shift) over bit-
vectors that have differing bit-widths. Such designs are
found in many DSP applications where the widths of in-
put and output bit-vectors are dictated by the desired pre-
cision. A bit-vector of size n can represent integer values
from 0 to 2n − 1; i.e. integers reduced modulo 2n. There-
fore, to verify bit-vector arithmetic over multiple word-
length operands, we model the RTL datapath as a poly-
nomial function from Z2n1 × Z2n2 × · · · × Z2nd to Z2m .
Subsequently, RTL equivalence f ≡ g is solved by prov-
ing whether (f − g) ≡ 0 over such mappings. Exploiting
concepts from number theory and commutative algebra, a
systematic, complete algorithmic procedure is derived for
this purpose. Experimentally, we demonstrate how this
approach can be applied within a practical CAD setting.
Using our approach, we verify a set of arithmetic datap-
aths at RTL where contemporary approaches prove to be
infeasible.

I. Introduction

Many practical Digital Signal Processing (DSP) appli-
cations implement integer arithmetic operations, such as
add, mult, shift, etc., over multiple bit-vector vari-
ables. Examples of such designs abound in DSP for audio,
video and multimedia applications. High-level or register-
transfer-level (RTL) descriptions of such systems can be
modeled as multi-variate polynomials of finite degree, for
design, synthesis [1] and verification purposes [2]. For
efficient and correct modeling of such systems, it is im-
portant to account for the effect of bit-vector size of the
operands on the resulting computation. For example, the
largest (unsigned) integer value that a bit-vector of size m
can represent is 2m−1; implying that the bit-vector repre-
sents integer values reduced modulo 2m (%2m). This sug-
gests that bit-vector arithmetic can be efficiently modeled
as algebra over finite integer rings, where the bit-vector
size dictates the cardinality of the ring.

In many DSP applications, the computations are gen-
erally performed over operands that have multiple word-
lengths; i.e., input and output bit-vectors may have dif-
fering bit-widths. For instance, a digital audio-video
mixer may perform polynomial arithmetic over a 20-bit
audio and a 32-bit video signal [3]. To analyze these de-
signs efficiently, it is therefore required to derive efficient
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computational procedures to model and manipulate mul-
tiple operand bit-vector arithmetic.

This paper addresses the problem of equivalence ver-
ification of arithmetic datapath computations over bit-
vectors where the input and output operands may have
different bit-widths. The problem is addressed at the
level of behavioural/RTL descriptions. The following
sub-section motivates the verification problem as it ap-
pears in the context of our work and describes our ap-
proach to the problem.

A. Motivating the Verification Problem

Let us motivate the equivalence verification problem
as it appears in the context of our work. Initial high-
level (say, matlab) specifications of digital signal pro-
cessing applications are usually in floating-point. Such
designs can be converted to fixed-point models [4] and
subsequently translated into RTL. Automatic translation
utilities are available for this purpose [5]. The verification
problem instance is that of checking the equivalence of the
fixed-point design against the translated (and optimized)
RTL models.

Consider the computation performed by a digital im-
age rejection/separation unit that takes as input two sig-
nals: a 12-bit vector A[11 : 0] and another 8-bit vector
B[7 : 0]. These signals are outputs of a mixer wherein
one signal emphasizes on the image signal and the other
emphasizes on the desired signal. The design produces
a 16-bit output Y1. The computation performed by the
design is described in RTL as shown in Eqn. 1. Note that
because of the specified bit-vector sizes, the computation
can be equivalently implemented as another polynomial
Y2, as shown in Eqn. 2.

input A[11 : 0], B[7 : 0]; output Y1[15 : 0], Y2[15 : 0];

Y1 = 16384 ∗ (A4 + B4) + 64767 ∗ (A2 − B2)

+A − B + 57344 ∗ A ∗ B ∗ (A − B) (1)

Y2 = 24576 ∗ A2 ∗ B + 15615 ∗ A2 + 8192 ∗ A ∗ B2 +

32768 ∗ A ∗ B + A + 17153 ∗ B2 + 65535 ∗ B (2)

Note that symbolically, the polynomials are distinct
(Y1 6= Y2), as they have different degrees and coefficients.
However, because of the specified word-lengths of the in-
put and output operands, Y1[15 : 0] ≡ Y2[15 : 0]. So, how
do we verify the equivalence of such multiple word-length
bit-vector computations? An algorithmic solution to this
problem is the subject of this paper.
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B. Problem Modeling and Approach

We model the multiple word-length bit-vector com-
putations as follows. Let x1, x2, . . . , xd denote the d-
variables (bit-vectors) in the design. Let n1, n2, . . . , nd

denote the size of the corresponding bit-vectors. There-
fore, x1 ∈ Z2n1 , x2 ∈ Z2n2 , . . . , xd ∈ Z2nd . Note that Z2n

corresponds to the finite set of integers {0, 1, . . . , 2n − 1}.
Let m correspond to the size of the output bit-vector f ;
hence, f ∈ Z2m . Subsequently, we model the arithmetic
datapath computation as a multi-variate polynomial over
Z2n1×Z2n2×· · ·×Z2nd to Z2m [6]. Here Za×Zb represents
the Cartesian product of Za and Zb. The equivalence
problem then corresponds to checking the congruence of
two polynomials: f ≡ g%2m.

If two such polynomials f, g are indeed computation-
ally equivalent, then it means that they correspond to
the same underlying polynomial function (or polyfunc-
tion). Unfortunately, checking for the equality of such
polyfunctions is an NP-hard problem [7]. Our approach
transforms the equivalence problem f ≡ g%2m as one of
proving (f − g)%2m ≡ 0; known as the zero-equivalence
problem [7]. In other words, we test whether or not
(f − g)%2m corresponds to a nil polyfunction. For the
example shown above, we can compute (Y1 − Y2)%216:

Y1−Y2 = 16384(A4+B4)+32768∗A∗B∗(A+1)+49152∗(A2 +B2)
(3)

Note that Y1 − Y2 is a polynomial with non-zero coeffi-
cients. However, ∀A ∈ Z212 , B ∈ Z28 , (Y1 − Y2)%216 = 0;
i.e., (Y1 − Y2) vanishes as a function from Z212 × Z28 to
Z216 .

Chen [6] has analyzed properties of such (nil) polyfunc-
tions from a number-theoretic and commutative algebra
perspective. We exploit some results from [6] and derive
a systematic, algorithmic procedure to test for vanishing
polyfunctions. Moreover, we demonstrate the applicabil-
ity of our procedure within a practical CAD setting - by
verifying a set of polynomial datapath computations over
bit-vectors of disparate lengths for which contemporary
techniques prove to be infeasible.

II. Previous Work

It is evident that contemporary graph-based canoni-
cal representations (BDDs [8], BMDs [9], K*BMDs [10]
and their derivatives) are ill-suited for our application.
This is mostly because these are based on variants of
binary (bit-level) decomposition principles and, as such,
they do not have the power of abstraction to model high-
degree polynomial computations over wide bit-vectors.
Recent work of Galois field decomposition of Boolean
functions (MODD [11]) and other arithmetic transforms
of Boolean functions [12] are also unable scale w.r.t. the
design size corresponding to our applications. TEDs [2]
have been proposed as canonical DAG representations for
multi-variate polynomials. However, TEDs do not model
modulo-arithmetic. While they can prove polynomial
equivalence over the integral domain (Z), they cannot
canonically model polyfunctions over finite integer rings.

Modulo arithmetic concepts have been studied in the
context of RTL verification for bit-vector arithmetic [13]

[14], word-level ATPG [15] and MILP-based simulation
vector generation [16]. However, these are mostly geared
toward solving linear congruences under modulo arith-
metic - a different application from proving equivalence
of polynomial functions. The recent work of [17] uses an
arithmetic bit-level normalization technique to simplify
subsequent SAT instances for bounded model checking
of arithmetic circuits. Techniques such as theorem prov-
ing (HOL), term-rewriting [18] etc., have been used for
datapath verification. However, they have generally been
successful when datapath size can be abstracted away, say
using data-dependence, symmetry and other abstractions
[19] [20].

Contemporary Symbolic Computer Algebra tools do
provide algorithmic solutions to polynomial equivalence
over a variety of rings. However, these solutions are avail-
able for fields (R, Q, C), prime rings Zp, integral and
Euclidean domains - collectively called the unique factor-
ization domains (UFDs). Within UFDs, computer alge-
bra systems solve the equivalence checking problem by
uniquely factorizing an expression into irreducible terms
and comparing the coefficients of the factored terms or-
dered lexicographically. However, in the case of our ap-
plication, the finite integer rings of residue classes Z2m

(formed by m-bit vectors) correspond to non-UFDs, due
to the presence of zero divisors (e.g., 4 6= 2 6= 0, 4·2 = 0 in
Z8). In non-UFDs, any polynomial cannot be uniquely
factorized into irreducible terms1. On the same lines,
techniques using the concepts of Grobner’s bases [21] [1]
find extensive application in UFDs. However, for the
above reasons, they cannot be directly ported to solve
the above problem in non-UFDs of the type Z2m . We
have analyzed a large number of symbolic algebra pack-
ages (NTL, ZEN, Maple, Mathematica, CoCoA, Singu-
lar, Macaulay, Pari, Macsyma, among others [22]). To
the best of our knowledge, none of the available packages
provide a “ready-made” procedure that can solve the de-
sired polyfunction equivalence.

The works that come closest to ours are those of [23]
and [24]. In [23], the zero-equivalence problem is solved
for univariate datapaths (those with just one bit-vector
variable). While [24] extends the results of [23] to multi-
variate bit-vector computations, the focus is still re-
stricted to fixed-length datapaths. Both techniques lack
the mathematical wherewithal to model polynomial com-
putations over bit-vectors of unequal word-lengths.

III. Preliminaries

In what follows, Z corresponds to the set of integers,
Z+ to the set of non-negative integers and Zn to the finite
set of integers {0, 1, . . . , n−1}. The ring of residue classes
modulo 2m is denoted by Z2m ; where addition and mul-
tiplication are closed over {0, 1, . . . , 2m − 1}. Z2m [x] de-
notes the ring of univariate polynomials over the variable
x, with coefficients from Z2m . Similarly, Z2m [x1, . . . , xd]
corresponds to the ring of multivariate polynomials in d-

1For example, consider f(x) = x2 − x in the non-UFD Z6; f
factorizes in two (non-unique) irreducible forms: (x)(x − 1) and
(x − 3)(x − 4)



variables, also denoted as Zd
2m .

In the context of our work, n1, n2, . . . , nd corresponds
to the bit-vector sizes of the input variables x1, x2, . . . , xd

and m represents the output bit-vector size. Subse-
quently, we represent the RTL computations as polyfunc-
tions from Z2n1×Z2n2×· · ·×Z2nd to Z2m . Chen [6] defines
the corresponding polyfunction as follows:

Definition III.1: A function f from Z2n1 × Z2n2 ×
. . . × Z2nd to Z2m is said to be a polynomial func-
tion (or polyfunction) if it is represented by a poly-
nomial F ∈ Z[x1, x2, . . . , xd]; i.e. f(x1, x2, . . . , xd) ≡
F (x1, x2, . . . , xd) for all xi = 0, 1, . . . , 2ni − 1; i =
1, 2, . . . , d.

Example III.1: Let f : Z21 ×Z22 → Z23 be a polyfunc-
tion in two variables (x1, x2), defined as:
f(0, 0) = 1, f(0, 1) = 3, f(0, 2) = 5, f(0, 3) = 7,
f(1, 0) = 1, f(1, 1) = 4, f(1, 2) = 1, f(1, 3) = 0.
Then, f is a polyfunction representable by F = 1+2x2 +
x1x2

2, since f(x1, x2) ≡ F (x1, x2)%23 for x1 = 0, 1 and
x2 = 0, 1, 2, 3.

It is possible for a polynomial with non-zero coefficients
to vanish on such mappings; in which case the polyno-
mial represents a nil polyfunction and their corresponding
polynomials are often called vanishing polynomials.

The following Section describes the concepts that can
be used to identify such polynomials. In the sequel,
polynomial addition and multiplication are performed
%n (n = 2m) according to the rules below:

(a + b)%n = (a%n + b%n)%n (4)

(a · b)%n = (a%n · b%n)%n (5)

(−a)%n = (n − a%n)%n (6)

Also, we use the following multi-index notation: k =<
k1, k2, . . . , kd > are the (non-negative) degrees corre-
sponding to the d input variables x =< x1, x2, . . . , xd >,
respectively.

IV. Theory

We begin with the analysis of univariate polynomials
that vanish on Z2m [x] (for didactic purposes) and then
extend the results to vanishing polynomials from Z2n1 ×
Z2n2 × · · · × Z2nd to Z2m .

According to a fundamental result in number theory,
for any n ∈ N , n! divides the product of n consecutive
numbers. For example, 4! divides 4× 3× 2× 1. But this
is also true of any n consecutive numbers: 4! also divides
99× 100× 101× 102. Consequently, it is possible to find
the least k ∈ N such that n divides k! (denoted n|k!).
This value k corresponds to the Smarandache function,
SF(n) [25]. In the ring Z2m , let SF (2m) = k, such that
2m|k!. As an example, SF (23) = 4 as 8 divides 4! but 8
does not divide 3!; hence, least k = 4.

This property can be utilized to treat the equiva-
lence problem as a divisibility issue in Z2m . When two
polynomials F (x) and G(x) are equivalent in Z2m (i.e.
F (x)%2m ≡ G(x)%2m), then it means that: (F (x) −
G(x))%2m ≡ 0 ⇒ 2m|(F (x) − G(x)). In Z23 [x], let
8|(F (x) − G(x)). But, 8|4! too. Therefore, if for all x,
(F − G) evaluated at x is a product of 4 consecutive

numbers, then (F − G) vanishes in Z23 . So, what is a
natural example of such a polynomial? The answer is:
(x)(x − 1)(x − 2)(x − 3). Such a product expression is
referred to as a falling factorial and is formally defined
below.

Definition IV.1: Falling factorials of degree k ∈ Z are
defined according to: Y0(x) = 1, Y1(x) = x, Y2(x) =
x · (x − 1), . . ., Yk(x) = x · (x − 1) · · · (x − k + 1)

Example IV.1: Consider the following polynomial
F (x) over Z28 [x]:

F (x) = x10 + 211x9 + 102x8 + 22x7 + 41x6 + 243x5

+224x4 + 36x3 + 16x2 + 128x

In Z28 [x], SF (28) = 10. Therefore, if for all x, F (x) can
be factored into a product of 10 consecutive numbers, (as
in the case of Y10(x)), then F (x) is a vanishing polynomial
in Z28 [x]. Indeed, F (x) ≡ Y10(x)%28; hence F (x)%28 ≡
0.

The above concept of falling factorials can be sim-
ilarly defined for multi-variate expressions over
Z2m [x1, . . . , xd]:

Yk =
d∏

i=1

Yki
(xi) = Yk1(x1) · Yk2(x2) · · ·Ykd

(xd) (7)

Extending the above concept, if a multivariate polyno-
mial in Z2m [x1, . . . , xd] can be factorized into a product
of SF (2m) consecutive numbers in at least one of the
variables xi, then it vanishes %2m. The following ex-
amples illustrates this idea.

Example IV.2: Consider the polynomial F (x1, x2) =
x4

1x2 + 2x3
1x2 + 3x2

1x2 + 2x1x2 over Z22 [x1, x2]. Here,
SF (22) = 4 and the highest degrees of x1 and x2 are
k1 = 4, and k2 = 1, respectively. Note that F%4 can be
equivalently written as F = Y<4,1>(x1, x2)%4 = Y4(x1) ·
Y1(x2)%4. Since F%4 can be represented as a product of
4 consecutive numbers in x1, 22|F and F ≡ 0.

In the above example, both the input variables x1, x2,
as well as the output F are in Z22 . We wish to extend
the above concepts to analyze polynomials over Z2n1 ×
Z2n2 × . . . × Z2nd to Z2m . For this purpose, we define
another quantity [6]:

µi = min{2ni , SF (2m)}; i = 1, 2, . . . , d. (8)

Now consider the following results [6]:
Lemma IV.1: Let k =< k1, k2, . . . , kd >∈ (Z+)d.

Then, Yk ≡ 0 if and only if some ki ≥ µi.
Example IV.3: Let f : Z21 × Z22 → Z23 and its cor-

responding polynomial be F = x2
1x2 − x1x2. Here,

SF (23) = 4, k1 = 2 and k2 = 1. Note that µ1(2
1) =

min{21, 4} = 2 = k1 (the condition in Lemma IV.1 is
satisfied) and µ2(2

2) = min{22, 4} = 4 > k2, and F can
be written as:

x2
1x2 − x1x2 ≡ x1(x1 − 1)x2

≡ Y<2,1>(x1, x2)

≡ 0
When a polynomial cannot be factored into such Yk

expressions, can it still vanish? Consider the quadratic



polynomial 4x2 − 4x in Z8[x]. It can be written as
4(x)(x − 1). While 4x2 − 4x cannot be factorized as
(x)(x−1)(x−2)(x−3), it still vanishes in Z8. The missing
factors, (x−2)(x−3) in this case, are compensated for by
the multiplicative constant 4; therefore, 4x2 − 4x ≡ 0%8.
We now need to identify the constraints on such multi-
plicative constants such that the given polynomial would
vanish. We state the following result [6]:

Lemma IV.2: The expression ck · Yk ≡ 0 if and only

if 2m

gcd(2m,
∏

d

i=1
ki!)

|ck; where:

• ck ∈ Z;

• k =< k1, k2, . . . , kd > ∈ Zd such that ki < µi, ∀i =
1, . . . , d; and

• gcd(2m,
∏d

i=1 ki!) is the greatest common divisor of 2m

and
∏d

i=1 ki!.
Example IV.4: Consider the polynomial F = 4x1x

2
2 +

4x1x2 corresponding to f(x1, x2) : Z21 × Z22 → Z23 . We
can use Lemma IV.2 to prove that f is a nil polyfunction.
Here, 2n1 = 2, 2n2 = 4 and 2m = 8. k = < k1, k2 >=<
1, 2 > corresponds to the highest degrees of x1, x2. More-

over,
∏2

i=1 ki! = 1! · 2! = 2. Also, SF (2m = 8) = 4;
µ1(2) = min{2, 4} = 2, µ2(4) = min{4, 4} = 4.

F ≡ 4x1x
2
2 + 4x1x2

≡ 4 · x1 · x2 · (x2 − 1)

≡ c<1,2> · Y<1,2>(x1, x2)

≡ 0

because 8
(8,1!·2!) = 4 which divides c<1,2> = 4.

The above results can be extended to derive necessary
and sufficient conditions for a polynomial to vanish as a
function from Z2n1 × Z2n2 × . . . Z2nd to Z2m . We state
the following theorem [6]:

Theorem 1: Let F be a polynomial representation for
the function f from Z2n1 ×Z2n2 × . . . Z2nd to Z2m . Then,
F is a vanishing polynomial (F ≡ 0) if and only if it can
be represented as:

F = QµYµ + ΣkakbkYk (9)

where:
• Qµ ∈ Z[x1, . . . , xd] is an arbitrary polynomial;
• Yk is the falling factorial defined in Eqn. 7;
• Yµ = Yk for some ki ≥ µi;
• k =< k1, . . . , kd > for each ki = 0, 1, . . . , µi − 1;
• ak ∈ Z is an arbitrary integer and

• bk = 2m

(2m,
∏

d

i=1
ki!)

.

Proof: The proof follows straight-forwardly from
Lemma IV.1 (for the computation QµYµ) and from
Lemma IV.2 (for the computation ΣkakbkYk).

The following example illustrates the above concept.
Example IV.5: Consider a polynomial F = x2

1 + 7x1 +
4x1x

2
2 + 4x1x2 for f : Z2 × Z22 → Z23 . Here, µ1(2) =

min{2, SF (8)} = 2; µ2(2
2) = min{22, SF (8)} = 4. F

can be written as follows:

x2
1 + 7x1 + 4x1x

2
2 + 4x1x2 ≡ Y<2,0>(x1, x2) +

a<1,2>b<1,2>Y<1,2>(x1, x2)

≡ 0

Here, a<1,2> = 1 and b<1,2> = 8/(8, 1! · 2!) = 4. F can
be written in the form given by Theorem 1, and is thus a
vanishing polynomial.

V. Algorithm: Zero Equivalence

Using the concepts presented in the previous section,
we have derived a systematic algorithmic procedure that
tests whether a given polynomial vanishes as a function
from Z2n1 ×Z2n2 × . . . Z2nd to Z2m . Algorithm 1 depicts
the procedure.

ZERO EQ(F1, F2, d, x, m, n)
F1, F2 = Polynomials in x;
d = Number of variables;
x[1 . . . d] = List of input variables;
m = Bit-width of F1 and F2;
n[1 . . . d] = List of bit-widths of input variables, x;

poly = F1 − F2;
Compute SF(2m);

/*Compute values for µi*/
for i = 1 to d do

µ[i] = min{SF (2m), 2n[i]};
k[i] = Max. degree of x[i] in poly;

end for

/*Check if Yµ divides poly*/
for i = 1 to d do

/*Lemma IV.1*/
if (k[i] ≥ µ[i]) then

quo, rem = poly

Y<0,...,k[i],...,0>(x1,...,xd)
;

if (rem == 0) /* rem = remainder */ then
return true; /*poly = QµYµ; a vanishing polynomial*/

else
poly = rem;
break;

end if
end if

end for

/*Iterate over all possible degrees*/

for j =
∏d

l=1
(µl) to 1 do

/*Update degrees*/
for i = 1 to d do

k[i] = Update degree of x[i] in current poly;
end for
quo, rem = poly

Y<k[0],...,k[d]>(x1,...,xd)
;

b<k[0],...,k[d]> = 2m

(2m,
∏

d

i=1
k[i]!)

;

/*Lemma IV.2*/
if (b<k[0],...,k[d]>|quo) then

if (rem == 0) then
return true;

else
poly = rem;

end if
else

return false;
end if

end for

Algorithm 1: ALGORITHM ZERO EQ: Zero testing a
given polynomial.

The algorithm takes as input the two polynomials F1

and F2 in variables x1, . . . , xd with corresponding input
bit-widths n1, . . . , nd, and output bit-width m. The out-
put is true if F1 ≡ F2. The algorithm operates as follows:
1. Find the difference of the two polynomials, poly. This
is the expression which should vanish to prove equiva-



lence.
2. Compute the Smarandache function value for 2m; an
O(n/log n) computational procedure, given in [26], has
been implemented. Subsequently, SF (2m) value is used
to obtain the µi values.
3. Note the maximum degree (ki) of each variable xi in
poly.
4. Divide the polynomial by the falling factorial expres-
sions Yµ in each of the d variables.
5. If the remainder is zero, F1 ≡ F2; because F = QµYµ.
6. Else, use the remainder as the new poly. Update the
degrees (ki) and continue dividing from Yµ−1 to Y0 for
each variable.
7. After each division, check for the following conditions:
• If the quotient can be written as ak · bk (where bk is

defined according to Theorem 1), and the remainder is
zero, return true. It is a vanishing polynomial.
• If the quotient can be written as ak · bk, and the re-

mainder is non-zero, continue to the next iteration.
• If the quotient cannot be written as ak · bk, return

false. poly 6= 0 ⇒ F1 6= F2.
Complexity: In Algorithm 1, the number of multi-

variate divisions is bound by O(
∏

d µi), where µi is as
defined previously and d is the total number of variables.

VI. Experimental Results

Algorithm 1 was implemented in Perl with calls to
Maple 7 [27] for all the algebraic manipulations. Using
our algorithm, we have been able to perform verification
runs over a number of designs collected from a variety of
benchmark suites.The results are presented in Table I.

The first example is the from Sec. I, and represents the
image rejection computation. The next two examples [1]
are phase-shift keying and anti-aliasing functions, both
used in digital communication. The polynomial filters [3]
are Volterra models of polynomial signal processing ap-
plications. Horner polynomials [28] are commonly used in
DSP - often implemented using multiply-add-accumulate
units. In [1], it was shown how computations by these
mac units can be extracted as polynomials in Horner’s
form. MIBench is an automotive application from [29].
The last example is a vanishing polynomial of degree 10,
specifically created to validate our algorithm. The second
column in the table describes the characteristcs of these
benchmarks: number of variables (var), highest degree
of the polynomial (Deg), and input/output word-lengths
(ni, m).

Our experimental setup is as follows: High-level re-
structuring and symbolic algebra-based transformations
- such as: modulating and segmenting the coefficients,
factorization and expansion, addition and removal of
algebraic redundancy (vanishing polynomials), etc. -
were applied to the original RTL descriptions to obtain
symbolically different but functionally equivalent imple-
mentations. Subsequently, the data-flow graphs for the
given RTL descriptions were extracted using Gaut [30].
Traversing the DFGs from the inputs to the outputs, the
polynomial representations were constructed. The data-
path sizes of both inputs and outputs (n1, . . . , nd and m)
were also recorded. The algorithm was invoked to find the

difference between the two polynomials and subsequently
verify that it computes zero, to prove equivalency. We
were able to solve all problems in < 25 seconds.

We have performed equivalence checking of the given
RTL designs using BDDs, BMDs and SAT based ap-
proaches. Since gate-level descriptions are required by
both BDDs and SAT, we synthesized our designs using a
commercially available logic synthesis tool. BDDs were
used to verify the resulting netlists using the VIS [31]
package. It was found that though BDDs could solve the
problem for some of the smaller benchmarks (especially
for univariate polynomials), they failed for the rest of the
designs.

From the gate-level netlists corresponding to the two
designs, we generated miter circuits and converted them
to CNF format. ZChaff [32] was used to prove equiv-
alence via unsatisfiability testing. For all the designs,
ZChaff could not solve the problem within the time-limit
of 1000s. We also attempted to construct the BMDs from
the synthesized gate-level netlists corresponding to the
original RTL descriptions. Because of the presence of
high-degree polynomial terms, the graph could be con-
structed only for the smaller benchmarks (degree ≤ 4).
The other benchmarks could not be verified within the
time-out limit.

A. Limitations of our approach

Many DSP systems implement some form of compu-
tation approximation, by incorporating various rounding
schemes. Our approach is currently restricted inasmuch
as it cannot verify those datapaths where intermediate
signals have varying precision (due to rounding). Simi-
larly, saturation arithmetic architectures can also not be
verified using our technique. Analysis of such designs re-
quires substantially more work, and is the subject of our
future investigations.

VII. Conclusions

We have presented a framework for equivalence verifi-
cation of arithmetic datapaths with multiple word-length
operands. Our approach models the design as a poly-
function from Z2n1 × Z2n2 × . . . × Z2nd → Z2m . The
concept of vanishing (nil) polyfunctions is exploited to
prove equivalence between two symbolically distinct (but
computationally equivalent) polynomials. The concepts
from number theory and commutative algebra have been
applied to derive a complete algorithmic procedure for
this purpose. Using our algorithm, a variety of bench-
marks have been verified. Our approach was able to solve
the problem in all cases, where contemporary verification
approaches were infeasible. As part of future work, we
are investigating applications of the proposed concepts
to datapath computations that implement rounding.
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TABLE I

Comparison of time taken by various approaches

Benchmark Specs Our approach BDDs-VIS BMD SAT-ZChaff
Var/Deg/< n1, . . . , nd >/m Time (s) Nodes/Time(s) Nodes/Time(s) Vars/Clauses/Time(s)

IRR 2/4/< 12, 8 >/16 14.4 NA/1000 NA/>1000 10K/30K/>1000
PSK 2/4/< 11, 14 >/16 12.9 NA/>1000 NA/>1000 61K/183K/>1000
Anti-alias function 1/6/< 11 >/16 4.69 53M/38.3 NA/>1000 47K/142K/>1000
Cubic filter 3/3/< 24, 28, 31 >/32 9.47 NA/>1000 NA/>1000 120K/366K/>1000
Degree-4 filter 1 3/4/< 15, 11, 13 >/16 16.4 NA/>1000 NA/>1000 69K/205K/>1000
Degree-4 filter 2 1/4/< 12 >/16 4.95 30M/21.3 NA/>1000 25K/76K/>1000
Savitzky-Golay filter 5/3/< 16, 16, 14, 12, 8 >/16 14.25 NA/>1000 NA/>1000 64K/190K/>1000
4th Order IIR 2/4/< 24, 29 >/32 11.12 NA/>1000 NA/>1000 214K/647K/>1000
MIBENCH 2/9/< 16, 12 >/16 22.9 26M/16.7 NA/>1000 24K/69K/>1000
Horner Polynomial 1 3/4/< 14, 14, 16 >/16 4.46 NA/>1000 2355 / 85 14K/44K/>1000
Horner Polynomial 2 3/4/< 10, 8, 16 >/16 4.71 NA/>1000 1574 / 47 12K/37K/>1000
Horner Polynomial 3 2/4/< 13, 13, 16 >/16 4.97 NA/>1000 6803 / 246 23K/70K/>1000
Vanishing polynomial 2/10/< 12, 12 >/16 2.19 NA/>1000 NA/>1000 10K/29K/>1000
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