
Strong Conflict Analysis for Propositional Satisfiability
∗

HoonSang Jin
CAE center, System LSI division

Semicon. Business, Samsung Elec. CO., LTD

Fabio Somenzi
University of Colorado at Boulder

Dept. of Electrical and Computer Engineering

Abstract

We present a new approach to conflict analysis for propositional

satisfiability solvers based on the DPLL procedure and clause record-

ing. When conditions warrant it, we generate a supplemental clause

from a conflict. This clause does not contain a unique implica-

tion point, and therefore cannot replace the standard conflict clause.

However, it is very effective at reducing excessive depth in the im-

plication graphs and at preventing repeated conflicts on the same

clause. Experimental results show consistent improvements over

state-of-the-art solvers and confirm our analysis of why the new

technique works.

1. Introduction
The satisfiability of a propositional formula is one of the most

studied problems in computer science, from both the theoretical

and the practical standpoints. Algorithm based on techniques like

stochastic local search [5, 15], backtracking search [18, 21, 10, 6],

and Stålmarck’s proof procedure [16] have been implemented; their

increasing efficiency has led to more problems being tackled by re-

duction to SAT. In EDA, in particular, most successful satisfiability

(SAT) solvers employ variants of the David-Putnam-Logemann-

Loveland (DPLL) procedure [3], which is based on backtracking

search. Recent solvers improve over the classical DPLL proce-

dure in several ways. Clause recording based on conflict analysis

and non-chronological backtracking [18] have been introduced to

prune the search space. Efficient implementations like those based

on two-watched literal schemes [10] enhance the speed of implica-

tion. The choice of the decision variables also has a large impact

the search time. Hence, considerable attention has been devoted to

the problem. (See, for instance, [17, 10, 6, 8].)

Among these techniques, of interest to us are conflict analysis

and clause recording: When a conflicting assignment is found, it is

analyzed to identify a subset that is still conflicting. The disjunc-

tion of the negation of the literals in the subset is a conflict-learned

clause (or, more concisely, a conflict clause) that can be added to

the given SAT instance to prevent the examination of regions of the

search space that are guaranteed to contain no solutions. Not all

conflict clauses are worth keeping; many SAT solvers periodically

discard those that have proved ineffective. Experimental evidence

[18, 21, 10, 22] shows that conflict analysis can be efficiently im-

plemented to solve problems of industrial scale. One may argue

that effective conflict analysis is the most significant mechanism in

scaling DPLL to realistic problems because it directly affects the

∗This work was supported in part by SRC contract 2004-TJ-920.

fraction of the search space that must be explicitly explored. De-

spite its importance, however, there has been little recent work on

conflict analysis.

The SAT solver Grasp [18] used conflict clauses (called no-goods

to guide the exploration of the search space. A clause containing

a Unique Implication Point (UIP) becomes asserting after back-

tracking, and therefore guarantees progress in the examination of

the possible solutions. The authors of [22] studied several ways of

extracting a clause containing a UIP from the chains of implica-

tions that led to a conflict (the so-called implication graph of the

conflict) and found that choosing the first UIP (i.e., the one closest

to the conflict) worked best.

A compact conflict clause, which contains few literals, is benefi-

cial because it leads to fast Boolean Constraint Propagation (BCP)

and detects conflicts earlier. Moreover, it prunes more of the search

space. A conflict clause is the result of a series of resolutions steps

applied to the current conflicting clause. We are more likely to

find a compact conflict clause if we start from compact clauses in-

volved in the current conflict. Therefore, improving the quality

of conflict clauses tends to have a rippling effect and may lead to

dramatic speedups. In difficult SAT instances, solvers often spend

inordinate amounts of time on comparatively small fractions of the

search space. We call such small sets of configurations hot spots.

The existence and location of such hot spots obviously depends on

the SAT algorithm and one objective of an effective conflict analy-

sis procedure is to reduce their occurrence as much as possible by

adding appropriate conflict clauses. Though clauses based on first

UIPs are better than other UIP-based clauses, they do not directly

address the issue of hot spots.

Just as different clauses may be derived from the same impli-

cation graph, different implication graphs may be obtained from

the same sequence of decisions, depending on the order in which

implications are propagated. Two recent papers propose improve-

ments in the quality of the conflict clauses obtained by modifying

the implication graph produced by the SAT solver. The authors of

[4] point out that even though conflict analysis may start from the

same conflicting clause, it may produce different conflict-learned

clauses on different implication graphs. They propose a method

that updates the antecedents of a variable if a smaller clause is

found while propagating implications so that the conflict analysis

may find a smaller conflict clause.

Shrinking is a technique, used in the Jerusat solver [11], that re-

moves some literals from a conflict clause generated by conflict

analysis. To do so, it backtracks enough to undo all assignments to

the literals in the clause, and then re-applies only the assignments

in the clause. This creates a new, often smaller, implication graph

for the same conflict. Unfortunately, shrinking is quite an expen-

sive operation because of the amount of backtracking required, and

it does not guarantee a reduction in the number of literals. Multiple

conflict analysis is another way to enhance conflict analysis. How-

ever, it is a costly technique, which should be guided by a good

criterion to limit as much as possible its application to unprofitable

cases.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



0

500

1000

1500

2000

2500

3000

44000 44100 44200 44300 44400

N
u

m
b

er
 o

f 
co

n
fl

ic
t 

o
cc

u
re

n
ce

s

Clause index

1

10

100

1000

10000

0 10 20 30 40 50 60

n
u

m
b

er
 o

f 
co

n
fl

ic
t 

o
cc

u
re

n
ce

s

depth from conflict to first UIP

Figure 1: Distributions of conflict occurrences (left) and implica-

tion graph depth (right) for SAT instance “c880”

In our experience, techniques that restructure the implication

graph must be used sparingly because they tend to be expensive

and they are often ineffective. In this paper we focus instead on a

stronger conflict analysis, one that often learns better clauses than

those including the first UIP. We observe that there are many cases

when multiple conflicts occur on one clause. A clause generated by

conflict analysis prevents the same conflict from occurring again.

However, the current conflict analysis is not strong enough to pre-

vent further conflicts on the same clause. When this happens, the

clauses learned through conflict analysis are often ineffective at

pruning the search. The left part of Fig. 1 shows an example of

distribution of conflicts. The x axis gives the clause index and the

y axis shows how many times that clause is the site of a conflict

during the SAT solver run. There is a reasonable number of cases

in which many conflicts happen on the same clause. Our approach

learns two clauses for such conflicts. One clause contains the first

UIP: Its main responsibility is to drive the search forward. The sec-

ond clause is devoted to a better pruning of yet-to-be-visited parts

of the search space. It is generated when the first clause is likely

to be ineffective and the chance of repeated conflicts on the same

clause is deemed high.

The right part of Fig. 1 shows that there is a significant varia-

tion in the depth of the implication graphs between the conflict and

the first UIP. The depth is here measured in terms of the longest

path in the (acyclic) graph. This depth is one of our metrics to de-

cide whether to expect repeated conflicts and whether supplemental

clauses would be beneficial.

The rest of this paper is organized as follows. Background mate-

rial is covered in Section 2. The motivation of the proposed method

is examined in Section 3. Section 4 discusses our algorithm, while

experimental results are presented in Section 5, and conclusions in

Section 6.

2. Preliminaries
In this paper we assume that the input to the SAT solver is a for-

mula in Conjunctive Normal Form (CNF). This assumption sim-

plifies the description of the algorithms, which, however, can be

extended to non-clausal formulae.

A CNF formula is a set of clauses; each clause is a set of literals;

each literal is either a variable or its complement. The function of

a clause is the disjunction of its literals, and the function of a CNF

formula is the conjunction of its clauses.

Conflict analysis relies on a Directed Acyclic Graph (DAG) called

the implication graph. Each vertex of this graph corresponds to a

variable that is assigned either by decision or by implication. An

edge connects a pair of vertices if they are antecedent and conse-

quent of an implication. Whenever an implication takes place, the

implication graph is extended by adding edges from the antecedents

of the implication to its consequent. The roots of the implication

graph correspond to decision assignments, while the conflicting as-

signments, when they are identified, are among the leaves. Every

vertex cutset of the implication graph corresponds to a partial as-

signment sufficient to imply the conflict. Hence, from any such

cut of the graph one can derive a conflict clause by disjunction of

the negation of the literals in the cutset. If a cut contains only one

literal assigned at a certain decision level, such literal is a Unique

Implication Point (UIP).

Figure 2 shows an example of UIP. In the figure, the label of a

node represents the value assigned to the variable. For example,

x18 and ¬x18 denote x18 = true and x18 = false, respectively. A

gray circle represents a decision made at an earlier decision level,

while a dark circle represents the conflicting condition. The other

nodes are variables that are decided or implied at the current de-

cision level. The dashed line labeled “cut1” shows the result of

conflict analysis based on the first UIP and the conflict clause. As

shown in the figure, there may be more than one UIP in the impli-

cation graph. The clauses corresponding to “cut1” and “cut2” con-

tains UIPs x10 and x14, respectively; x14 is the first UIP, since it is

the UIP closest to the conflict. The conflict clause analysis based

on the first UIP detects the conflict clause (¬x4 ∨¬x5 ∨¬x14) and

adds it to the clause database. Then, the solver backtracks to the

highest decision level in the conflict clause, except the current de-

cision level, which is the higher level between those of x4 and x5.

Deduce will immediately find the implication x14 = false, since

there is only one variable unassigned and the other literals are as-

signed to false. We say that the conflict clause is asserting. Conflict

clauses based on the first UIP have been empirically found to work

well [22].

The termination of SAT solvers that use conflict clauses based

on UIPs was studied in [23]. The termination proof relies on the

conflict clause becoming asserting after backtracking. The proof

defines a progress measure on the states of the solver. In particular

it looks at the contents of the decision stack every time Boolean

Constraint Propagation (BCP) is completed, either due to a new

decision or to a backtrack.

x1

x10

x2

x12

x11

x13

x4

x5

x15

x18x16

¬x18

x14

x17

x3

cut2

conflict

cut1

Figure 2: Example of unique implication point

3. Motivation
Any cut of the implication graph can be used to build a con-

flict clause, even though a clause with multiple literals from the

current decision level cannot generate further implications after

backtracking. In Fig. 3 the dashed line labeled “cut1” shows the

result of ANALYZECONFLICT(). Based on it, the conflict clause

(¬x10 ∨¬x3 ∨¬x4 ∨¬x5 ∨¬x6), which contains the first UIP, is

added to the clause database. We can also add the clauses based on

“cut2” and “cut3”, since they are also generated by series of resolu-

tions. For example, the conflict clause (¬x13 ∨¬x14 ∨¬x4 ∨¬x6)

corresponds to “cut3.”



x10

x12

x11

conflict

¬x17
x13

x14 x16

x15

x17

x5 x6

x3 x4

cut2

cut3

cut1

Figure 3: Example of conflict clauses based on arbitrary cut

Suppose the conflict clause (¬x10 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6)

is added to the clause database and causes backtracking to a certain

earlier decision level. Suppose next that x1 = true is assigned by

decision making and that BCP creates the implication graph shown

in Figure 4. This graph is similar to the one of Figure 3 and the

conflicting clause is the same. This is indeed a case of multiple

conflicts on the same clause. In our example, the assignment x2 =

true also results in a similar implication graph. Each time, the

learned conflict clause is different.

x10

x2

x12

x11 x13

x14

x1

x3

x5

x10

x12

x11

conflict

¬x17
x13

x14 x16

x17

x5 x6

x3 x4

x15

Figure 4: Example of creating similar implication graph

Suppose the conflict clause (¬x13 ∨ ¬x14 ∨ ¬x4 ∨ ¬x6) based

on “cut3” is added to the database besides the UIP-based conflict

clause. When the assignment x1 = true is later made, this clause

will cause a conflict after fewer implications. This will lead to a

simpler implication graph. It turn, this is likely to lead to a more

concise conflict clause.

Since, in many cases, we can prune more of the search space with

a more compact conflict clause, the addition of the second conflict

clause may have a substantial rippling effect. An attempt was made

in [12] to use intermediate conflict clauses generated by arbitrary

cuts of the implication graph, but effective criteria for when those

clauses are useful and for how to make them useful were not identi-

fied. In this paper we propose a detailed criterion and rationale for

using supplemental conflict clauses.

The two conflict clauses—one containing the first UIP, and the

other corresponding to a cut close to the conflict—play different

roles. The former becomes asserting after backtracking and, hence,

is responsible for termination. The new conflict clause is used to

prune the search space.

Adding clauses to the database indiscriminately may substan-

tially slow down BCP. To prevent this, supplementary clauses should

be generated only when there is reasonable expectation that they

will be useful.

Conflict clauses based on first UIPs are preferred to other UIP-

based clauses because they usually have fewer literals and are close

to the conflict in the implication graph so that they may block con-

flicting conditions more efficiently. However, there are cases when

the first UIP is the decision variable. Such a first UIP may be far

away from the conflict. If that is the case, we may have conflicts

on the same conflicting clause in the future and we should add

other clauses. Notice since most SAT solvers periodically delete

1 ANALYZECONFLICTSTRONG(c, cl) {
2 bl = 0;

3 size = MAXINT;

4 nBacktrace = 0;

5 cut = ∅;

6 learned = ∅;

7 H = QUEUEINITIALIZE();

8 bl = ANALYZECONFLICTAUX(H, learned, bl, clause, cl);

9 while (lit = EXTRACTMAXINDEX(H)) {
10 if (SIZE(H) == 0) {
11 learned = learned ∪ lit;

12 break ;

13 }
14 if (nBacktrace > BOUND && size > SIZE(H)) {
15 cut = learned ∪ lit ∪ All elements of H;

16 size = SIZE(H);

17 }
18 ante = ANTECEDENT(lit);

19 bl = ANALYZECONFLICTAUX(H, learned, bl, ante, cl);

20 nBacktrace++;

21 }
22 ADDCONFLICTCLAUSE(learned);

23 ADDCONFLICTCLAUSE(cut);

24 return (blevel);

25 }

Figure 5: Proposed conflict analysis algorithm

ineffective conflict clauses, the overhead due to these supplemental

clauses can be kept low.

4. Algorithm
In [4] multiple conflict clauses are derived from analyzing differ-

ent conflicting clauses that are produced by continuing BCP after

the first conflict is detected. By contrast, in our approach, even

though we add multiple conflict clauses, we concentrate on one

conflict analysis. By adding multiple conflict clauses from a single

conflict, we try to prevent further conflicts from reaching the same

clause and simplify the future implication graphs as a consequence.

In this work we add one more conflict clause when it is needed. It

is natural to consider adding more clauses based on different cuts;

we are currently investigating a good criterion for the addition of

multiple conflict clauses.

Figure 5 shows the pseudocode of our proposed strong conflict

analysis. A conflict clause containing more than one variable as-

signed at the current decision level is detected in addition to the first

UIP-based conflict clause. This additional conflict clause tends to

have fewer variables, since it is closer to the conflict.

During conflict analysis, every resolution step produces a cut in

the graph. The initial cut is at the conflict site; successive reso-

lutions move it backward toward the roots. The procedure keeps

track of the number of variables assigned at the current decision

level in the cut. The variables assigned at earlier decision levels are

saved in “learned” of Figure 5 while backtracing the implication

graph. By collecting the literals in “learned” and those in the pri-

ority queue “H”, we can generate the conflict clause based on the

current cut.

The pseudocode of Figure 5 ignores some details for the sake

of clarity. The real implementation applies a filter to select better

conflict clauses. Cuts that are too close to the conflict are avoided,

since their ability to block inconsistent assignments is too similar



to that of the conflicting clause. On the other hand, if a cut is too

close to the decision variable then it is seldom effective at blocking

conflicts from other sources of implication. (See Fig. 4.) Therefore

the procedure tries to locate a cut half way between decision and

conflict. The distance is measured by the depth in the implication

graph. The size of the cut should also be taken into account: If

it is too close or larger than the size of the first UIP cut, then the

effectiveness of the supplemental clause will be reduced. If we

cannot find such a clause then we choose a cut that constains less

than 2/3 of the literals of the UIP-based conflict clause. Finally, we

only generate a supplemental clause if there has been a previous

conflict on the same clause or if the UIP is the decision variable at

the current level.

The generation of a family of similar implication graphs is one

reason why the search spends excessive time on a hot spot. This

problem is addressed by the addition of clauses based on alternate

cuts of the implication graph. Redundancy in conflict clauses is

another reason for the search to dwell in a hot spot. The shrink-

ing method of [11] can be effective in removing such redundancy.

However, we invoke it only when the number of conflicts on a given

clause exceeds a threshold because it is very expensive.

The additional clauses produced by ANALYZECONFLICTSTRONG

help simplify future implication graphs, since conflicts may occur

on these additional clauses. It is likely that a simpler implication

graph generates more concise conflict clauses. This is helpful in

pruning the search space and in resolving the empty clause earlier.

5. Experimental Results
We have implemented the proposed conflict analysis algorithm

in CirCUs [8, 7, 9]. To show its efficiency we conduct three sets of

experiments. To emphasize robustness, the hard equivalence check-

ing benchmarks and microprocessor formal verification benchmarks

used in the annual SAT competitions are selected. A set of Bounded

Model Checking (BMC [2, 7]) benchmarks are also included since

BMC is a prime example of a problem that is tackled by reduction

to SAT. The industrial benchmarks of the SAT 2004 competition

[13] are also used for our experiments. The value of the BOUND

parameter in ANALYZECONFLICTSTRONG() is 10 and the shrink-

ing method is invoked only when the number of conflicts on the

conflicting clause exceeds 10.

The first set of experiments have been performed on 2.4 GHz

Pentium IV with 1GB of RAM running Linux. We have set the

time out limit to 10,000 s. Table 1 compares the CPU time, the

numbers of decisions and conflicts of three SAT solvers, namely

CirCUs (with strong conflict analysis), BerkMin561 [1], Zchaff

(2004.11.15) [20] and SatELiteGTI [14]. In the table, ‘TO’ denotes

time out cases and ‘MO’ denotes memory out cases. BerkMin561

is a close relative of forklift, which was winner of the 2003 SAT

competition for the industrial benchmarks. We use BerkMin561

since it is the only version that is publicly available. Zchaff is

the winner of the 2004 SAT competition in the industrial cate-

gory. SatELiteGTI is the winner of the 2005 SAT competition in 5

categories including the industrial category. The hard equivalence

checking and CPU verification instances (namely 12pipe bug) are

used for this set of experiments. If no solver can solve an instance

within the time limit, then the instance is excluded from the table.

CirCUs shows rather consistent improvement over BerkMin561,

Zchaff, and SatELiteGTI. Table 2 compares the CPU times, and

the numbers of decisions and conflicts of CirCUs with and without

the proposed strong conflict analysis. The performance of CirCUs

without proposed conflict analysis is comparable to that of Zchaff.

As one can see in the table, the improvements are clearly from the

proposed method. Even though it adds more conflict clauses from

Table 2: Comparison Table of CirCUs with and without Strong

Conflict Aanalysis

new CirCUs old CirCUs

name CPU # Dec # Conf CPU # Dec # Conf

c880 20 126k 55k 312 530k 341k

c3540 983 747k 449k TO TO TO

c7552 41 347k 38k 51 370k 46k

dalu 3,469 1,597k 829k TO TO TO

des 252 1,412k 70k 264 1,493k 70k

frg1 4,987 1,632k 1,201k TO TO TO

frg2 331 842k 175k 814 1,189k 373k

i10 3,098 1,515k 737k TO TO TO

i8 3,802 1,955k 620k TO TO TO

rot 155 466k 187k 4323 2,324k 1,591k

term1 329 328k 228k TO TO TO

vda 586 391k 254k 578 538k 307k

bug1 130 156k 12k 4390 2,857k 626k

bug2 239 305k 26k 213 191k 210k

bug3 63 102k 4k 1125 662k 151k

bug4 18 44k 1k TO TO TO

bug5 281 316k 31k 90 115k 10k

bug6 1 10k 0.06k 14 10k 0.06k

bug7 546 319k 62k 3015 2,034k 418k

bug8 19 60k 0.6k 3041 2,035k 447k

bug9 90 136k 11k 86 100k 12k

bug10 313 345k 33k 4681 3,084k 756k

Table 3: Number of average literals in conflict clauses

CNF name new CirCUs old CirCUs speed-up

frg2 26.9 105.1 2.5X

rot 26.5 86.6 27.7X

c880 17.4 48.5 15.5X

c7552 15.4 28.6 1.3X

des 42.6 86.1 1.1X

vda 108.1 242.3 1.0X

one conflict, CirCUs ends up with fewer conflict clauses. This

shows the ability of the proposed conflict analysis to prune the

search space. We also found that the shrinking method is still ex-

pensive in spite of its limited application in CirCUs. The criterion

for shrinking should be further investigated.

Table 3 shows the average number of literals in conflict clauses.

When it obtains a big improvement in CPU time, typically the new

CirCUs generates much more concise conflict clauses than the old

CirCUs. This observation backs up our claim that concise conflict

clauses can be generated thanks to the additional conflict clauses.

The second experimental setup is as follows. We build BMC

instances with given Linear Time Logic (LTL) properties from the

VIS benchmark suite [19]. We check for paths of length up to 20.

These experiments have been performed on 1.7 GHz Pentium IV

with 1 GB of RAM running Linux with a 10,000 s timeout. Figure 6

(left) shows the log-log scatterplot comparing CirCUs to Zchaff.

The upper line is the diagonal. The lower line is a regression curve

of the form y = κ · x
η , where κ and η are obtained by least-

square fitting. The separation of the two lines indicates that the

new conflict analysis provides a speedup over Zchaff.

We conducted the third set of experiments on the SAT2004 com-

petition benchmark set. One can find more information on these



Table 1: Comparison Table of CirCUs, BerkMin561, Zchaff and SatELiteGTI

CirCUs BerkMin561 Zchaff SatELiteGTI

name CPU #Dec #Conf CPU # Dec # Conf CPU # Dec # Conf CPU # Dec # Conf

c880 20 126k 55k 68 301k 152k 5,378 2,009k 1,200k 67 928k 435k

c3540 983 747k 449k 2,935 3,362k 1,911k TO TO TO 4705 9,706k 5,220k

c7552 41 347k 38k 70 645k 49k 126 643k 35k 28 406k 40k

dalu 3,469 1,597k 829k TO TO TO TO TO TO TO TO TO

des 252 1,412k 70k 349 1,935k 72k 551 1,795k 61k 169 1,795k 68k

frg1 4,987 1,632k 1,201k TO TO TO TO TO TO TO TO TO

frg2 331 842k 175k 1,260 2,518k 528k 2,475 2,974k 359k 454 2,441k 465k

i10 3,098 1,515k 737k TO TO TO TO TO TO TO TO TO

i8 3,802 1,955k 620k 3,276 6,635k 1,107k TO TO TO 1208 2,999k 519k

rot 155 466k 187k 809 1,806k 588k 664 1,457k 213k 265 1,362k 654k

term1 329 328k 228k 910 1,087k 661k TO TO TO 3849 7,572k 5,487k

vda 586 391k 254k 572 484k 336k 3,384 1,623k 413k 396 559k 309k

bug1 130 156k 12k 211 304k 23k 3,408 1,828k 47k MO MO MO

bug2 239 305k 26k 238 342k 26k 4,365 2,323k 60k 40 77k 1k

bug3 63 102k 4k 209 268k 24k 3,902 1,956k 50k 46 158k 13k

bug4 18 44k 1k 141 237k 14k 2,685 1,491k 35k 34 27k 0.2k

bug5 281 316k 31k 2521 2,892k 329k TO TO TO 35 149k 10k

bug6 1 10k 0.07k 69 108k 7k 2 8k 0.02k MO MO MO

bug7 546 319k 62k 2159 2,549k 283k 3,826 1,995k 52k 40 122k 5k

bug8 19 60k 0.6k 7 10k 0.6k 457 387k 7044 MO MO MO

bug9 90 136k 11k 2490 2,843k 323k 3,069 1,713k 42k 35 71k 1k

bug10 313 345k 33k 39 63k 4k 4,289 2,321k 57k 40 105k 5k

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

C
ir

C
U

s:
 t

im
e 

(s
)

Zchaff: time (s)

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

C
ir

C
U

s:
 t

im
e 

(s
)

zChaff: time (s)

Figure 6: Comparison on BMC benchmark (left) and comparison

on SAT2004 competition benchmark (right)

benchmarks in the SAT’04 competition web page [13]. These ex-

periments also have been performed on 1.7 GHz Pentium IV with

1 GB of RAM running Linux with a 5,000 s timeout. The results

are summarized in Figure 6 (right).

We now consider two examples for further analysis: One that

shows a large improvement as a result of applying strong conflict

analysis (Figure 7), and one that shows only a modest improve-

ment (Figure 8). Figures 7 and 8 show the correlation between

the conciseness of the conflict clause and the depth of the implica-

tion graphs. In Figure 7 (right), strong conflict analysis reduces the

depth of the implication graphs much more than in Figure 8 (right).

There is good correlation between the ability to make the implica-

tion graphs shallow and the speedup. The reduction in the numbers

of literals in conflict clauses are shown in the left parts of Figure 7

and 8. These data support our claim that additional conflict clause

and shallower graphs result in fewer literals per clause. We cannot

get a significant improvement with the proposed algorithm on the

1

10

100

1000

0 50 100 150 200 250

N
u

m
b

er
 o

f 
co

n
fl

ic
t 

cl
au

se
s

Number of literals in conflict clause

without strong
with strong

1

10

100

1000

10000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f 
co

n
fl

ic
ts

Depth from conflict to first UIP

without strong
with strong

Figure 7: Conflict occurrences versus number of literals (left) and

number of conflicts versus implication graph depth (right) for in-

stance “c880”

1

10

100

1000

10000

0 20 40 60 80 100

N
u

m
b

er
 o

f 
co

n
fl

ic
t 

cl
au

se

Number of literals in conflict clause

without strong
with strong

1

10

100

1000

10000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f 
co

n
fl

ic
t

Depth from conflict to first UIP

without strong
with strong

Figure 8: Conflict occurrences versus number of literals (left) and

number of conflicts versus implication graph depth (right) for in-

stance “des”



0

500

1000

1500

2000

2500

3000

44000 44100 44200 44300 44400

N
u

m
b

er
 o

f 
co

n
fl

ic
t 

o
cc

u
re

n
ce

s

Clause index

0

100

200

300

400

500

600

700

38150 38160

N
u

m
b

er
 o

f 
co

n
fl

ic
t 

o
cc

u
re

n
ce

s

Clause index

Figure 9: Distributions of conflict occurrences for “c880” (left) and

for “des” (right)

“des” benchmark because there is not much room for improving

the depth of the implication graphs.

Figure 9 shows the distribution of conflict occurrences for in-

stances “c880”and “des”. Only the parts of the graphs where the

conflict occurrences exceed 50 are shown, since the full graphs are

too large. One can easily identify that only 12 clauses of “des” have

more than 50 conflicts as compared to 369 clauses of “c880”. As

expected, our algorithm is more useful when there is a hot spot.

6. Conclusions
We have presented a strong conflict analysis procedure for propo-

sitional satisfiability that adds more than one conflict clause from

one conflict. We have shown that the additional conflict clauses

help reduce the number of literals in conflict clauses as well as the

depth of the implication graphs. The experimental results show

large improvements compared to the state-of-the-art SAT solvers.

Experimental evidence supports the claim that the performance gains

are indeed due to the improved conflict analysis.

Several details of the procedure warrant further study. For in-

stance, even though we have devised a criterion to apply the shrink-

ing method based on the occurrence of conflicts on the same clause,

the technique remains expensive in term of CPU time, and we need

to investigate a more efficient way of applying it.

Random restart techniques have been used to enhance several

SAT solvers. We conjecture that deep implication graphs and mul-

tiple conflicts on same clause make the search dwell in hot spots.

Therefore in some case, restarts help the search out of a hot spot.

Our strong conflict analysis should reduce the need for such ran-

dom restarts.

References

[1] URL: http://eigold.tripod.com/BerkMin.html.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model

checking without BDDs. In Fifth International Conference on

Tools and Algorithms for Construction and Analysis of Sys-

tems (TACAS’99), pages 193–207, Amsterdam, The Nether-

lands, Mar. 1999. LNCS 1579.

[3] M. Davis, G. Logemann, and D. Loveland. A machine pro-

gram for theorem proving. Communications of the ACM,

5:394–397, 1962.

[4] Z. Fu, Y. Mahajan, and S. Malik. New features of the SAT’04

versions of zChaff. SAT Competition 2004 - Solver Descrip-

tion, May 2004.

[5] I. P. Gent and T. Walsh. Towards an understanding of hill-

climbing procedures for SAT. In Proceedings of 11th Na-

tional Conference on Artificial Intelligence, 1993. ISBN

0262510715.

[6] E. Goldberg and Y. Novikov. BerkMin: A fast and robust

SAT-solver. In Proceedings of the Conference on Design, Au-

tomation and Test in Europe, pages 142–149, Paris, France,

Mar. 2002.

[7] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfia-

bility solver geared towards bounded model checking. In

R. Alur and D. Peled, editors, Sixteenth Conference on Com-

puter Aided Verification (CAV’04), pages 519–522. Springer-

Verlag, Berlin, July 2004. LNCS 3114.

[8] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver.

In International Conference on Theory and Applications of

Satisfiability Testing (SAT 2004), Vancouver, Canada, May

2004.

[9] H. Jin and F. Somenzi. An incremental algorithm to

check satisfiability for bounded model checking. Elec-

tronic Notes in Theoretical Computer Science, 2004. Sec-

ond International Workshop on Bounded Model Checking.

http://www.elsevier.nl/locate/entcs/.

[10] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-

lik. Chaff: Engineering an efficient SAT solver. In Proceed-

ings of the Design Automation Conference, pages 530–535,

Las Vegas, NV, June 2001.

[11] A. Nadel. The Jerusat SAT solver. Master’s thesis, Hebrew

University of Jerusalem, 2002.

[12] L. Ryan. Efficient algorithm for clause-learning SAT solvers.

Master’s thesis, Simon Fraser University, 2004.

[13] URL: http://www.lri.fr/∼simon/contest/results.

[14] URL: http://www.cs.chalmers.se/Cs/Research/ FormalMeth-

ods/MiniSat/MiniSat.html.

[15] B. Selman, H. Kautz, and B. Cohen. Local search strategies

for satisfiability testing. In Cliques, Coloring, and Satisfiabil-

ity: Second DIMACS Implementation Challenge, oct 1993.

[16] M. Sheeran and G. Stålmark. A tutorial on Stålmark’s proof

procedure for propositional logic. In G. Gopalakrishnan and

P. Windley, editors, Formal Methods in Computer Aided De-

sign, pages 82–99. Springer-Verlag, Palo Alto, CA, Nov.

1998. LNCS 1522.

[17] J. P. M. Silva. The impact of branching heuristics in proposi-

tional satisfiability algorithms. In Proceedings of the 9th Por-

tuguese Conference on Artificial Intelligence (EPIA), Sept.

1999.

[18] J. P. M. Silva and K. A. Sakallah. Grasp—a new search al-

gorithm for satisfiability. In Proceedings of the International

Conference on Computer-Aided Design, pages 220–227, San

Jose, CA, Nov. 1996.

[19] URL: http://vlsi.colorado.edu/∼vis.

[20] URL: http://www.princeton.edu/∼chaff/zchaff/index1.html.

[21] H. Zhang. SATO: An efficient propositional prover. In Pro-

ceedings of the International Conference on Automated De-

duction, pages 272–275, July 1997. LNAI 1249.

[22] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Effi-

cient conflict driven learning in Boolean satisfiability solver.

In Proceedings of the International Conference on Computer-

Aided Design, pages 279–285, San Jose, CA, Nov. 2001.

[23] L. Zhang and S. Malik. Validating SAT solvers using an inde-

pendent resolution-based checker: Practical implementations

and other applications. In Design, Automation and Test in

Europe (DATE’03), pages 880–885, Munich, Germany, Mar.

2003.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



