
Quantifier structure in search based procedures for QBFs ∗

Enrico Giunchiglia Massimo Narizzano Armando Tacchella

DIST - Università di Genova Viale Causa 13, 16145 Genova, Italy

E-mail: enrico,mox,tac@star.dist.unige.it

Abstract

The best currently available solvers for Quantified

Boolean Formulas (QBFs) process their input in prenex

form, i.e., all the quantifiers have to appear in the prefix

of the formula separated from the purely propositional part

representing the matrix. However, in many QBFs deriving

from applications, the propositional part is intertwined with

the quantifier structure. To tackle this problem, the standard

approach is to first convert them in prenex form, thereby

loosing structural information about the prefix.

In this paper we show that conversion to prenex form is

not necessary, i.e., that it is relatively easy to extend cur-

rent search based solvers in order to exploit the original

quantifier structure, i.e., to handle non prenex QBFs. Fur-

ther, we show that the conversion can lead to the exploration

of search spaces bigger than the space explored by solvers

handling non prenex QBFs. To validate our claims, we

implemented our ideas in the state-of-the-art search based

solver QUBE, and conducted an extensive experimental

analysis. The results show that very substantial speedups

can be obtained.

1. Introduction

The use of Quantified Boolean Formulas (QBFs) to en-

code problems arising from various application domains,

expcecially from Formal Verifications, has attracted in-

creasing interest in recent years (see, e.g., [15, 1, 13]). The

application-driven quest for efficiency has in turn propelled

the research on decision procedures in order to deal with the

size and the complexity of the QBF encodings (see [3] for

a recent account on the state of the art in QBF reasoning).

Considering the best currently available solvers, all of them

assume that the input QBF

1. is in prenex form, i.e., all the quantifiers have to appear

in the prefix of the formula separated from the purely

propositional part; and

∗This work is partially supported by MIUR

2. is in conjunctive normal form (CNF), i.e., the proposi-

tional part of the formula (called matrix) consists of a set

of clauses.

However, in many QBFs deriving from applications, the

propositional part is intertwined with the quantifiers struc-

ture and the matrix is not in CNF. The situation is simpler

in the propositional satisfiability (SAT) case, corresponding

to QBFs in which all the quantifiers are existential: in SAT,

the first problem does not show up, and several papers have

been dedicated to efficient and effective conversions to CNF

and/or to the implementation of SAT solvers able to handle

non CNF formulas (see, e.g., [16, 7] for two recent papers

on these issues). The solutions devised in SAT to handle

non CNF formulas can be easily lifted to the more com-

plex QBF case. Still, in the QBF case we are left with the

first issue. Indeed, the standard solution is to convert any

non prenex QBF into a prenex one using standard quantifier

rewriting rules like

(∃xΦ(x) ∧ ∀yΨ(y)) 7→ ∃x∀y(Φ(x) ∧ Ψ(y))

or

(∃xΦ(x) ∧ ∀yΨ(y)) 7→ ∀y∃x(Φ(x) ∧ Ψ(y)).

However, in the resulting QBF, the information that x and y

are not one in the scope of the other is lost. Further, as the

above simple example shows, there can be more than one

rule applicable at each step and the result may vary depend-

ing on which rule is applied. In general, given a non prenex

QBF ϕ, there can be exponentially many QBFs (i) in prenex

form, (ii) equivalent to ϕ, and (iii) each of them obtainable

from ϕ using the above mentioned rewriting rules. Thus,

it is not clear which of these exponentially many QBFs is

best, i.e., leads to the best performances when coupled with

a QBF solver. Egly, Seidl, Tompits, Woltran and Zolda [6]

define four strategies which are guaranteed to be optimal in

the sense that the resulting QBF is guaranteed to belong to

the lowest possible complexity class in the polynomial hier-

archy. Their experimental analysis, conducted on a series of

instances encoding knowledge representation problems and

involving the best QBF solvers based on search, showed that

1

3-9810801-0-6/DATE06 © 2006 EDAA

the strategy delivering the best performances depends both

on the kind of instances and on the internals of the QBF

solver.

In this paper we show that conversion to prenex form is

not necessary, i.e., that it is relatively easy to extend current

search based solvers in order to exploit the original quanti-

fier structure, i.e., to handle non prenex QBFs. Further, we

show that the conversion can have severe drawbacks on the

heuristic and pruning techniques of the solvers, leading to

the exploration of search spaces bigger than the space ex-

plored by solvers handling non prenex QBFs. To validate

our claims, we implemented our ideas in the state-of-the-art

search based solver QUBE, and conducted an extensive ex-

perimental analysis. The results show that very substantial

speedups can be obtained.

2 The logic of QBFs

To focus on the problem we deal with, we consider QBFs

in which the quantifiers may be not in prenex form, but in

which the matrix is in CNF.

Consider a set P of variables. A literal is a variable or the

negation z of a variable z. In the following, for any literal l,

• |l| is the variable occurring in l; and

• l is l if l is a variable, and is |l| otherwise.

A clause is a finite disjunction of literals. Finally,

• if c1, . . . , cn are clauses, (c1 ∧ . . . ∧ cn) is a QBF,

• if Φ is a QBF and z is a variable, QzΦ is a QBF, where Q

is either the existential quantifier “∃” (in which case we

say that z and z are existential) or the universal quantifier

“∀” (in which case we say that z and z are universal). In

QzΦ, Φ is called the scope of Qz, and z is the variable

bound by Q.

• if Φ1, . . . , Φn are QBFs, (Φ1 ∧ . . . ∧ Φn) is a QBF.

For simplicity, we restrict our attention to closed QBFs, i.e.,

to QBFs in which each variable is bound by a quantifier.

For example,

∃x0(∀y1∃x1∃x2((x0 ∨ x1 ∨ x2) ∧ (y1 ∨ x1 ∨ x2)∧
(x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2))∧

∀y2∃x3∃x4((x0 ∨ x3 ∨ x4) ∧ (y2 ∨ x3 ∨ x4)∧
(x3 ∨ x4) ∧ (x0 ∨ x3 ∨ x4)))

(1)

is a closed QBF. Further, we assume that in a QBF there are

no two distinct quantifiers that bind the same variable. With

this assumption, we can represent any QBF as a pair

• the prefix, being a partially ordered set in

which (i) each element of the set has the form

〈quantifier, boundvariable〉; and (ii) two elements

〈Q1z1〉 and 〈Q2z2〉 in the set are in partial order (and we

write z1 ≺ z2) if and only if Q2z2 occurs in the scope of

Q1z1, and

• the matrix, consisting of a set of clauses.

Since we will use xi (resp. yi) to denote an existentially

(resp. universally) quantified variable,1 we can simply rep-

resent the prefix with the partial order. For example, the

prefix of (1) corresponds to the transitive closure of

x0 ≺ y1, y1 ≺ x1, x1 ≺ x2, x0 ≺ y2, y2 ≺ x3, x3 ≺ x4.

(2)

Notice that for a QBF in which no variable is in the scope

of another, our representation of the prefix will be empty.

About the matrix, we use the standard SAT notation, and

we represent each clause as the set of literals in it. Thus, the

matrix of (1) is written as

{{x0, x1, x2}, {y1, x1, x2}, {x1, x2}, {x0, x1, x2},
{x0, x3, x4}, {y2, x3, x4}, {x3, x4}, {x0, x3, x4}}

(3)

Consider a QBF ϕ with prefix ≺ and matrix Φ. The se-

mantics of ϕ can be defined recursively as follows. Define

the prefix level of a variable z as the length of the longest

chain z1 ≺ z2 ≺ zn ≺ z (n ≥ 0) in the prefix such that

zi and zi+1 are differently quantified. For instance, in (1)

the prefix level of x0 is 1, while both x1 and x2 have prefix

level 3. A variable z to be top in ϕ if it has prefix level 1.

If the matrix of ϕ is empty, then ϕ is true. If the matrix of

ϕ contains an empty clause, then ϕ is false. If z is top in ϕ

and z is existential (respectively universal), ϕ is true if and

only if the QBF ϕz or (respectively and) ϕz are true. If l is

a literal, ϕl is the QBF

• whose matrix is obtained from Φ by (i) eliminating the

clauses C such that l ∈ C, and eliminating l from the

other clauses in Φ; and

• whose prefix is obtained from ≺ by removing the pairs

|l|, z such that |l| ≺ z or z ≺ |l|.

3 Q-DLL

Most of the available QBF solvers assume that the input

formula is in prenex form. For us, a QBF ϕ is in prenex

form if its prefix is a total order.

Consider a QBF ϕ in prenex form, with prefix ≺ and

matrix Φ.

A simple procedure for determining the value of ϕ, starts

with ϕ and recursively simplifies the current ϕ to ϕz and/or

ϕz , where z is a heuristically chosen top variable in ϕ, till

either the empty clause or the empty set of clauses are pro-

duced: on the basis of the values of ϕz and ϕz , the value of

ϕ can be determined according to the semantics of QBFs.

Cadoli, Giovanardi and Schaerf [5] introduced various

improvements to this basic procedure.

1From a formal point of view, this amounts to divide the set P

of variables in two disjoint sets Px = {x, x1, x2, . . .} and Py =

{y, y1, y2, . . .}, being respectively the set of existentially and universally

quantified variables.

0 function Q-DLL (ϕ)

1 if (〈a contradictory clause is in ϕ〉) return FALSE;

2 if (〈the matrix of ϕ is empty〉) return TRUE;

3 if (〈l is unit in ϕ〉) return Q-DLL (ϕl);

4 l := 〈a top literal in ϕ〉;
5 if (〈l is existential〉) return Q-DLL (ϕl) or Q-DLL (ϕ

l
);

6 else return Q-DLL (ϕl) and Q-DLL (ϕ
l
).

Figure 1. The algorithm of Q-DLL.

The first improvement is that we can directly conclude

about the value of ϕ if Φ contains a contradictory clause. A

clause C is contradictory if it contains no existential literal.

An example of a contradictory clause is the empty clause.

The second improvement allows us to directly simplify ϕ

to ϕl if l is unit in ϕ. A literal l is unit in ϕ if l is existential

and for some m ≥ 0,

• a clause {l, l1, . . . , lm} belongs to Φ; and

• each literal li (1 ≤ i ≤ m) is universal and such that

|li| 6≺ |l|, i.e., it is not the case that |li| ≺ |l|.

With such improvements, the resulting procedure, called

Q-DLL , is essentially the one presented in [5], which

extends the famous Davis-Logemann-Loveland procedure

DLL for (SAT). Figure 1 is a simple, recursive presentation

of Q-DLL . In the figure, given a QBF ϕ,

1. FALSE is returned if a contradictory clause is in the ma-

trix of ϕ (line 1); otherwise

2. TRUE is returned if the matrix of ϕ is empty (line 2);

otherwise

3. at line 3, ϕ is recursively simplified to ϕl if l is unit;

otherwise

4. at line 4 a top literal l is chosen (and we say that l has

been assigned as a branch) and

• if l is existential (line 5), the “or” of the results of the

evaluation of ϕl and ϕ
l

is returned;

• otherwise (line 6), l is universal, and the “and” of the

results of the evaluation of ϕl and ϕ
l

is returned.

Q-DLL is correct: it returns TRUE if the input QBF is true

and FALSE otherwise.

As it is the case in SAT, real implementations of Q-DLL

extend the basic algorithm by allowing for more power-

ful simplification rules (e.g., pure literal fixing), intelligent

backtracking (e.g., nogood and/or good learning), heuris-

tics for deciding on which literal to branch on. Examples of

solver featuring the above characteristics are QUBE [11],

YQUAFFLE [17], and SEMPROP [12]: see the respective pa-

pers for more details.

4 Partial order vs Total order prefixes

Consider a QBF ϕ, with prefix ≺ and matrix Φ, and as-

sume that ≺ is arbitrary, i.e., not necessarily in prenex form.

As we already anticipated in the introduction, in order to

decide the value of ϕ, the standard approach is to first con-

vert ϕ into prenex form, and then use one of the available

solvers. This is the approach followed, e.g., in [6, 13]. The

conversion can be easily done by simply extending the pre-

fix till we get a total order. However, this can have some

serious drawbacks detailed in the following.

The first important observation is that Q-DLL in Fig-

ure 1 does not rely on ≺ to be a total order. In other words,

Q-DLL maintains its correctness even when the prefix of

≺ is not a total order. A possible execution of Q-DLL on

(1) is represented by the tree in Figure 2. In the Figure,

each node of the tree is labeled with a set of clauses and

is numbered according to the order in which Q-DLL ex-

plores the search space; the root node has the input matrix

(3) as label, and the other nodes contain the matrices result-

ing from the simplifications performed along the path from

the root to each of them; each leaf is marked with {{}} to

denote that the resulting set of clauses contains at least an

empty clause; branches in the tree correspond to the choice

of a literal whose both values have to be tried; straight lines

stand for unit literals or branching literals that are not sub-

ject to backtracking. As it can be seen from the figure, Q-

DLL may, e.g., assign x1 as a branch without having as-

signed y2 before (and this in a total order setting would

imply x1 ≺ y2) and assign y2 later2 as a branch without

having assigned x1 before (and this in a total order setting

would imply y2 ≺ x1): since it is not possible to have both

x1 ≺ y2 and y2 ≺ x1, the search tree showed in Figure 2

cannot be explored by Q-DLL if run on a QBF with the

same matrix and a total order prefix extending (2).

Even if Q-DLL can work with QBFs in non prenex form,

the advantage of having a totally ordered vs a partially or-

dered prefix is that the former is simpler to handle than the

latter. However there can be exponentially many, pairwise

non equivalent, prefixes extending the prefix of ϕ. Two pre-

fixes are equivalent if removing from them the pairs z, z′

such that both z and z′ are either existential or universal

leads to the same set of pairs. Given this fact, it is not clear

which of these prefixes is best, i.e., leads to the best perfor-

mances once coupled with the desired QBF solver. In [6],

the authors define four strategies which are optimal in the

sense that each strategy leads to an optimal prefix: there

is no prefix extending ≺ with a smaller number of alterna-

2Considering the QBF (1), it can be objected that both y1 and y2 could

be eliminated during the preprocessing since they are pure literal: a slightly

more complicated example in which this critique does not apply and all the

considerations we make still hold, can be obtained by simply adding the

two clauses {y1, x1, x2} and {y2, x3, x4} to the matrix.

1 : {{x0, x1, x2}, {y1, x1, x2}, {x1, x2}, {x0, x1, x2}, {x0, x3, x4}, {y2, x3, x4}, {x3, x4}{x0, x3, x4}}

2 : {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}, {y2, x3, x4}, {x3, x4}}

x0

y1

3 : {{}}

x1

x2

4 : {{}}

x1

x2

5 : {{y1, x1, x2}, {x1, x2}, {x3, x4}, {x3, x4}, {x3, x4}{x3, x4}}

x0

y2

6 : {{}}

x2

x3

7 : {{}}

x2

x3

Figure 2. Search tree of Q-DLL on the QBF with the matrix at the root and the prefix corresponding

to x0 ≺ y1, y1 ≺ x1, x1 ≺ x2, x0 ≺ y2, y2 ≺ x3, x3 ≺ x4.

tions.3 In the case of the QBF (1) the optimal prefixes are

the ones satisfying (2) and also: y1 ≺ x3, y2 ≺ x1. Obtain-

ing a QBF with a minimal number of alternations is an im-

portant property, at least theoretically: a QBF with k alter-

nations belongs to a complexity class which is contained in

the complexity class to which a QBF with k+1 alternations

belong, see [14]. However, in general there can be exponen-

tially many strategies which are optimal in the above sense,

i.e., there can be exponentially many, pairwise non equiva-

lent, and with the minimal number of alternations prefixes

extending a given prefix ≺. Further, the experimental anal-

ysis conducted in [6] shows that even restricting to the 4

optimal strategies there defined, the strategy delivering the

best performances depends both on the kind of instances

and on the internals of the QBF solver.

Furthermore, no matter which strategy is used, be it op-

timal or not, imposing a total order on the prefix can have

substantial drawbacks if a solver based on Q-DLL is used:

1. when deciding which literal to assign as a branch, the se-

lection is restricted among the top literals: imposing a to-

tal order on the prefix can severely limit the choice up to

the point that the heuristic becomes static. Considering,

e.g., an instance ϕ with three variables x1, x2 and y and

prefix either x1 ≺ x2 or y ≺ x2: the prefix according

to which x1 ≺ y ≺ x2 imposes a fixed, static ordering

on the atoms to branch on. In the case of the QBF (1),

we already pointed out that there is no total order allow-

ing to explore the search tree in Figure 2. Given that the

search tree in the Figure is optimal (any other search tree

possibly explored by Q-DLL on (1) has a bigger number

of literals assigned as branches) it trivially follows that

extending (1) to a total order will necessarily cause the

exploration of a search tree bigger than that in the figure.

2. when checking if a literal l is unit, we search for clauses

in which l is the only existential literal, and all the other

literals l′ are such that |l′| 6≺ |l|: in the case we extend

3The number of alternations in a QBF ϕ is the maximal of the prefix

levels of the variables in ϕ minus 1. The number of alternations in (1) is 2.

the prefix to a total order, for each pair of distinct liter-

als l and l′, either |l| ≺ |l′| or |l′| ≺ |l|, and as conse-

quence some literals may no longer be detected as unit.

In the case of the QBF (1), if we consider the clause

{y1, x2, x3, x4} obtained by resolving the second, fourth

and last of the clauses in (3), once, e.g., x2 and x3 are as-

signed to false, x4 can be propagated as unit: This would

not happen if the partial order is extended with y1 ≺ x4.

These kind of clauses can be generated either in the pre-

processing and/or during the search if the solver imple-

ments nogood and/or good learning.4

5 Exploiting Quantifier Structure in QUBE

We implemented the algorithm described in the previ-

ous section on top of the state-of-the-art solver QUBE [11].

QUBE reads instances in prenex form and features state-of-

the-art backtracking techniques, heuristics and data struc-

tures. To describe QUBE’s features prior to this work, we

use QUBE(TO) to denote the old version of QUBE solving

QBF instances in prenex form, and QUBE(PO) to denote

the version of QUBE modified in order to exploit the quan-

tifier structure.

QUBE(PO) main difference with respect to QUBE(TO)

is in the heuristic. The heuristic in QUBE(TO) is imple-

mented by associating a counter to each literal storing num-

ber of constraints c such that l ∈ c. Each time a constraint

is added, the counter is incremented; when a learned con-

straint is removed, the counter is decremented. In order to

choose a branching literal, QUBE(TO) stores the literals in

a priority queue according to (i) the prefix level of the cor-

responding atom, (ii) the score and (iii) the numeric ID.

Initially the score of each literal is set to the value of the

associated counter. Periodically, QUBE(TO) rearranges the

priority queue by updating the score of each literal l: this is

4It can be objected that once x2 and x3 are assigned, so it is also y1.

This is due to the extreme simplicity of our example. It is relatively easy to

build a more complex one, with more variables and clauses, in which x2

and x3 will be assigned as unit.

done by halving the old score and summing to it the vari-

ation in the number of constraints k such that l ∈ k, if l

is existential, or the variation in the number of constraints

k such that l ∈ k, if l is universal. In QUBE(PO), the or-

dering of the priority queue cannot be maintained using the

same set of conditions (i− iii) above. However, the condi-

tion that top-priority literals in the queue must correspond

to top atoms in the current QBF can be enforced by modi-

fying the score as follows. First, we consider the set S of

bottom atoms, i.e., all the atoms |l| such that there is no |l′|
where |l| ≺ |l′| in the prefix, and we assign them the basic

score. Then, we consider the set S′ of all the atoms |l| such

that |l| ≺ |l′| precisely when |l′| ∈ S, i.e., |l| is bottom: for

each such literal l, we add to the basic score the maximum

score among the literals l′ such that |l| ≺ |l′|. We repeat

the process, each time by letting S = S′ and computing the

new S′ as above. In this way, we guarantee that any two lit-

erals l, l′ that are incomparable (i.e., such that |l| 6≺ |l′| and

|l′| 6≺ |l|) are selected according to their heuristic scores, at

the same time respecting the condition that each branching

literal l corresponds to a top atom |l|.
The other essential modification has been the implemen-

tation of a data structure allowing for efficiently checking

whether two atoms z and z′ are in partial order. This check

is indeed at the basis of the unit detection procedure.

6. Experimental Analysis

To evaluate the effectiveness of QUBE(PO) vs

QUBE(TO), we first considered the same benchmarks

used in [6]. These QBFs are appealing since they can

be automatically generated not in prenex form, and/or in

prenex form according to the 4 different optimal strategies

defined in [6] and denoted with ∃↑∀↑, ∃↓∀↓, ∃↓∀↑, ∃↑∀↓.

The generator takes four parameters 〈DEP, VAR, CLS,

LPC〉 which have been set as follows: DEP is fixed to 6;

VAR is varied in {4, 8, 16}; CLS is varied in such a way

to have the ratio CLS/VAR in {1, 2, 3, 4, 5}; LPC is varied

in {3, 4, 5}. For each setting of 〈DEP, VAR, CLS, LPC〉
we have generated 100 problems, and for each problem

we obtained 4 different prenex QBF and one non prenex

QBF. Finally we have run QUBE(TO) and QUBE(PO) on

the prenex and non prenex instances respectively, on a farm

of 10 identical rack-mount PCs, each one equipped with a

3.2Ghz PIV processor, 1GB of main memory and running

Debian/GNU Linux. The timeout after which a solver is

stopped has been set to 600s.

On all these instances QUBE(PO) compares very well

with respect to QUBE(TO), especially if considering the

non trivial instances (i.e., with a running time ≥ 0.1s). The

first 4 rows of Table 1 gives a summary of the results. In the

table,

• “>” (resp. “<”) is the number of instances for which

> < = ≫ ≪ ⊲⊳ >10× 10×<

∃↑∀↑ 746 7 5247 370 1 1323 587 1

∃↓∀↓ 1061 0 4939 441 0 1324 847 0

∃↓∀↑ 1001 0 4999 425 0 1324 758 0

∃↑∀↓ 999 0 5001 425 0 1324 757 0

∃↑∀↑ 627 208 70 68 43 44 190 0

Table 1. QUBE(TO) vs QUBE(PO)

QUBE(TO) is slower (resp. faster) than QUBE(PO) of

more than 1s;

• “=” is the number of instances for which QUBE(TO) is

within 1s from QUBE(PO);

• “≫” (resp. “≪”) is the number of instances for

which QUBE(TO) (resp. QUBE(PO)) times out while

QUBE(PO) (resp. QUBE(TO)) does not;

• “⊲⊳” is the number of instances for which both

QUBE(TO) and QUBE(PO)) exceed the timeout;

• “>10×” (resp. “10×<”) is the number of instances which

are solved by both systems, but for which QUBE(TO) is

at least 1 order of magnitude slower (resp. faster) than

QUBE(PO).

As it can be seen, QUBE(PO) outperforms QUBE(TO) no

matter which prenexing strategy is used. To further high-

lights QUBE(PO) good performances, figure 3 left shows

the comparison between QUBE(PO) vs QUBE(TO) when

considering the best prenexing strategy for that instance

(in other words, for each problem we consider the mini-

mum of the QUBE(TO) running times when using the 4

different prenexing strategies). In the plot in Figure 3 left,

each solid-fill square dot represents a setting of the param-

eters, QUBE(PO) median solving time is on the x-axis (log

scale), while QUBE(TO) median solving time, calculated

as above specified, is on the y-axis (log scale). The diago-

nal (outlined diamond boxes) represents the solving time of

QUBE(PO) against itself and serves as reference: the dots

above the diagonal are settings where QUBE(PO) performs

better than QUBE(TO), while the dots below are the settings

where QUBE(PO) is worse than QUBE(TO). Even in such

disadvantageous scenario, QUBE(PO) is competitive with

QUBE(TO): QUBE(TO) median time exceeds the timeout

for some setting of the parameters while this is never the

case for QUBE(PO).

We also considered 905 formal verification problems

coming from the application described in [8], where QBF

reasoning is applied to model checking of early require-

ments. Each problem corresponds to a non prenex QBF.

As before, the non prenex QBF has been converted to a

prenex one using our implementation of the optimal prenex-

ing strategy ∃↑∀↑which, according to the results in the first

four rows of Table 1, gives the best performances. The re-

sults are summarized in the last row in Table 1 and in the

Figure 3. QUBE(TO) vs QUBE(PO). On the y(x) axis there are the QUBE(TO)(QUBE(PO)) times

plot in Figure 3 right. As it can be seen, the results are very

positive also in this case, even though not as impressive as

before: this is due to the particular structure of these in-

stances, which feature a few universal variables and a small

number of alternations. Still, QUBE(PO) performs better

than QUBE(TO) of more than one order of magnitude on

258 problems, compared to the 43 where the opposite hap-

pens (counting the instances solved by only one system).

7. Conclusions and related work

The main points of the paper can be summarized as:

• The basic search algorithm of QBF solvers can be ex-

tended to take into account the quantifier structure.

• The conversion of QBF instances exhibiting quantifier

structure into prenex form can have dramatic impacts (i)
on the effectiveness of the heuristic, and (ii) on the de-

tection of unit literals.

• Our experiments reveal that by taking into account the

quantifier structure we can get dramatic improvements in

the performance of the QBF solver.

The work mostly related to ours is [2]. In this work, the

author tries to re-construct the original non prenex structure

of the formula starting from the instance in total order. A

similar thing is also done in [4]. The essential difference

between [2, 4] and our work is that the solver we use is

based on search, while the solvers in [2] and [4] are mainly

based on quantifier elimination. For solvers based on quan-

tifier elimination, recovering or keeping the original quan-

tifier structure is fundamental in order to reduce the size of

each quantifier elimination operation. Notice that the solver

SKIZZO described in [2] is not entirely based on quanti-

fier elimination, since it uses different strategies –including

search– for trying to solve each problem. However, search

is the last attempted and thus the least used strategy, and it

is not clear how SKIZZO uses the quantifier structure during

the search. Finally, this is the first paper that we know of,

clearly addressing the quantifier structure problem and giv-

ing clear evidence that keeping the original quantifier struc-

ture pays off, at least when using search based solvers.

References

[1] A. Ayari and D. Basin. Bounded model construction for

monadic second-order logics. In Proc. CAV’00.
[2] M. Benedetti. Quantifier Trees for QBFs. In Proc. SAT’05.
[3] D. Le Berre, L. Simon, and A. Tacchella. Challenges in the

QBF arena: the SAT’03 evaluation of QBF solvers. In Proc.

SAT’03.
[4] A. Biere. Resolve and Expand. In Proc. SAT’04.
[5] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to

evaluate quantified Boolean formulae. In Proc. AAAI’98.
[6] U. Egly, M. Seidl, H. Tompits, and M. Zolda. Comparing

Different Prenexing Strategies for QBFs. In Proc. SAT’03.
[7] Z. Fu, Y. Yu, and S. Malik. Considering circuit observability

don’t cares in cnf satisfiability. In Proc. DATE’05.
[8] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,

and P. Traverso. Specifying and analyzing early require-

ments in Tropos. Requirements Engineering, 9(2):132–150,

2004.
[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learn-

ing for Quantified Boolean Logic Satisfiability. In Proc.

AAAI’02.
[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjump-

ing for Quantified Boolean Logic Satisfiability. Artificial

Intelligence, 145:99–120, 2003.
[11] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: an

Efficient QBF solver. In Proc. FMCAD’04.
[12] R. Letz. Lemma and model caching in decision procedures

for QBFs. In Proc. Tableaux’02.
[13] M. Mneimneh and K. Sakallah. Computing Vertex Eccen-

tricity in Exponentially Large Graphs: QBF Formulation

and Solution. In Proc. SAT’03.
[14] C. H. Papadimitriou. Computational Complexity. Addison-

Wesley, 1994.
[15] C. Scholl and B. Becker. Checking equivalence for partial

implementations. In Proc. DAC’01.
[16] D. Sheridan. The optimality of a fast CNF conversion and

its use with SAT. In Proc. SAT’04.
[17] L. Zhang and S. Malik. Conflict driven learning in a quanti-

fied Boolean satisfiability solver. In Proc. ICCAD’02.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

