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Abstract

In clock network synthesis, sometimes skew constraints
are required only within certain groups of clock sinks and
do not exist between different groups. This is the so-called
associative skew clock routing problem. Although the num-
ber of constraints is reduced, the problem becomes more dif-
ficult to solve due to the enlarged solution space. The per-
haps only previous work used a very primitive delay model
and cannot handle difficult instances in which sink groups
are intermingled. We reuse existing techniques to solve this
problem, including the difficult instances, based on a more
accurate and popular delay model. Experimental results
show that our algorithm can reduce the total clock routing
wirelength by 12% on average compared to greedy-DME
which is one of the best zero skew routing algorithms.

1. Introduction

Clock network is of paramount importance to both per-
formance and power efficiency of integrated circuits. A
common goal of clock network synthesis is to minimize
clock network size subject to skew constraints. Skew is de-
fined as the difference of clock signal arrival times at sinks
(or flip-flops). A small clock network usually implies less
power dissipation and power supply noise. Skew constraints
ensure that circuits operate properly at desired frequency.
In general, skew constraint may take one of the following
forms:
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• Zero skew [1, 5, 13]. This requires that clock signal ar-
rival times are the same for all sinks. Zero skew con-
straint is very popular in industry due to its simplic-
ity.

• Bounded skew. In this case, a skew does not have to be
zero and can be any value within a bound. The bound
can be either a global one for all sinks [4] or a local
one for each pair of clock sinks [12]. The relaxed skew
constraints normally lead to smaller clock network size
compared to zero skew routing.

• Prescribed skew [2,14]. The skew for each pair of sinks
is required to satisfy a usually non-zero target. This
is for the purpose of improving circuit operating fre-
quency [6, 9], reducing power supply noise [8] or im-
proving tolerance to variations [7].

Another form of skew constraint, associative skew, has
been rarely mentioned in literature before. In an associative
skew clock routing problem [3], the clock sinks are par-
titioned into a few groups. Skew constraints are required
only within each group and do not exist between different
groups. This problem is more difficult to solve than con-
ventional zero/prescribed skew routings because the reduc-
tion of constraints results in increased solution space to be
searched.

To the best of our knowledge, [3] is the only previ-
ous work attempting to solve this problem. Although sev-
eral heuristic solutions were proposed in [3], all of them
are based on a very primitive delay model which equalizes
clock signal delay with geometrical path length. Moreover,
they are effective only when the sink groups are geometri-
cally separated from each other. In the difficult but common
instances where the sink groups are intermingled, the algo-
rithms developed in [3] perform worse than a simple exten-
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sion to greedy-DME [5], which is one of the best zero skew
routing algorithms.

Why is there so few work on this problem? Perhaps peo-
ple have a simple solution in practice. That is, enforce ar-
bitrary or empirical skew constraints between each pair of
groups so that this problem becomes a conventional clock
routing problem. For example, one may require the skew
among all groups to be zero if intra-group skew constraint
is zero for all groups. In fact, this is the extension made
by [3] to greedy-DME [5] in order to compare their algo-
rithms. However, it is not obvious how to find the best inter-
group constraints for minimizing clock routing wirelength.
Our experiments show that an elaborated method can re-
duce wirelength by about 12% compared to the naive ap-
proach of adding zero skew constraints. Such amount of re-
duction may be unimportant for old technologies, but would
provide precious power savings in today’s power-hungry IC
designs [11]. Therefore, an elaborated solution to the asso-
ciative skew routing problem becomes increasingly neces-
sary, especially for the aforementioned difficult instances.
It is stated in [3]: “the key open issue is to find a heuris-
tic that consistently outperforms greedy-DME for the do-
main with intermingled sink groups.”

In this work, we will show that the associative skew rout-
ing problem can be solved by carefully modifying exist-
ing bounded skew routing algorithm [4] instead of seeking
completely new techniques as in [3]. Experimental results
on benchmark circuits with the difficult instances show that
our approach can reduce clock routing wirelength by 12%
on average compared to the extended greedy-DME method.
In other words, we solved the key open issue raised in [3].

2. Problem Formulation

In a clock tree, if clock signal delays to sink (flip-flop) a
and b are ta and tb, respectively, the skew between them is
defined as ta − tb. Given a set of clock sinks which are par-
titioned into k groups G1, G2, ..., Gk, each pair of sinks si,a

and si,b in the same group Gi have a certain skew constraint
but there is no skew constraint between any two sinks s i,a

and sj,b which belong to two different groups G i and Gj .
For the simplicity of discussions, we let intra-group skew
constraints be zero, i.e., clock signal delay to every sink in
the same group has to be the same. Our method can be ex-
tended to non-zero prescribed skew or bounded skew con-
straint easily. The associative skew tree (AST) routing prob-
lem is to construct a clock tree such that the total wirelength
is minimized while the intra-group skew constraints are sat-
isfied.

Compared to conventional zero/prescribed skew routing,
the formulation of AST implicitly leads to a by-product in
addition to the clock tree itself. That is the skew among dif-
ferent sink groups which is not available in the input. The

skew between group Gi and Gj is denoted as Si,j . In [3],
this inter-group skew is called offset. We need to specify the
inter-group skew Si,j for all groups either implicitly or ex-
plicitly in solving the AST problem.

3. Delay Model

In contrast to the previous work [3] which uses path
length based metric, we employ the Elmore delay model
as in many other clock routing works [1, 2, 4, 5, 12, 13]. Al-
though the Elmore delay is often inaccurate, it works very
well for clock tree routing. One major reason of the inac-
curacy is its neglection of the resistive shielding effect [10].
This is particularly significant when estimating the delay of
a node near the source. However, the delay estimations in
a clock tree are mainly for those far-end leaf nodes. More-
over, the error of skew estimation is usually very small de-
spite large errors on delay estimation. In other words, the
error in delay estimation is largely cancelled out in the sub-
traction operationwhen calculating skew. We have observed
this phenomenon when we compare the Elmore based skew
with SPICE simulation results.

4. Observation

Why is the previous work [3] incapable of handling
the instances where sink groups are intermingled? This is
because that [3] constructs subtrees for each sink group
separately and then stitches them together. Such approach
may result in wire overlaps between subtrees of different
groups despite the sophisticated stitching techniques [3].
In general, wire overlap implies inefficiency on wire us-
age. In Figure 1(a), two dark (light) sinks from the same
group are merged at node j (k). We use T j to represent
a subtree rooted at node j. Then, subtree T j and Tk are
merged at the source node. The intermingling among dif-
ferent sink groups implies strong proximity connections
among them. Therefore, constructing trees separately for
each group would conflict with such strong connections.
If we allow sinks from different groups (with different
grayscale) to be merged as in Figure 1(b), the wirelength
can be remarkably reduced.

5. Algorithm

5.1. Overview and Merging Order

The observation of previous section tells that we should
handle sinks from all groups simultaneously instead of sep-
arately in AST routing. This makes our AST construction
more like traditional approaches [1, 2, 4, 5, 12, 13] where
the clock tree is constructed by successively merging sub-
trees in a bottom-up manner. Initially, each subtree is a sin-
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Figure 1. Sink group is indicated by grayscale
of sinks. Constructing trees for each group
separately and then stitching them together
as in (a) may result in wire overlap and
large wirelength. Allowing mergings between
sinks from different groups as in (b) may re-
duce wirelength.

gle sink. Two subtrees can be merged to form a new sub-
tree. The merging is repeated till only one subtree is left
and this single subtree is connected to the clock source di-
rectly. Please note that this clock tree routing procedure is
independent of the location of clock source.

The merging order in our approach is the same as the
nearest neighbor method in the greedy-DME algorithm [5].
That is, we always first merge the pair of subtrees with the
minimum distance between their roots. When looking for
the min-distance pair, instead of comparing the distance of
all pairs, a nearest neighbor graph, which is a planar graph,
can be constructed to speed-up the search. In [5], the near-
est neighbor graph is built based on Delaunay triangula-
tion. We implement it according to a spanning graph [15]
which is better for Manhattan space. Please note that we al-
low sinks from different groups to be merged. This is the
key difference from the work of [3].

5.2. Layout Embedding

When merging two subtrees, we need to determine the
location of the root (merging node) of the new subtree
formed from the merging. The location of the root needs
to ensure that skews among sinks in the new subtree satisfy
skew constraints. For the Elmore delay based clock rout-
ings, such location can be found by solving an equation that
matches the delay of two subtrees [13]. The procedure of
finding the location of merging nodes is called layout em-
bedding.

A famous layout embedding technique is DME (De-
ferred Merge Embedding) [1]. Instead of being fixed at a
single location, a merging node can slide along a segment
(along ±45o direction) without violating skew constraints.
Such segment is called merging segment which is illustrated
by the dashed lines in Figure 2(a). If the skew constraint is
a bounded range instead of a single value, the location of a
merging node can be anywhere in a specific polygon region
to satisfy the skew bound. This region is called merging re-
gion in BST (Bounded Skew Tree) routing [4]. A merging

region can be treated as a set of parallel merging segments.
In Figure 2(b), merging regions are indicated by shaded
area. In this paper, the merging segment and merging re-
gion corresponding node i are denoted as MS i and MRi,
respectively.

After the bottom-up merging procedure, another top-
down traversal of the tree is performed to decide the the
exact merging locations on each merging segment such that
the total wirelength is minimized.

5.3. Merging Subtrees from the Same Group

If all sinks of a subtree Ta belong to a same group Gj , we
say that this subtree is from group Gj . When merging two
subtrees from the same group (Figure 2(a)), the scenario is
almost the same as the classic DME embedding [1]. The
fact that two subtrees Ta and Tb are from the same group
is denoted as Ta �� Tb. Since there is a skew constraint be-
tween two subtrees from the same group, we can use the
DME technique to find a single merging segment MSc for
them as shown in Figure 2(a).

5.4. Merging Subtrees from Different Groups

When merging two subtrees from different groups, the
scenario is very similar to the BST routing [4]. Using Fig-
ure 2(b) as an example, Ta and Tb are from group G1 and
group G2, respectively. Since there is originally no skew
constraint between G1 and G2, there is no restriction for
the location of their merging node. However, we prefer the
wirelength from this merging to be the minimal (which
equals the Manhattan distance between node a and b). Thus,
the location of the merging is restricted to a merging re-
gion [4] (shaded in Figure 2(b)) between merging segment
MSa and MSb. In BST [4], the merging region is con-
structed in a way such that the skew bound is satisfied. Since
there is no skew bound for different sink groups in AST,
the merging region is chosen as the shortest distance re-
gion (SDR) [4] between them. Please note that this merg-
ing region implies a bounded range for skew S2,1 between
group G1 and G2. If two subtrees are from different groups
and their root nodes are represented by merging regions in-
stead of merging segments, the merging is the same as that
in BST.

5.5. Merging Subtrees from Partially Shared
Groups

The scenario of merging subtrees from partially shared
groups does not exist in either DME [1] or BST [4]. Be-
sides, it is more complicated than the scenarios in previous
two subsections. We will use the examples in Figure 2 to il-
lustrate a few instances in this scenario.
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Figure 2. (a)Merging subtree Ta and Tb from
the same group at merging segment MRc for
merging node c with DME [1]. (b) If two sub-
trees belong to different groups, a merging
region (shaded) is formed between them like
in BST [4]. If Ta and Td are from the same
group (Ta �� Td), a reduced merging region
MRg is formed when merging Tc and Tf . (c) If
Ta �� Td and Tb �� Te, MRc is reduced to the
polygon with dotted boundary. (d) A shaded
circle represents a merging region. If Ta �� Tg,
Tb �� Th and Tc �� Tf , the merging regions
are reduced according to intersection parts
of the bounded skew range.

Instance 1: Consider the example in Figure 2(b) where
subtree Ta and Td are from group G1, Tb is from group G2

and Te is from group G3. Therefore, Ta �� Td. First, Ta and
Tb are merged to form Tc, and Td and Te are merged to form
Tf .

Now we are trying to merge Tc and Tf . Similar as
BST [4], we choose the northeast boundary segment of
merging region MRc and the west boundary segment of
merging region MRf for this merging. In Figure 2(b), these
two boundary segments are dotted. The reason to choose
them is that they are the closest boundaries between MRc

and MRf .
The northest boundary of MRc corresponds to one

merging segment in MRc. Since the merging segment im-
plies a unique skew between Ta and Tb, a skew constraint
S2,1 between G2 and G1 is induced. The west bound-
ary of MRf corresponds to the southwest end points of
a subset of merging segments in MRf . Since each merg-
ing segment implies a skew between Td and Te, a subset of

merging segment implies a bounded range for skew S 3,1 be-
tween group G3 and G1.

As both Tc and Tf contain sinks from group G1, the
merging between them has to satisfy the skew constraint
within G1. According to this skew constraint, we can find
the merging region MRg for this merging as shown in Fig-
ure 2(b). After this merging, G1, G2 and G3 can be treated
to form a new group G1,2,3 = G1 ∪ G2 ∪ G3 and there are
prescribed/bounded skew constraints within this new group.

Instance 2: In Figure 2(c), both Ta and Td are from
group G1, and Tb and Te are from group G2, i.e., Ta �� Td

and Tb �� Te. Similar as BST [4], we choose the west
boundary of MRf for the merging between Tc and Tf . This
boundary determines that the skew S2,1 between G2 and
G1 has to be in a bounded range. Consequently, we have
to shrink the merging region MRc such that the skew be-
tween Ta and Tb satisfies the bound for S2,1. The rest steps
of the merging is the same as that in BST.

Instance 3: In Figure 2(d), Ta �� Tg, Tb �� Th and
Tc �� Tf . Now we consider the merging at node k. The
merging region MRd implies a skew bound Sa,b between
Ta and Tb. Similarly, the merging region MRj implies an-
other skew bound Sg,h between Tg and Th. If both Ta and
Tg are from group G1, and both Tb and Th are from group
G2, the skew S2,1 between group G2 and G1 has to sat-
isfy both Sa,b and Sg,h. In other words, The skew bound
for S2,1 should be the intersection part between Sa,b and
Sg,h. For example, if Sa,b ∈ [−3, 8] and Sg,h ∈ [−7, 4],
then S2,1 ∈ [−3, 4]. If the intersection part is empty, wire
snaking [13] is induced. If both Tc and Tf are from group
G3, the skew bounds for S3,2 and S3,1 are generated simi-
larly.

5.6. Enhancement on Merging Order

The basic AST-DME algorithm is outlined in Figure 3.
In addition to the main ideas described here, this algorithm
can be enhanced by two existing techniques.

1. Simultaneous multiple mergings for speed-up. It was
pointed out in [5] that multiple subtree pairs can be
merged simultaneously instead of mering only one pair
each time. The multi-merging scheme can reduce the
number of updatings on the nearest neighbor graph and
therefore reduce the runtime.

2. Delay target based merging order for further wire-
length reduction. It was observed in [2] that the wire-
length may be affected by the relative delay targets of
subtrees in addition to their proximity. A delay tar-
get of a node (or a subtree) is a desired delay from
clock source to that node (or the root of the subtree).
By merging subtrees with large delay targets first, the
imbalance on delay targets of subtrees can be reduced.
Consequently, the chance of wire snaking is reduced.



Procedure: AST-DME
Input: A set of sink groups G = {G1, G2, ..., Gk}

Skew constraints for sinks within each group
Output: A clock routing tree connecting all sinks and

satisfying all intra-group skew constraints
1. Initialize a set T of subtrees with all sinks
2. While |T | > 1
3. Find a pair of subtrees Ta ∈ T and Tb ∈ T with min

distance between their roots among all subtrees
4. If both Ta and Tb are from Gi

Merge Ta and Tb to Tc at MRc satisfying skew
constraints in Gi

5. Else if Ta and Tb are from different groups
Merge Ta and Tb to Tc at MRc which is the
SDR between MRa and MRb

6. Else if Ta and Tb share one group
Merge based on nearest boundaries of MRa

and MRb,
Merge all sink groups involved with Ta and Tb

7. Else (Ta and Tb share multiple groups)
Merge based on intersections of skew bounds
induced by merging regions in Ta and Tb,
Merge all sink groups involved with Ta and Tb

8. T = T − Ta − Tb + Tc

Figure 3. The proposed AST-DME algorithm.

Both of the above two techniques can be straightforwardly
included in our AST-DME algorithm.

6. Experimental Results

Our algorithm is implemented in C/C++ and the experi-
ments are performed on a Linux system with a Pentium-4
processor of 1.6GHz and 256MB RAM. The benchmark
circuits are r1-r5 from [4]. In the experiments, we parti-
tion the sinks of each circuit into various number of groups
which are intermingled with each other.

We compare our AST-DME algorithm with a simple
extension of the greedy-DME algorithm [5]. Originally,
greedy-DME is designed for zero skew routing. For the case
of associative skew routing, we simply require the skew
between different groups to be zero and run the greedy-
DME algorithm. The results are listed in Table 1. Both
the extended greedy-DME and our AST-DME algorithms
can satisfy the skew constraints. The results on wirelength
show that our AST-DME consistently outperforms the ex-
tended greedy-DME algorithm. Usually, the improvement
from AST-DME is more significant when the number of
sink groups is increased. The runtime of our algorithm is
greater than that of greedy-DME as expected, but still at a
reasonable order of magnitude.

7. Conclusion

In this work, we attempt to solve the associative skew
clock routing problem especially for the difficult instances
where sink groups are intermingled. We find that this prob-
lem can be solved well by carefully assembling existing
clock routing techniques. Experimental results show that
our approach consistently outperforms an extension of a
popular conventional method.
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