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ABSTRACT
In this paper we propose Application Specific Instruction Set Pro-
cessors with heterogeneous multiple pipelines to efficiently exploit
the available parallelism at instruction level. We have developed a
design system based on the Thumb processor architecture. Given an
application specified in C language, the design system can generate
a processor with a number of pipelines specifically suitable to the ap-
plication, and the parallel code associated with the processor. Each
pipeline in such a processor is customized, and implements its own
special instruction set so that the instructions can be executed in par-
allel with low hardware overhead. Our simulations and experiments
with a group of benchmarks, largely from Mibench suite, show that
on average, 77% performance improvement can be achieved com-
pared to a single pipeline ASIP, with the overheads of 49% on area,
51% on leakage power, 17% on switching activity, and 69% on code
size.

1. INTRODUCTION
Increasingly pervasive, ubiquitous and large embedded systems

demand designs which are high in performance while low in cost.
Embedded systems differ from general purpose computing systems
since such processors only execute a single application or a class of
applications. Application Specific Instruction Set Processors (ASIPs)
in particular, are suited for utilization in embedded systems where
customization allows increased performance, yet reduces area cost
and power consumption by not having unnecessary functional units.

Research and development on ASIPs has mainly focused on in-
struction set generation for processors with simple pipeline architec-
tures. Systematic parallelism exploration in ASIP design, is still in
its early stage.

Parallelism exploitation often comes with an area overhead due to
the need to replicate resources. In this work we aim to explore the
possibility of parallelizing applications with little replication, reduc-
ing area overhead as much as possible.

For a given application, it is possible to design an ASIP with cus-
tomized multiple pipelines. Since the application is well understood,
the number of pipelines and each of the individual pipes can be cus-
tomized. We call this ”customized VLIW ASIP” since its parallel
processing scheme is similar to a VLIW processor (though some dif-
ferent in architecture) but it is strongly application oriented. The
number of pipelines is determined specifically for the application and
the functional units on each pipeline are based purely on the applica-
tion itself.

1.1 Related Work
Research and development in the area of ASIPs has been flourish-

ing for a couple of decades. Numerous tool suites have been devel-
oped [2, 14, 19].

To generate an ASIP, one needs first to create an instruction set
specifically tailored to a given application. Given an application,
there are a large number of design alternatives. Research on automat-
ing design space exploration and instruction set generation has been
very active [18] [20] [4] [12] [7].

Apart from specific instruction set generation, customization of
processor architectural features such as register file and functional
units, has been studied [11] [5] [3] for performance enhancement.

To further improve performance, researchers have considered par-
allel processing approaches. In [9], the authors presented a Very
Large Instruction Word (VLIW) ASIP with distributed register struc-
ture. Jacome et. al in [10] proposed a design space exploration
method for VLIW ASIP datapaths. In [13], Kathail et al. proposed a
design flow named PICO (Program In Chip Out) for a specific SoC
(System-on-Chip) design, where parallelism exploration is tackled at
different design levels including at the instruction level with VLIWs.
An example of optimization of VLIW architectures to a typical im-
age processing application is presented in [6]. Sun et al. in [17]
proposed a design for customized multi-processors. Recently Tensil-
ica has developed a VLIW-like technology, with FLIX instructions
[1], which allows flexible-length instruction extensions, with each
instruction being similar to a VLIW instruction.

In [16], the author discussed a decoupled Access/Execute archi-
tecture, with two computation units each of which contained its own
instruction streams. Using a similar architecture, in [15], the authors
presented a design approach for dual-pipeline customized processor.

In this paper, we expand the above work to a multiple pipeline
structure, which is customizable to a given application. We enhance
the pipeline structure presented in [15] by utilizing a forwarding
scheme so that the data hazards in the pipelines can be reduced. Also,
unlike in [15], where a single clock cycle penalty for memory ac-
cesses is used, we consider different wait cycles for memory access
so that the effect of memory access penalty on performance can be
observed. Moreover, instead of using small and non-standard bench-
marks as in [15], we target the applications from Mibench bench-
mark suites (popular in embedded system design) in our study.

Our approach is also somewhat similar to FLIX [1] and the config-
urable VLIW in PICO [13]. However, FLIX is limited by the instruc-
tion length. Its maximum length is 64 bits. Though more parallel op-
erations can be squeezed into one instruction, the limited encode-bits
restrict the parallelism exploitation (due to few available operation
types for each parallel execution stream) and possibly reduce the op-
portunity of computing resource sharing (resulting in high chip area
cost). Such a limitation, however, does not apply to our design ap-
proach. For the VLIW in PICO, the communication between parallel
components is done through memory; while in our design, communi-
cation is performed through fast forwarding logics or the register file
itself. In comparison to FLIX and PICO, our design uses dedicated
control circuits for each pipeline, which reduces the complexity of
the critical path, hence the critical path delay. Moreover, we present
a different systematic design flow that allows a high degree of cus-
tomization, from functional units, to individual pipelines, and to the
number of pipes.

1.2 Contributions
We propose the design of ASIPs with varying number of pipelines.

With such a design strategy, parallelism can be efficiently exploited.
In particular, we introduce a novel architecture which tightly couples
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multiple pipelines via the register file; propose a method to customize
the number of pipelines and instruction sets for each of the pipelines;
and develop an implementation system with such a design.

To show the efficiency and viability of our approach, we study
performance, area, code size, and energy consumption of processors
created by our design approach for several well known benchmarks.

1.3 Paper Organization
The rest of the paper is organized as follows: section 2 describes

the architecture template of the multi-pipeline processor to be imple-
mented; while section 3 describes the methodology taken to design
such a processor. Experimental setup and results are given in sec-
tion 4; and the paper is concluded in section 5.

2. ARCHITECTURE
Our design approach is based upon the Thumb processor instruc-

tion set architecture (Thumb ISA), which is simple and small. Fig-
ure 1 illustrates the general architecture of our ASIP design. It con-
sists of at least two pipelines, Pipe 1 and Pipe 2, which are neces-
sary for primary functions of all applications. Pipe 1 is specifically
designated for program flow control. This pipeline is primarily re-
sponsible for fetching instructions from the instruction memory and
dispatching them to all other pipelines. When the program branches,
Pipe 1 flushes all pipelines. Pipe 2 performs data memory access,
transferring data between the register file and data memory. Pipe 1
contains (at least) an ALU, while Pipe 2 contains (at least) a data
memory access unit (DMAU). This structure can be augmented when
the instruction sets for the pipelines are enlarged.

Register File

CPU 1
Program

Flow
Control

CPU 2
Data

Access

CPU N

IMEM

DMEM

    Flush

Ctl 1 Crl NCtl 2

IBUS
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Figure 1: Architecture Template
Extra pipelines are utilized based on the parallelism exhibited in

the application. All pipelines share one register file which is multi-
ported, so that all pipelines can access the register file simultane-
ously.

Each pipeline has a separate control unit that controls the operation
of the related functional unit on that pipe. Forwarding is enabled
in all pipelines so that the results from the execution unit can be
forwarded within a pipeline and between pipelines.

3. METHODOLOGY
In this section, we first give an overview of our design methodol-

ogy and then present the algorithms used in the design.

3.1 Approach Overview
The design flow described in this paper is illustrated in Figure 2.

It takes as input an application written in C. The program is first
compiled into single-pipeline assembly code based on the Thumb
ISA (step 1).

In the next step (step 2), an initial pipeline number is chosen as
the starting search point of the design space exploration. We start
from the minimal 2-pipe structure and the number of pipelines is
iteratively increased as the exploration continues.
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Figure 2: Design Flow

We use the number of cycles required for a memory access as an
input to the scheduling step. If more cycles are required to access
memory, then greater number of instructions can be scheduled in
parallel with the memory access instruction.

The output of the scheduling step is illustrated in Figure 3(a) (More
details on the algorithm for step 3 are given in section 3.2).

The original one-pipe program is divided into several sequences
(shown in columns in Figure 3(a)). Instructions that are scheduled
in the same time slot (shown on the same row in the figure) are ex-
ecuted simultaneously on different pipelines. Each of the sequences
forms an instruction set for the corresponding pipeline, as illustrated
in Figure 3(b), where instruction set, ISA i, is obtained from program
sequence i (Seq. i in the figure).

The parallel code is generated based on the object code of each of
the program sequences, which is obtained from the assembly output
of the GCC compiler.

In step 4 we use ASIPMeister, a single-pipe ASIP design soft-
ware tool, to create a design for each pipeline.The tool takes as input
the instruction set, functional unit specification, and instruction mi-
crocode, and produces a VHDL simulation model and a VHDL syn-
thesis model. All pipelines are then integrated into a multi-pipeline
processor with a parallel structure, as shown in Figure 1.

In the last step, the multi-pipe processor model is simulated us-
ing Modelsim for functional validation, and is then synthesized with
Synopsys Design Compiler. The simulation and synthesis step pro-
vides the performance, area and power consumption of the design,
which are used in the design evaluation. The iterative process, formed
by steps 3 to 5, is repeated for designs with increased pipelines until
no further improvement can be obtained.

The approach used for processor/code generation and evaluation
is summarized in Figure 4. Note in order to obtain accurate switch-
ing activity, a second simulation with the gate-level VHDL model
produced by Synopsys Compiler, is performed (as indicated by the
dashed line in the figure).

3.2 Exploitation of Instruction Parallelism
Our parallel scheduling is performed within instruction basic blocks.

For a basic block, if one of its instructions is executed, then all in-
structions in the block are executed. Therefore, parallelism within
blocks is static and can be easily extracted at the initial stage of
the design. Another advantage of scheduling within basic blocks is
the avoiding of the complicated speculation/prediction issue which
would otherwise need to be addressed.



Seq 1 Seq. 2 Seq. 3

.L68:   .L68:      .L68:
mov r2,sl   push  {lr}     mov r1,#15
and r1,r1,r3   ldr r9,[r2]     0
bc:   bc:           bc:
mov r2,#0   0     0
cmp r0,#0        str r2,[r5,r9]     0
beq .L20   0     0
.L24:   .L24:     .L24:
sub r1,r0,#1   addr2,r2,#1     0
and r0,r0,r1   0     0
cmp r0,#0        0     0
bne .L24   0     0
.L20:   .L20:     .L20:
mov r2,sl   movr5,r3          add r6,r6,#1
add r5,r5,#4   ldrr7,[r2,#96]     0
.L21:   .L21:     .L21:
sub r4,r4,#1   ldrr3,[r7,r2 ]     0
cmp r4,#0        strr3,[r2]     sub r2,r2,#4
bne .L21   0     0
.L54:   .L54:     .L54:
mov r0,r2         strr6, [sp, #12]   mov r1,r8
lsl r2,r0,#2   pop {pc}     0

(a) Parallel Program Sequences

ISA 1

mov rn,rm
and rn,rn,rm
mov rn,immed
cmp rn,immed
beq label
sub rn,rm,immed
add rn,rn,immed
sub rn,rn,immed
lsl rn,rm,immed
bne

ISA 2

push {rn}
ldr rm,[rn,immed]
mov rn,rm
add rn,rn,immed
str rd,[rn,rm]
ldr rd,[rn,rm]
str rm,[sp,immed]
pop {rn}
str rd,[rn,immed]

ISA 3

mov rn,rm
mov rn,immed
add rn,rn,immed
sub rn,rn,immed

(b) Individual Pipeline Instruction Sets

Figure 3: Parallel Program Sequences and Instruction Sets

Scheduling Techniques
Given the number of pipelines, our scheduling determines the time
slot and the executing pipeline for all instructions such that the result-
ing processor area and power cost is small while the execution time
for the block of instructions is minimal. Our scheduling algorithms
are based upon the following assumptions and considerations.

• The functionality of a pipeline is determined by the instruction
set, which is formed during the instruction scheduling phase.
Scheduling an instruction to a pipeline may incur area over-
head. If the pipeline already has the functional components
used by the instruction, then the overhead is nil; otherwise, the
overhead is the area of the extra functional component required
for the instruction. For example, given a pipeline with an ALU
function, scheduling an add instruction to this pipeline does
not incur any additional area. Therefore, the overhead of the
instruction is 0. If, however, this instruction is scheduled into a
pipeline which only consists of a shift operation, then schedul-
ing the add instruction will require at least an adder, and the
area of the added functional unit is the incurred overhead. We
call such an overhead as scheduling overhead.

• If an instruction can be executed by one of two pipelines, one
that is complex and the other simple, executing the instruction
in the complex pipe is assumed to be more costly as more logic
gates are exercised, thus consuming more power. Since the
complexity is closely related to the area, we use area cost to
present the complexity of the pipeline. As such, one of our
scheduling strategies is to schedule an instruction to a pipeline
with a cheap area cost.

• Scheduling instructions to a pipeline of a lower workload is
preferred, so that more instructions can be scheduled at the
earliest time slot as possible. We define the potential work-
load of a pipeline as the percentage of instructions in the basic
block which can be executed by the pipe. For example, in a
pipe, assume we are able to execute any type of instruction
other than memory and branch type instructions. If we have
10 instructions in the basic block, and three of them are mem-
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Figure 4: Processor/Code Generation and Testing System

ory and branch instructions, the potential workload of the pipe
would be 0.7.

• For a single pipeline, a memory load instruction will cause a
pipeline stall. The pipeline is idle until the memory operation
is complete. Instead of stalling all pipelines in the processor
during a load operation in one pipeline, we allow instructions
to be scheduled in other pipes such that the effect of the hazard
is limited.

We use design area efficiency, η, to evaluate the design quality.
The efficiency is defined as the maximum possible execution fre-
quency of an application per area unit and is given by the following
formula,

η = 1/(T ×A),

where T is the execution time of the application and A the area of the
processor that executes the application. Large η means high perfor-
mance with small area cost.

Basic Block Scheduling Algorithm
Our scheduling method is presented in a bottom-up manner, where
the pipeline selection for an instruction (Algorithm 1) is presented
first, followed by the basic block instruction scheduling procedure
(Algorithm 2).

In Algorithm 1, we find a suitable pipeline for an instruction.
Three parameters: scheduling overhead, pipeline area cost, and pipeline
work load, are used here to guide the pipeline allocation for instruc-
tions. As can be seen from the algorithm, scheduling overhead takes
the highest priority among the three parameters, with the workload
coming the second and area cost the last.

Algorithm 1 Instruction pipeline selection: PipeSelection(i,P)
// f ind a pipe f or instruction, i, f rom a set o f pipes, P.
step 1: find the pipe where the scheduling overhead is minimal if

the instruction is placed in that pipe;
step 2: if more than one pipe is found in the previous step, find the

pipe with minimal load (i.e., one with fewer instructions);
step 3: If more than one pipe is found in the previous step, find

the pipe with the smallest area;
step 4: return the found pipe;

With the above pipeline selection algorithm, the basic block schedul-
ing method is given in Algorithm 2. The algorithm takes a basic
block and schedules its instructions to a set of pipes, P. We use an
array, Sched[timeslot][pipeline], to represent the scheduling result.



Algorithm 2 Basic Block Scheduling: blockScheduling(B,P)

//Initialize array, Sched, with nop instructions
Initialize(Sched);
//schedule instructions in Block, B, to a set o f pipes, P.
for all i ∈ B (in program sequence) do

scheduling done(i) = FALSE;
while scheduling done(i) is FALSE do

find the earliest time slot, t, for instruction i;
find all available pipes, Pavail , at t;
find a suitable pipe, p, for instruction i using Algo. 1;
if p exists then

Sched[t][p] = i;
scheduling done(i) = TRUE;

else
//try scheduling the instruction to the next time slot
t++;

end if
end while

end for

ntbl_bitcnt:
1: push{lr}
2: mov r1, #15
3: lsl r2, r2, #2
4: and r1, r1, r0
5: add r0, r2, #4
6: ldr r3, .L42
7: add r4, r2, r3
8: cmp r0, #0
9: beq .L30

Pipe 1 Pipe 2 Pipe 3

 x1: movr1, #15 push{lr} lslr2, r2, #2
 x2: andr1, r1, r0 ldrr3, .L42 addr0, r2, #4
 x3: cmpr0, #0 nop nop
 x4: beq.L30 nop addr4, r2, r3

(a)

(b)

Figure 5: Basic Block Scheduling

The notation, Sched[i][ j] = k, means instruction k is scheduled to
time slot i on pipe j.

We demonstrate the scheduling algorithm with a basic block as
shown in Figure 5(a). The block contains nine instructions. Assume
the instructions are to be scheduled into 3 pipes: Pipe 1, Pipe 2 and
Pipe 3. Pipe 1 contains an ALU and can perform all but memory
access instructions. The memory access instructions are exclusively
performed by Pipe 2. The functions in Pipe 3 are initially undefined
but can be any functions (except memory and branch types), as re-
quested by the scheduling algorithm.

The scheduling starts with the first instruction, push. since it is
not dependent on any other instruction, its earliest scheduling time
slot is 1 (i.e. t=1). At this moment, all three pipes are available.
Amongst them, Pipe 2 is the most suitable pipe (the only pipe with 0
scheduling overhead). Next instruction is mov, and it can be sched-
uled in the first time slot. Among the two available pipes: Pipe 1
and Pipe 3, Pipe 1 is selected (since Pipe 1’s scheduling overhead
is 0). The following non-dependent instruction lsl is then scheduled
to the last pipe: Pipe 3, with the scheduling overhead of a Shifter.
The next instruction and is dependent on the second instruction, and
therefore its earliest scheduling time slot is 2. With zero scheduling
overhead to Pipe 1, it is assigned to the second time slot in Pipe 1.
The remaining two pipes are available to the following add instruc-
tion. Both pipes do not have functional unit for add instruction. The
related scheduling overheads are therefore same. Since the potential
load for pipe 2 (7/9) is greater than pipe 3 (4/9), pipe 3 is selected for
the add instruction, which leaves pipe 2 for the next instruction ldr
to be scheduled in the time slot. This process is repeated for the rest
of the instructions and the scheduling result is shown in Figure 5(b).

Design Algorithm
Based on the above basic block scheduling algorithm, an application
program can be scheduled into multiple pipes. The overall design

Algorithm 3 Multi-pipe Processor Design:
//best design and its related design e f f iciency are initialized.
best design = NULL;
ηbest = 0;
//the design iteration starts f rom 2 pipe structure.
Np = 2;
design done = FALSE;
while design done is FALSE do

for all B ∈ G do
blockScheduling(B,Np);

end for
processor generation();
processor simulation();
η = calculate design efficiency();
//i f design is improved
if η > ηbest then

best design = current design;
η = ηbest ;
Np++;

else
design done = TRUE;

end if
end while
output best design;

is summarized in Algorithm 3. Given the basic block graph, G, for
an application, the algorithm gives an efficient design with a suit-
able number of pipelines and special instruction sets for each of the
pipelines. Each design iteration is evaluated with performance/area
ratio, η. The design loop stops when new design cannot bring further
improvement.

4. SIMULATIONS AND RESULTS
With the above methodology we designed multi-pipeline proces-

sors for a set of applications mainly from Mibench [8]. Those bench-
marks represent a variety of application fields such as network, se-
curity, telecommunication and automotive, which are frequently en-
countered in embedded systems.
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Figure 6: Clock Period

As described in section 3, our base instruction set architecture was
based on the Arm-Thumb processor. We generated VHDL models
and the associated executable code for the multi-pipeline processor
for each of the applications, with memory access latencies. The de-
signs were then synthesized using Synopsys Design Compiler based
on the TSMC 90nm core library, and simulated with the Modelsim
simulator.

Performance is evaluated in the processor clock speed, which is
given by Design Compiler, and the clock cycles given by Model-
sim. Power consumption is divided into dynamic power and leak-
age power. The leakage power is estimated by the Synopsys Design
Compiler; and the dynamic power is represented by the switching ac-
tivity of the gate level model generated by Synopsys Designer Com-



Table 1: Performance Improvements and Overheads

Benchmarks adp.dec adp.enc bas.math b.count crc32 q.sort sha.encr. str.search endian b.search cstr. dijkstra Average
Performance 2 Pipe 69.1 60.5 90.9 97.0 79.2 63.8 84.5 97.1 78.4 69.5 50.5 84.8 77.1

% 3 Pipe 60.0 49.9 74.1 93.6 0.0 69.0 89.2 107.9 85.2 N/A 52.6 83.6 63.7
Area 2 Pipe 37.8 35.2 56.6 69.9 38.0 62.2 45.2 56.4 59.2 52.4 20.0 58.3 49.3

% 3 Pipe 140.5 134.0 132.5 126.8 N/A 117.4 128.0 102.1 114.9 N/A 101.1 118.2 101.3
Leak. Pow. 2 Pipe 39.1 39.2 61.5 65.5 40.7 61.3 46.6 57.8 61.2 53.2 28.6 64.0 51.5

% 3 Pipe 145.7 145.3 147.4 127.3 N/A 124.4 139.2 109.6 44.9 N/A 105.1 130.2 101.6
Switch. Activ. 2 Pipe 23.6 7.1 8.7 30.5 1.8 37.0 27.7 17.5 13.2 10.5 24.3 0.9 16.9

% 3 Pipe 41.5 15.5 11.7 39.7 N/A 47.0 46.4 23.0 13.8 N/A 49.2 5.4 24.4
Code Size 2 Pipe 66.4 60.6 59.1 73.1 72.7 70.2 45.3 84.9 69.8 86.0 69.2 71.7 69.1

% 3 Pipe 124.0 136.5 122.0 159.6 N/A 151.0 109.8 173.7 144.4 N/A 141.3 155.6 118.1

Table 2: 2-pipe Designs with Different Memory Access Time

mem.latency perf.metrics adp.dec adp.enc bas.math b.count crc32 q.sort sha.encr. str.search endian b.search cstr. dijkstra
1-pipe 1CC CC (’000s) 2624 8626 3130 5810 1029 4470 2441 1118 1060 3660 1300 1940

Exec. Time (ms) 116 382 142 266 45 202 108 51 46 169 59 88
2CC CC (’000s) 2856 9401 3255 6719 1403 5299 3050 1214 1420 4395 1605 2354

Exec. Time (ms) 127 417 148 308 62 240 135 55 61 203 73 107
3CC CC (’000s) 3057 10177 3380 7628 1710 6221 3660 1423 1780 5129 1910 2768

Exec. Time (ms) 135 451 154 349 75 281 163 65 77 237 87 126
2 Pipes 1CC CC (1000s) 2083 7215 2310 4343 810 3399 1830 832 810 3085 1100 1531

Exec. Time (ms) 68 238 74 135 25 123 58 26 25 99 39 48
2CC CC (’000s) 2332 7884 2400 5042 1278 3826 2135 892 1120 3744 1275 1880

Exec. Time (ms) 77 260 74 163 39 139 68 27 35 121 45 59
3CC CC (’000s) 2519 8607 2495 5997 1590 4641 2441 952 1415 4401 1453 2291

Exec. Time (ms) 83 284 78 194 49 168 78 30 45 142 52 71
improvement 1CC Exec.Time 69 60 91 97 79 64 84 97 78 70 51 85

2CC (%) 64 60 91 96 55 72 97 99 73 68 60 83
3CC 63 59 91 87 52 67 108 119 72 67 67 76
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Figure 7: Area

piler, for a sample set of data, and is obtained from Modelsim.
The simulation results for clock period, area, design efficiency,

leakage power, switching activity, and code size are given in Figures
6, 7, 8, 9, 10 and 11, respectively. Note, the area is measured in
cells. A cell is approximately equivalent to 0.4 2-input NAND gates.
The percentages of performance improvement of the multiple-pipe
processors over the single-pipe processors, and the related overheads
in area, power and code size are summarized in Table 1. Note for ap-
plication crc32 and binsearch (under the name b.search in the table),
there is no 3-pipe design due to their low parallelism and intensive
memory access nature.

As can be seen from Figure 6, 1-pipe processors demonstrate higher
clock period than multiple-pipe processors. It is because the 1-pipe
processors have a large control unit that needs to control the exe-
cution of all instructions in the instruction set while in multiple-pipe
processors, the control unit for each pipeline only implements a small
subset of instructions, resulting in short critical paths.

When the design changes from 1-pipe to 2-pipe, substantial per-
formance improvements can be obtained. In contrast, there is little
or no performance gain when going from 2-pipe designs to 3-pipe
designs, but the design area overheads become significant, as illus-
trated in Figure 8, where 2-pipe processors give the best designs,
with high execution capacity per million cells for all of the tested
applications. This is because the average instruction parallelism for
the basic blocks is below 3. Unrolling loops would have improved
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Figure 8: Performance/Area

parallelism, but unrolling of loops was not considered in the experi-
ments.

It is worth noting that leakage power closely follows the area cost
as can be seen from Figures 7 and 9, where both figures show a near
identical trend. However, this similarity is not obvious for switching
activity shown in Figure 10. It also can be seen from Figure 11 that
the code size increases as the number of pipelines increases because
it is unlikely that all pipelines can be fully utilized during application
execution.

Since memory is typically slower than the processor, we examined
the effect of slower memory on performance in terms of both clock
cycles and execution time for the 2-pipe case, along with the 1-pipe
designs for comparison. Here we assume the memory is on-chip,
with a small access time as compared to off-chip memory. The clock
cycles and execution time for each of the applications (columns 4-15)
under different memory access latencies (ranging from 1 clock cy-
cle to 3 clock cycles) for 1-pipe and 2-pipe processors are tabulated
in Table 2, where the rows with the metrics labeled as CC(’000s)
give the clock cycles (in thousand) taken by each of the applica-
tion programs, while rows with the label Exec. Time (ms) provide
the execution times. The performance improvement of the 2-pipe
designs over 1-pipe designs with different memory access latencies
are also given in the table and it is graphically represented in Fig-
ure 12. As can be seen from Figure 12, there is little difference in
performance improvement between different memory access latency
schemes. Longer memory latency rarely affects the performance im-
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Figure 9: Leakage Power
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Figure 10: Switching Activity
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Figure 11: Code Size
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Figure 12: Performance of Varying Memory Access Latency

provement. This is due to the efficiency of our parallel scheduling
algorithm.

5. CONCLUSIONS
We presented an approach to customize a multiple pipe processor.

The approach relates application instruction level parallelism with
the multiple pipeline architecture. An effective parallel instruction
scheduling algorithm is used to determine the number of pipelines
and the instruction sets to be implemented by each of the pipelines
such that the high performance improvement can be achieved with
small area overhead. The performance improvement is achieved by
specific instructions (the related work and approach can be found in
[15]), improved pipeline (with forwarding logics) structure, and par-
allel instructions executing on the multiple pipelines. The small area
overhead is retained by utilizing a distributed controller, minimized
instruction set overlap between pipelines, and appropriate number of
pipelines.

Our designs for a given set of benchmarks, show that on aver-
age 77% performance improvement can be achieved with some over-
heads: 49% on area; 51% on power; 17% on switching activity; and
69% on code size. The parallel scheduling algorithm proposed in this
paper can also efficiently utilize the memory access latency so that
the effect of slow memory on the overall execution performance is
reduced, with average standard deviation below 6% in our simulation
experiments.
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