
FPGA Architecture Characterization for System Level
Performance Analysis

Douglas Densmore
University of California,

Berkeley
densmore@eecs.berkeley.edu

Adam Donlin
Xilinx Research Labs

adam.donlin@xilinx.com

Alberto
Sangiovanni-Vincentelli

University of California,
Berkeley

alberto@eecs.berkeley.edu

ABSTRACT
We present a modular and scalable approach for automati-
cally extracting actual performance information from a set
of FPGA-based architecture topologies. This information is
used dynamically during simulation to support performance
analysis in a System Level Design environment. The topolo-
gies capture systems representing common designs using
FPGA technologies of interest. Their characterization is
done only once; the results are then used during simulation
of actual systems being explored by the designer. Our ap-
proach allows a rich set of FPGA architectures to be explored
accurately at various abstraction levels to seek optimized so-
lutions with minimal effort by the designer. To offer an
industrial example of our results, we describe the character-
ization process for Xilinx CoreConnect-based platforms and
the integration of this data into the Metropolis modeling
environment.

1. INTRODUCTION
The benefits of System Level Design (SLD) have been

touted for quite some time: entering and verifying designs
at levels of abstraction higher than RTL has the advantage
of identifying clearly the goals of the design and discovering
errors early in the design process. In addition, architecture
design space exploration made possible by SLD allows op-
timizations beyond what is possible today. Finally, if a rig-
orous successive refinement process is followed, the path to
implementation is much faster and yields superior designs.
However, especially when designing high-performance cir-
cuits, designers have been skeptical about the inaccuracy of
SLD models that may lead to implementations that are far
from desirable. For this very reason, most high-performance
designs such as complex ASICs, ASSPs, and microprocessors
use an RTL model as the “golden model” for verification and
analysis. While RTL models can be quite accurate, simu-
lating a large design at this level does not allow performing
extensive functional verification. For example, booting an

operating system on an RTL level is impossible unless ex-
pensive emulation engines are used or prototype designs are
available. For this reason, architecture exploration is in gen-
eral performed only in a cursory fashion and actual archi-
tectures are selected on designer expertise (or faith!). Some
designers develop “C” models that can be simulated rapidly,
but the translation into RTL is done manually without any
guarantee that the RTL so obtained reflects the behavior of
the C model. In addition, once this RTL model is generated,
it is used as the “golden model” where future modifications
are made thus breaking the link between RTL and system-
level models.
The reason for adopting this design flow rests, as already

noted, in the accuracy of RTL level models that are con-
sidered faithful predictors of the actual performance of the
implementation. An important source of inaccuracy in SLD
models is the true cost of transactions are obscured because
some properties of the architecture are not known or have
been purposefully abstracted away to increase the simula-
tion performance of the model. Average and worst case
transaction cost estimates can be used in performance anal-
ysis to allow designers to measure the relative performance
of the system components and guide further design deci-
sions. We call the property of maintaining the true ordering
among performances of alternative implementations fidelity.
Fidelity requires that for all pairs of corresponding measure-
ments m1, m2 in an abstract model and p1, p2 on the actual
implementation, m1 < m2 holds if and only if p1 < p2.
Since m and p can be at vastly different abstraction levels it
is very difficult, if not impossible, to relate m and p directly
with predictable accuracy. Accuracy of m in terms of p is
a function of abstraction. We cannot of course claim that
our approach will match RTL but we believe it to be better
than standard Transaction Level Modeling (TLM) with the
same abstraction benefits previously mentioned.

1.1 Approach
We contend that by exploiting knowledge of the compo-

nents that constitute the designer’s IP library, we can de-
velop models that are both accurate and fast to simulate.
In particular, we focus on an important class of architec-
tures: highly-programmable platforms consisting of IPs im-
plemented in an FPGA fabric together with powerful em-
bedded processing elements (for example, the Xilinx Vir-
tex II Pro Family). Today, the full flexibility and compute
power of these platforms are difficult to leverage: partition-
ing of functionalities among embedded microprocessors and
the FPGA fabric-based architecture elements is often based

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



on a qualitative analysis. SLD tools must support quantita-
tive, accurate analysis to demystify the performance impact
of the multitude of design options available.
A variety of SLD use models that are directly applica-

ble to FPGAs is discussed in [5]. The aim of this paper
is to address accurate system level performance analysis of
FPGA-based embedded systems. Our central proposition is
that it is possible to increase the fidelity of performance anal-
ysis in FPGA-SLD by pre-characterizing a large number of
synthetic subsystems mapped to one or more FPGA archi-
tectures. This characterization is done well in advance and
independently of specific application modeling. A system
designer can then use SLD tools to analyze the performance
of their particular system with accurate models. Physical
timing data is extracted from the mapped, synthetic sub-
systems and made available to the higher level SLD tools
to seed the system level performance analysis with actual,
physical timing data.
Our pre-characterization technique is built on some as-

sumptions about the type of system being designed. First,
we presume the application designer will reuse a substantial
amount of IP. Second, we assume that the IPs have a stan-
dardized interface and that a structured interconnect (e.g.,
a standard bus) is used to interface the IPs 1. Finally, we
assume that one or more instruction set processors will be
used in the system architecture. These assumptions are not
only valid for the FPGAs we are targeting, but also repre-
sent a large segment of current design practices.
It is important to note the synthetic systems we charac-

terize do not implement any given application: they only
consume a prescribed amount of FPGA resources. The in-
formation we extract from the synthetic system is represen-
tative of a system with an equivalent floorplan, an equivalent
number of bus masters and bus slaves, an equivalent bus-IP
parameterization, etc. It is our hypothesis that a system
designer can correlate between the properties of the current
system model and the properties of synthetic architectures
that have been pre-characterized. More importantly, a de-
signer can use the pre-characterized data for “what-if” anal-
ysis to determine the performance of the system if he/she
were to implement it with the properties of a given synthetic
system.
An essential contribution of our approach is combining

a system level design environment that supports platform-
based design [6] and targets programmable platforms. A
platform-based design environment like Metropolis [1] al-
lows for the separation of communication, computation, and
coordination. The coordination aspect can be isolated and
used to annotate efficiently models with performance infor-
mation gathered during pre-characterization. The fact that
the pre-characterization data does not imply a given applica-
tion is consistent with this separation and is vital to allowing
various functional mappings to the architecture model.

1.2 Organization
In Section 2 we report the pre-characterization process.

This involves the formalization of the data into the database
structure. Section 3 bridges pre-characterization data and
the Metropolis design environment. We provide back-
ground regarding Metropolis architecture modeling (3.1)

1An example is Xilinx’s implementation of the IBM Core-
Connect bus and the adoption of CoreConnect interfaces on
the IPs of the Xilinx Embedded Development Kit (EDK).

and theMetropolismodel annotation scheme to bind events
to the appropriate characterization records in the database
(3.2). Section 4 provides a use model and example MJPEG
encoder using our methodology. Conclusions and future
work in Section 5 complete the paper.

2. CHARACTERIZATION PROCESS
Platform characterization is the process of gathering in-

formation regarding a specific metric or property of the plat-
form. Obtaining this information is often a tradeoff between
accuracy and effort. Our approach is unique since the archi-
tecture model described in Metropolis is directly corre-
lated to an FPGA design that has been pushed through the
Xilinx tool suite as a “synthetic” design to capture timing
information. This is the exact information used to annotate
events in simulation and tied to a transaction level model
of the Xilinx hardware. The characterization process (see
Figure 1) consists of three stages :

1. Create a single system description for the Xilinx tools
via a Xilinx Microprocessor Hardware Specification
(MHS) file. This is considered a template file.

2. Generate representative permutations of the architec-
ture using this template and run them through the
Xilinx tool flow. Permutations may be incrementally
generated using heuristics such as maximum device re-
sources, likely application domain, or others involving
non-benign IPs (i.e. IPs that have strong effects on
the characterization process). The entire permutation
space need not be generated and in most cases only a
small percentage is needed to capture realistic, practi-
cal designs.

3. Extract the desired performance information from the
tool reports for database population.

MHS Template

Permute
Arch.

Template

EDK + ISE
Tools

EDK + ISE
Tools

EDK + ISE
Tools

EDK + ISE
Tools

Build
Database To SLD Tools

Stage 2

Stage 3

Stage 1

System 0 System 3...System 2System 1

Timing
Reports

text

M M M

S S S

ArbB

Figure 1: Characterization Flow

Information that can be gathered from this process in-
cludes (but is not limited to) various clock cycle values,
longest signal path analysis, critical path information, sig-
nal dependency information, and resource utilization. The
database is populated prior to simulation, perhaps by the
FPGA vendor as part of the software development process.
It is then instantiated as an object in Metropolis. This



database has to be generated only once since it holds infor-
mation on a variety of systems. We admittedly present a
static element characterization process which does not ex-
plicitly capture communication. However those static char-
acterizations are then accumulated in complex ways during
a dynamic simulation of a functional model mapped to an
architectural model. This is more than a simple sum of
static estimations. Section 3 presents more about how this
explicitly ties into Metropolis.

2.1 Characterization Process Example
To exemplify our process, we pre-characterized a range of

typical FPGA embedded system topologies. From a suit-
able MHS template file, we generated CoreConnect-based
architectures with permutations of the IPs listed in Table
2.1. The table also shows the range in the number of IP
instances that can be present in each system along with the
potential quantities of each. In addition to varying the num-
ber of these devices, we also permuted design strategies and
IP parameters. For example, we influenced the system’s ad-
dress decoding strategy by specifying tight (T) and loose (L)
ranges in the peripheral memory map. We also permuted the
arbitration policy (registered or combinatorial) for systems
that contained an On-Chip Peripheral Bus (OPB). These
axes of exploration were used to investigate the relationship
between peripherals and the overall system timing behavior.
The columns of Table 2.1 show three permutation “classes”

that were used. The implementation target was always a
Xilinx XC2VP30 device. The first class (column µBlaze),
refers to designs where µBlaze and OPB were the main
processor and bus IPs respectively. The second class (col-
umn PowerPC) represents PowerPC and Processor Local
Bus (PLB) systems. The third class (Combo) contain both
µBlaze and PowerPC. The number of systems generated is
significant (but not unnecessarily exhaustive) and demon-
strates the potential of this method. Note each system per-
mutation can be characterized independently and hence,
each job can be farmed out to a network of workstations.
For reference, the total runtime to characterize the largest
Combo system with Xilinx XPS 6.2i on a 3GHz Xeon with 1
GB of memory was 15 minutes. The physical design tools
were run with the “high effort” option and a User Con-
straint File (UCF) that attempts to maximize the system
clock frequency.

Table 1: Characterized System Configurations
Component µBlaze PowerPC Combo

PowerPC (P) None 1-2 1-2
µBlaze (M) 1-4 None. 1-4
BRAMS (B) 1-4 1-4 1-2 (per Bus)
UART (U) 1-2 1-2 1-2 (per Bus)
Loose/Tight Addr. Yes Yes Yes
Reg/Comb. Grants Yes N/A Yes
Total Systems 128 32 256

An observation of the characterization data shows that
as resource usage increases (measured by slice 2 count) the
overall system clock frequency decreases. This is evident in
Figure 2, a graph of sample Combo systems, their size, and
reported performance. Note that the graph’s performance

2A slice contains two 4-input function generators, carry
logic, arithmetic logic gates, muxes, and two storage ele-
ments.

Slice Count Frequency

Combo Frequency and Resource Usage

0

1000

2000

3000

4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Samples

S
lic

e 
C

o
un

t

0

20

40

60

80

100

120

140

M
H

Z


High Spikes in Adjacent
(Similar) Samples

Decreasing but not
monotonic or linear

Area Measure Often Plateaus

Added BRAM -1
Added uBlaze - 2

Increasing System
Complexity

1 2 111 2 2

Figure 2: Combo Frequency and Resource Usage

trace is neither linear nor monotonic. Often area is con-
stant while frequency changes drastically. This phenomenon
prevents area based frequency estimations. The relation-
ship between the system’s area utilization and performance
is complex, showing that building a static model is difficult,
if at all possible, and confirming the hypothesis that actual
characterization can provide more accurate results.
Table 2.1 highlights an interesting portion of the data col-

lected in the PowerPC class. Each row is a PPC system
instance: the leftmost columns show the specific IP con-
figuration for the system and the remaining columns show
area usage, max frequency, and the % change (∆) between
the previous system configuration (representing potentially
a small change to the system). We contend that a differ-
ence of 10% is noteworthy and 15% is equivalent to a device
speed-grade. Note that there are large MHz swings (14%+)
even when there are small (<1%) changes in area. This is
not intuitive, but seems to correspond to changes in ad-
dressing policy (T vs. L) and indicates that data gathered
in pre-characterization is easy to obtain, not intuitive, and
more accurate than analytical cost models.

Table 2: Non-linear Performance: PPC Systems
P B U Addr. Area MHz MHz ∆ Area ∆
1 2 1 T 1611 119 16.17% 39.7%
1 2 1 L 1613 102 -14.07% 0.12%
1 3 0 T 1334 117 14.56% -17.29%
1 3 0 L 1337 95 -18.57% 0.22%
1 3 1 T 1787 120 26.04% 33.65%

Figure 3 illustrates Table 2.1 and shows area and sepa-
rate performance traces for PPC systems in two addressing
range styles. The graph demonstrates that whilst area is
essentially equivalent, there are clear points in each perfor-
mance trace with deviations greater than 10%.

2.2 Database Organization
Once the raw characterization data has been extracted, it

is organized in a database (characterizer) for an architecture
exploration tool to use. In this paper, we use Metropolis

as a SLD tool. To annotate events generated in the archi-
tecture model of Metropolis, the characterizer contains
how long an atomic operation (one that is primitive to the
IP model) takes and how many atomic operations make up
a transaction corresponding to a CoreConnect function or
operation. The first area is the Physical Timing informa-
tion. The second area is the Transaction Cycles. An atomic
operation generated in Metropolis is a single event. A



PowerPC System Address Changes

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15
Sample

S
lic

e 
C

o
un

t

0

20

40

60

80

100

120

140

M
H

Z


Loose Addr Slices
Tight Addr Slices

Loose Addr MHZ
Tight Addr MHZ

10%+ Delta

Area Curves Overlap

Table 2 Data

Top Two
Curves

Figure 3: PowerPC System Addressing Effects

transaction is a series of events (also called a signal in the
Lee-Sangiovanni-Vincentelli (LSV) tagged signal model [7]).
In addition to “hardware” related operations, Metropolis

supports software tasks, an essential feature to analyze the
design space of a complex FPGA that supports soft or hard
microprocessor cores. Hence, the characterizer must also
maintain information regarding software routines (the third
and final Execution Time for Processing portion).
An example ofMetropolis architecture service functions

is execute(operation), read(addr, size), and write(addr,size).
When a read is a requested service, there is an event gener-
ated that may correspond to a bus request. This high level
request, made up of various atomic operations, has to be
decomposed into a set of events. How each transaction is or-
ganized resides in the characterizer and so does the physical
timing. Together they can give overall execution time. For
example, if it takes five cycles for a particular read atomic
operation and each cycle is 10ns, then the total execution
of this atomic operation is 50ns. A read transaction will be
made up of several of these atomic operations. Notice that
the cycle and timing information are decoupled. This allows
for a variety of formulas to be used based on this information
depending on the model and desired metrics.
Another scenario is the execute(operation) function that

indicates an operation to be executed on an architecture
computation resource. The mapping between the architec-
ture and functional models determines whether this opera-
tion is to be carried out by a software routine or a hardware
resource. If it is a HW resource, there is a corresponding cy-
cle cost in the characterizer for this operation. In case this is
a software routine, the characterizer has a cycle time for the
routine based on extracted information from the instruction-
set-simulator (ISS) for the general purpose CPU modeled.
The ISS extraction is also done only once and before any
simulation occurs. Figure 4 shows the organization of the
Characterizer and a sample entry.

3. INTEGRATION WITH METROPOLIS

3.1 Background
We refer the reader to [1] for the details of Metropo-

lis. We briefly discuss only its approach to architecture
modeling and design as it is most pertinent to the topics
covered in this paper. Metropolis architectures [2] are or-
ganized into two netlists. A netlist is an instantiation and

Metropolis Characterizer Model

Physical
Timing

Transaction Cycles

i.e. PLB/OPB transaction
cycle counts

Execution Time
for Processing

C
h

ar
ac

te
ri

za
ti

on
 F

lo
w



U
se

r
S

p
e

ci
fi

ed


S
W


IS

S


H
W


U

se
r

4.2ns 3.8ns

System 1 System N

4ns 3.2ns

ISS uBlaze
FFT 20 Cycles
Filter 35 Cycles

ISS PPC
FFT 10 Cycles
Filter 30 Cycles

Read = ACK, Trans, Data

Write = ACK, Data, ACK

Example Entries

}

}

}

}

Physical
Timing

Index
(Permutation)

Execution
Time for

Processing

Transaction
Cycles

Figure 4: Metropolis Characterizer

connection of Metropolis models. The netlist separation
is both for organization as well as for operational semantics.
Organizationally these netlists reflect the topology of the
various Metropolis Meta-Model (MMM) [8] designs when
connected. The first such grouping is the scheduled netlist.
This netlist contains the media (communication) and pro-
cesses (computation) themselves that create the topology of
the architecture and relationships between the services that
can be provided by this arrangement. The second netlist
is the scheduling netlist. This netlist provides the quantity
managers (coordination) that schedule the use of the ser-
vices in the scheduled netlist. When the two netlists are
combined, an architecture instance results that serves as the
complete platform for design space exploration and perfor-
mance estimation through simulation. The operational se-
mantics regarding these netlists has to do with their inter-
action to annotate events generated in the scheduled netlist
with quantities (e.g., power and execution time) managed in
the scheduling netlist. Figure 5 shows an example of the two
netlists. These represent architecture services along with
their schedulers while GTime manages the global record of
the execution time. Requests go to the scheduling netlist,
they are resolved, and the tasks are then told that they can
proceed. The tasks, T1 and Tn, are the objects that ac-
tively make the requests for the services shown. It is this
interaction for annotation that provides the performance es-
timation and the characterization work that provides the
annotation data. Figure 6 shows the interaction for the an-
notation and the execution of an architecture model that
will be discussed in more detail in Section 3.2. The schedul-
ing netlist in Figure 6 contains the characterizer holding the
annotation information.
Annotation is the process of assigning a value to the event

during the resolve() portion as mentioned. In the case of
Metropolis architectures, this function is performed by
a quantity manager (the rhomboidal objects in Figure 5)
scheduling an event to interact with a global time manager
that keeps track of the “execution time” of the simulation. It
is the job of the characterization mechanism to measure how
long events should take and ensure that the execution time
is captured accurately. While this discussion does not cover
all the details involved in the process, we hope the reader has
now a basic understanding of the essentials regarding how
Metropolis architectures use annotations. Section 3.2 de-
scribes how the information is gathered for that annotation.
As indicated earlier,Metropolis’ separation of coordina-

tion from computation and communication allows the char-
acterizer to be reused in multiple designs and by multiple



T1 Tn

CpuRtos

cpuRead

Scheduled Netlist

Bus

Mem

busRead

memRead

Cpu
Scheduler

Bus
Scheduler

Mem
Scheduler

GTime

Scheduling NetlistRequest(e)

setMustDo(e) resolve()

Figure 5: Metropolis Architecture Netlists

designers. How Metropolis implements the interface be-
tween the model and the physical timing data in the char-
acterizer is significant. The user’s model may issue transac-
tions at a variety of abstraction levels andMetropolismust
calculate an accurate cost from the physical timing data, no
matter the abstraction of the initiating process. We will
focus specifically on Metropolis annotation semantics for
events generated in the architectural network.

CpuScheduler

Execution of Architecture Model

Scheduled Netlist Scheduling Netlist

Task.Read() {
CpuRtos.cpuRead();

}

Characterizer
Database

Model

Off to
GTime

1. CpuRtos.cpuRead()

Ti

2.CpuScheduler.request(e)
CpuRtos

5. Bus.busRead()

CpuRtos.Read(){
CpuScheduler.request(e)
Bus.busRead();
…. }

4. setMustDo(e)
3. CpuScheduler.resolve(e)

3a.
CpuScheduler.

Annotate(e)

CpuScheduler.resolve(){
//Task Scheduling Algorithm

}

Figure 6: Metropolis Architecture Execution

3.2 Annotation Semantics
The way events acquire and use annotation information

to evaluate quantities is an important contribution of this
paper. We limit our analysis here to execution time and
we ignore power, area, or other quantities that could be of
interest and are indeed supported by the Metropolis en-
vironment. As already mentioned, there is a semantic rela-
tionship between scheduling and scheduled netlists. This in-
volves the request() and resolve() phases of simulation. The
request() phase is the time during which events generated in
the scheduled netlist ask the scheduling netlist to make use
of the services in the scheduled netlist. The resolve() phase
is the time at which selected events that have requested ser-
vices are selected not only to use those services but also
when those events are assigned a value via annotation as
described by the tagged signal model [7]. Figure 6 shows
the request() and resolve() phase relationship. As labeled in
Figure 6, the following steps apply:

1. A task acting as an active thread of control (process)
calls a function on one of its ports. The port is con-
nected to a service (media). The call asks for the right
to use the service that may be contended by other pro-
cesses. In the case of the diagram, it is a cpuRead()
call. The call generates an event, e.

2. The service will make a request to its corresponding
scheduler (a request(e) call). The request passes the
event e to the scheduler. This event joins a list of
pending events. While this event is unscheduled, the
process is blocked from requesting further services. See
CpuScheduler.request(e) in Figure 6.

3. At every step of the simulation the scheduling netlist
goes through a resolve() phase. This is the point at
which a scheduling method selects a “winning” event
from a list of pending events waiting on the schedulers
(scheduling algorithm can reflect what is appropriate
for a particular architecture). CpuScheduler.resolve(e)
call deals with the following operation (3a): Once the
event has been scheduled to run, it is annotated with
the execution time it is responsible for via the charac-
terizer. This is indexed by information related to the
event and reports its execution time to GTime. This
information is highly accurate while at the same
time requiring no more effort at this point of the
simulation than having estimated or arbitrary numbers
attached to an event.

4. Once the event has been scheduled, it is reported back
to the task that it can proceed. The media handling
the service can now fulfill that request. The function
setMustDo(e) communicates to the task that the event
has been scheduled.

5. The process can occur recursively when a read is in a
hierarchical system involving CPU, Caches, Bus, and
Memory systems. For more information we refer the
reader to [8].

4. USE MODEL
The previous sections explained the concept and mecha-

nisms that underpin pre-characterization in SLD modeling.
We anticipate that most architectures are characterized well
in advance of a designer’s use of the characterizer. However,
it is conceivable that some systems may introduce new IP
types or require characterization metrics not previously cal-
culated. The designer may populate the missing data into
the characterizer by explicitly invoking the characterization
flow on their system. An example of the designer’s use model
is given as the following steps:

4.1 Develop an Architecture Model
In Metropolis, the user selects, from a set of architec-

ture models pre-created to reflect Xilinx components, a sys-
tem architecture model instance. If a particular component
does not exist in the current set of architecture models, the
user may create a new component model reflecting the ser-
vice and insert it into the architecture netlist. The compo-
nent’s construction indicates which entries in the character-
izer should be used during simulation. In [3] more informa-
tion on building Metropolis architectures is presented.



4.2 Specify Functional and Mapping Models
Proper application simulation requires a functional model

be created and mapped to the architecture model above.
This is the application space ofMetropolis platform-based
design; its detailed design is outside the scope of this paper.
We mention its construction as it drives the mapping net-
work and, in so doing, forms the application stimulus of the
architecture model. An appropriate mapping network must
also be constructed. See [2] for more information.

4.3 Simulate and analyze
With the characterizer and other models in place, the de-

signer simulates the design, extracting the relevant perfor-
mance data. Because the characterizer contains data for
more than one architecture, the designer selects just one
of the timing records before simulation. The selection is
guided by informing the designer of the various topologi-
cal and parameter properties in the system corresponding
to each timing record. After each simulation, the designer
analyzes the performance data and determines whether to
proceed to a more detailed implementation. Alternatively,
they can explore the design space by modifying the func-
tional network, or varying the architectural network [4] and
selecting a different timing record from the characterizer.

4.4 MJPEG Example

Model 1

Model 2

Model 3

Model 4 PreProcessing (P)

Huffman Encoding (H)

DCT (D)
Quantization (Q)

Metropolis Visualizer

System Estimated
Cycles

Characterized
Cycles

Real
Cycles

Rankings
(Real, Char, Est)

Max
MHZ

Execution
Time (Secs)

Area
(Slices)

Model 1 145282
(52%)

228356
(25%) 304585 4, 4, 4 101.5 0.0030 4306

Model 2 103812
(33%)

145659
(6%) 154217 3, 3, 2 72.3 0.0021 4927

Model 3 103935
(29%)

145414
(1.2%) 147036 2, 2, 3 56.7 0.0026 7035

Model 4 103320
(28%)

144432
(<+1%) 143335 1, 1, 1 46.3 0.0031 9278

P D Q H

P D Q

HD

D Q

Q

P D Q

HD

D Q

Q

H

H

Mapping:
uBlaze Fast

Simplex Link (FSL)

TM

Figure 7: MJPEG Encoder Design

An example is provided in Figure 7 to demonstrate the
importance of accuracy and exemplifies the fidelity achieved
with our method. Shown are four Motion-JPEG models
[9]. Each functional model was created in Metropolis to
achieve a different level of task concurrency between the
DCT, Quantization, and Huffman processes present in the
application. Three of the diagrams show these topologies
directly and Model 2 is shown as it looks in the Metropolis
visualization software. Functional model processes and me-
dia were mapped for simulation to architectural µBlaze and
Fast Simplex Link (FSL) elements respectively.
The results of a 32×32 image encoding simulation are

shown in Figure 7. The first column denotes which model
was examined. The second column shows the results of simu-
lation in which estimations based on area and assembly code
execution were used. The third column shows the simulation
results using the characterization method described in this
paper. Notice that the estimated results have an average

difference of 35.5% with a max of 52% while the charac-
terized results have an average difference of 8.3%. This is
a significant indication of the importance of our method. In
addition, the fifth column shows the rank ordering for the
real, characterized, and estimated cycle results respectively.
Notice that the estimated ranking does not match that of
the real ordering! Even though the accuracy discrepancy
is significant, it is equally (if not more) significant that the
overall fidelity of the estimated systems is different.
Finally the maximum frequency according to the synthesis
reports, the execution time (cycles * period), and area values
are shown. This confirms that while one might be tempted
to evaluate only the cycle counts, it is important to under-
stand the physical constraints of the system only available
with characterized information.

5. CONCLUSION
By leveraging the properties of a platform-based design

environment such asMetropolis and of highly-programmable
rich Platforms such as the Xilinx Virtex II Pro, we created
a scalable, modular, accurate, and efficient System Level
Design environment. Key to this process is the creation
of synthetic models of real architecture configurations, pre-
characterizing these, and integrating them efficiently into
the simulation environment. As designs become more com-
plex and time-to-market pressure increases, a design flow
utilizing these techniques has a clear advantage over other
approaches to design space exploration via simulation.
Future work in this area includes the analysis of fidelity

in our approach especially when more complex architecture
and functional models are considered. Our fidelity analysis
at this point is based on experimental evidence. We are
planning to analyze this property in detail to see whether
some theoretical results can be derived. In addition, various
levels of modeling abstraction will be investigated analyzing
fidelity’s relationship to accuracy.

6. REFERENCES
[1] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, and Y. Watanabe. Metropolis: An
Integrated Environment for Electronic System Design. IEEE
Computer, April 2003.

[2] A. Davare, D. Densmore, V. Shah, and H. Zeng. A Simple Case
Study in Metropolis. Technical Memorandum UCB/ERL
M04/37, Univerity of California, Berkeley, CA 94720, September
2004.

[3] D. Densmore. Metropolis Architecture Refinement Styles and
Methodology. Technical Report UCB/ERL M04/36, University
of California, Berkeley, September 2004.

[4] D. Densmore, S. Rekhi, and A. Sangiovanni-Vincentelli.
Microarchitecture Development via Metropolis Successive
Platform Refinement. In Design Automation and Test Europe
(DATE), February 2004.

[5] A. Donlin. Transaction Level Modeling: Flows and Use Models.
In International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS’04), 2004.

[6] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System Level Design:
Orthogonalization of Concerns and Platform-Based Design.
IEEE Transactions on Computer-Aided Design, Dec. 2000.

[7] A. E. Lee and A. Sangiovanni-Vincentelli. A Framework for
Comparing Models of Computation. IEEE Transactions on
CAD, Vol. 17, No. 12, June 1998.

[8] T. M. P. Team. The Metropolis Meta Model Version 0.4.
Technical Report UCB/ERL M04/38, University of California,
Berkeley, September 2004.

[9] G. Wallace. The JPEG Still Picture Transmission Standard.
Communications of the ACM, pages 30–34, April 1991.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



