
Integrated Data Relocation and Bus Reconfiguration for
Adaptive System-on-Chip Platforms

Krishna Sekar
Dept. of ECE, UCSD
La Jolla, CA 92093

Kanishka Lahiri
NEC Laboratories America

Princeton, NJ 08540

Anand Raghunathan
NEC Laboratories America

Princeton, NJ 08540

Sujit Dey
Dept. of ECE, UCSD
La Jolla, CA 92093

Abstract— Dynamic variations in application functionality
and performance requirements can lead to the imposition
of widely disparate requirements on System-on-Chip (SoC)
platform hardware over time. This has led to interest in
the design and use of adaptive SoC platforms that are
capable of providing high performance in the face of such
variations. Recent advances in circuits and architectures are
enabling platforms that contain various mechanisms for run-
time adaptation. However, the problem of exploiting such
configurability in a coordinated manner at the system level
remains a challenging task.

In this work, we focus on two configurable subsystems
of SoC platforms that play a crucial role in determining
overall system performance, namely, the on-chip communi-
cation architecture, and the on-chip memory architecture.
Using detailed case studies, we demonstrate the limitations
of designs in which the architectural configuration of a bus-
based communication architecture and the placement of data
in memory are statically optimized, and those in which each
is customized separately, without considering their interdepen-
dence. We propose an integrated methodology for dynamically
relocating on-chip data and reconfiguring the communication
architecture, and discuss the necessary hardware support.
Experiments conducted on an SoC platform that integrates
decoders for the UMTS (3G) and IEEE 802.11a (Wireless LAN)
standards demonstrate that the proposed integrated adaptation
technique helps boost the maximum achievable performance
by up to 32% over the best statically optimized design.

I. INTRODUCTION

The design of increasingly complex System-on-Chip
(SoC) platforms is being driven by the convergence of mul-
tiple functions onto a single device (e.g., wireless handsets).
The characteristics of the processing workload imposed
on such platforms may exhibit large dynamic variation,
depending on which functions are being exercised at any
given time, and the variations in user-level performance
requirements. Consequently, platform architectures that are
statically customized for average or worst case requirements
often fail to meet the desired performance goals [1], [2].
This has led to the emergence of dynamic configurability
in SoC components, such as caches, communication archi-
tectures, embedded processors, etc., so that the platform
can be suitably adapted to run-time variations in applica-
tion requirements. While adaptation techniques for different
platform components have been individually studied in the
past, techniques for coordinated adaptation in platforms with
multiple such avenues of configurability has received little
attention.

A. Paper Overview and Contributions
In this paper, we demonstrate the importance of taking

an integrated approach to run-time adaptation of the on-
chip communication and memory architecture, two key

subsystems that significantly influence overall system per-
formance [3], [4]. We argue that approaches in which
the mapping of application data objects to regions of the
memory address space, and configuration of the commu-
nication architecture, are performed statically, can lead to
substantial performance loss. In addition, we show that the
mapping of data to memory directly influences the on-
chip communication traffic profile, which in turn affects
the choice of communication architecture configuration. We
propose a methodology for the integrated adaptation of these
subsystems, which statically maps regions of the application
space to appropriate bus and memory configurations. At
run-time, based on the current application requirements, the
best platform configuration is selected and applied. We also
describe the hardware support required by our strategy. The
proposed approach was evaluated on an integrated Viterbi-
Turbo decoding system that integrates decoders correspond-
ing to the UMTS (3G cellular) and IEEE 802.11a (wireless
LAN) standards. We observed performance gains of up to
32% compared to the best statically optimized design, with
negligible hardware overhead.

B. Related Work

System-level techniques for customizing the on-chip com-
munication architecture to application traffic characteristics
have been developed in recent years [5], [6]. However,
these techniques largely assume that the on-chip traffic
characteristics are given, i.e., they do not explore how the
on-chip traffic is influenced by the placement of data among
the on-chip memories. Similarly, most techniques that opti-
mize data placement and/or the memory organization, do
so without assuming any configurability inherent in the
communication architecture [4], [7]. The interdependence
between communication architectures and memory architec-
tures has been recently studied in [8], [9], which perform
simultaneous exploration of the joint design space. However,
they focus on statically optimizing the system architecture
to specific application characteristics, and do not address the
need for dynamic adaptation. The interdependence between
bus protocols and hardware/software co-design was studied
in [10]. The idea of run-time synergistic adaptation has
been demonstrated in the past using various combinations of
data re-mapping, task scheduling, and power saving strate-
gies [2], [11]. We are unaware of any work that attempts
to perform integrated, dynamic adaptation of data place-
ment and communication architecture configuration. Finally,
we note that many of the static optimization techniques
mentioned above can be used within our proposed flow
to derive optimized platform configurations for different
application requirements. Thus, our adaptation methodology
is complementary to these techniques.

3-9810801-0-6/DATE06 © 2006 EDAA

XT

Z1,T

Z2,T

Le1,T

L’e1,T

Le2,T

L’e2,T

OUTT

MEM1
(64 KB)

AHB I/F

ARM946E-S

AHB I/F

Viterbi Unit

AHB I/F

Viterbi Unit

AHB I/F

Turbo Unit

AHB I/F

BRG

AHB_2
Arbiter

AHB I/F
MEM2
(8 KB)

AHB I/F
MEM2
(8 KB)

AHB I/F

AHB_1 AHB_2

(c)

A
H

B
 I/

F

A
H

B
 I/

F
AHB_1
Arbiter

AHB I/F

OUTV

(a) (b)

INV

Y0,V

Y1,V

X’T

De-puncture Viterbi
Decode

De-interleave

Interleave
Interleave

Convolutional
Decode

Convolutional
Decode

Fig. 1. Integrated Viterbi-Turbo decoder design: functional specification
of (a) Viterbi decoder, (b) Turbo decoder, and (c) mapping of functional
blocks to integrated decoder architecture

The rest of this paper is organized as follows. In Sec-
tion II, we present illustrative examples that motivate our
work. In Section III, we describe the proposed adaptation
methodology. In Section IV, we describe the required hard-
ware support and how the platform is adapted at run-time.
In Section V, we present experimental results that evaluate
the application of the proposed approach to the design of
an integrated Viterbi-Turbo decoder.

II. MOTIVATION

In this section, we illustrate, using an integrated IEEE
802.11a Viterbi and UMTS Turbo decoder design, the
advantages of an integrated approach to dynamic data re-
location and bus reconfiguration.

A. Case Study: Integrated Viterbi-Turbo Decoder Design
Viterbi coding is a popular channel coding technique used

in a wide variety of wireless standards [12]. Figure 1(a)
illustrates the tasks that constitute Viterbi decoding [13].
The noise-contaminated received bits, INV , are first “de-
punctured” by inserting dummy zero values in place of the
bits that were “punctured” at the transmitter (puncturing
is a process of omitting some encoded bits to increase
the coding rate). The Viterbi decode task then generates
the output decoded bits, OUTV . Turbo coding is another
popular channel coding technique used in third-generation
cellular standards [14]. Figure 1(b) shows the tasks involved
in Turbo decoding [13]. The decoder receives the noise-
contaminated bits, XT , Z1,T and Z2,T . Turbo decoding op-
erates in an iterative manner (Figure 1(b)), such that outputs
of the first convolutional decoding task are interleaved and
input to an identical second convolutional decoding task,
whose outputs are in turn de-interleaved and input back to
the first decoding task. After a number of such iterations
(typically 8 for low bit error rate), a hard (0 or 1) decision
about the value of each bit is output (OUTT).

The integrated Viterbi-Turbo decoder design is motivated
by the emergence of converged handsets that are capable of
operating over multiple air interfaces simultaneously [15].
The data rate requirements for Viterbi and Turbo decoding
may vary over time depending on application data rate,
signal strength, number of users, etc. Figure 1(c) shows
the mapping of the Viterbi and Turbo tasks to a set of
hardware components and software running on an embedded
processor (ARM946E-S). The Viterbi and Turbo decoding
block sizes are set to 1024 bits. The bus architecture is
based on the AMBA AHB bus standard [16] and consists

TABLE I
VITERBI AND TURBO DECODING DATA OBJECTS

XT 1024 bytesSoft Input Systematic bits
X’T 1024 bytesInterleaved Systematic bits
Z1,T 1024 bytesSoft Input Parity bits 1
Z2,T 1024 bytesSoft Input Parity bits 2
Le1,T 1024 bytesLLR1 bits
L’e1,T 1024 bytesInterleaved LLR1 bits
Le2,T 1024 bytesLLR2 bits
L’e2,T 1024 bytesDe-interleaved LLR2 bits

Data
Objects SizePurpose

INV 1536 bytesSoft Input bits
Y0,V 1024 bytesDe-punctured bits 1
Y1,V 1024 bytesDe-punctured bits 2

OUTV 512 bytesDecoded Output bits
STableV 5120 bytesState History bits

App.

Viterbi

Turbo

OUTT 512 bytesDecoded Output bits

of two bus segments connected by a two-way bridge. The
platform also has two SRAM memory components, MEM1
and MEM2, connected to the bus segments. Table I shows
the different data objects used by the Viterbi and Turbo
applications, and their sizes.

The Viterbi-Turbo decoder was optimized using the in-
tegrated adaptation techniques proposed in this paper. The
design features two dynamic configurability options: (i)
dynamic relocation of the Viterbi and Turbo data objects
between MEM1 and MEM2, and (ii) dynamic bus topology
reconfiguration through dynamic bridge by-pass [17], a
technique that enables the internal logic of the bridge to
be “by-passed” at run-time, thereby merging the two bus
segments into a single shared bus. In the following exam-
ples, we analyze the performance of the resulting design
under illustrative scenarios.

Example 1: We first consider an application scenario where
only the Viterbi decoder is executing. Table II shows the
maximum data rates achieved under different combinations
of data placement and bus configuration. We observe that,
under a single shared bus (i.e., when the bridge is by-
passed), all data placements give the same performance,
since both MEM1 and MEM2 are on the same bus. However,
under a multiple bus architecture, data placement 1 shown
in Table II achieves the highest data rate. This shows that
the optimal placement of data in memory depends on the
underlying bus topology. Also, if data placement 1 is used,
the multiple bus architecture results in the highest data rate,
while if data placement 4 is used, the single shared bus
architecture gives a higher data rate. This shows that for
best performance, bus topology selection should take into
account the placement of data in memory.
The above example illustrates that the placement of data in
memory and the bus configuration are interdependent, and

TABLE II
VITERBI DECODING DATA RATES UNDER DIFFERENT DATA PLACEMENT

AND BUS CONFIGURATIONS

Data Placement

INV

Single Shared Bus Multiple Bus

Bus Topology

30.1591 Mbps

30.1591 Mbps

30.1591 Mbps

30.1591 Mbps

52.4926 Mbps

46.3901 Mbps

40.7515 Mbps

9.9071 Mbps

INV , OUTV , Y0,V

INV , OUTV , Y0,V ,
Y1,V

INV , OUTV , Y0,V ,
Y1,V , STableV

MEM1 MEM2
Y0,V , Y1,V ,

STableV , OUTV

Y1,V , STableV

STableV

-

#

1.

2.

3.

4.

0

10

20

30

40

50

0 1 2
Turbo Data Rate (Mbps)

V
ite

rb
i D

at
a

R
at

e
(M

bp
s)

(C1)

(C3)

(C3,C4) (C4)

(C1,C3,C4,C6) (C3,C4,C6) (C6)

(C5,C6)

46

0.384 1.7 2.5

9

Fig. 2. Viterbi and Turbo decoding data rate requirements and platform
configurations that can satisfy them

should be jointly optimized. We next make the case for this
joint optimization to be performed dynamically.
Example 2: Consider the simultaneous execution of both
Viterbi and Turbo decoders. Figure 2 illustrates the Viterbi
and Turbo decoding “data rate space”. Each point in this
space consists of a specific data rate requirement for Turbo
decoding and concurrent Viterbi decoding. For some sample
points in the data rate space, Figure 2 shows different data
placement and bus architecture configurations (see Table III
in Section V-B) under which they are achievable. For ex-
ample, when the data rate requirement is 〈1Mbps, 10Mbps〉
for Turbo and Viterbi decoding, respectively, multiple plat-
form configurations (C1, C3, C4 and C6) can satisfy it.
However, only configuration C1 can satisfy the requirement
of 〈384Kbps, 46Mbps〉, while only configuration C4 can
satisfy the requirement of 〈1.7Mbps, 20Mbps〉. Configu-
rations C1 and C4 differ in the way data is placed in
memory (Table III). We also observe that when the decoding
requirement is 〈2.5Mbps, 9Mbps〉, only configuration C6,
which employs a single shared bus, can satisfy it. Finally,
if the application requirements change at run-time from
〈384Kbps, 46Mbps〉 to 〈1.7Mbps, 20Mbps〉, the only way
to satisfy both requirements is to dynamically change the
configuration from C1 to C4.
The above example illustrates that dynamic data relocation
and bus reconfiguration enable the design to achieve a larger
performance space. This is because data relocation enables
the placement of data in memory to be optimized to best
suit the current requirements of the executing applications,
while adapting the bus configuration enables it to be better
matched to the resulting on-chip communication traffic
profile.

In summary, the above examples motivate the need for
integrated, dynamic adaptation of the on-chip communica-
tion and memory architectures. We next describe a platform
adaptation methodology based on such an approach.

III. PLATFORM ADAPTATION METHODOLOGY

In this section, we first describe the problem of run-
time platform adaptation, and present an overview of our
methodology to address it. We then describe the key steps
of the methodology in detail.

A. Problem Description and Methodology Overview
We consider a partitioned and mapped SoC platform

architecture whose components are connected to a set of bus
segments interconnected by bridges. The platform executes

a set of applications, A1, A2, ..., AN , with corresponding
time-varying data rate requirements, DR1,DR2, ...,DRN .
The platform is enhanced to support the relocation of
application data objects in memory, and reconfiguration of
the bus architecture through by-pass of some or all of the
bridges. The problem of platform adaptation is to select
the optimized placement of the application data objects in
memory, and the bus configuration (i.e., which bridges are
to be by-passed) at run-time, such that the performance
requirements of all the applications can be satisfied.

Adaptive Platform
Architecture

Applications Typical
Input Stimuli

Relocatable Data Object
Sizes, # Accesses

2. Generate all platform configurations

3. Select candidate configurations

4. Characterize data rate space
achievable per candidate configuration

5. Partition data rate space

Platform
Configuration Table

Candidate
configurations

Relocatable
Data Objects

1. Application profiling

Fig. 3. Dynamic data relocation and bus configuration methodology

Figure 3 shows our overall platform adaptation method-
ology. Each application Ai is associated with a set of
relocatable data objects Di = {di,1, di,2, ..., di,M}. For
each di,j , we first determine its size si,j , and estimate
the average number of accesses ni,j,k to it from each
platform component Pk, through simulation using typical
input stimuli (step 1). We then generate an exhaustive list
of all possible platform configurations Cl = 〈Mm, Bn〉,
where Mm represents the data placement configuration,
and Bn the bus configuration (step 2). This configuration
space is then pruned to a subset of candidate platform
configurations, such that each can potentially cover a unique
region of the application data rate space (step 3). Next,
each candidate configuration is analyzed to estimate the set
of points in the data rate space that it can achieve (step
4). Finally, the application data rate space is partitioned
among the candidate configurations (step 5). The result of
the methodology is a Platform Configuration Table that
lists, for each data rate partition, the associated optimized
platform configuration. This table is used to perform run-
time platform adaptation (described in Section IV). We next
describe the highlighted steps in the methodology in detail.

B. Methodology Details
Selection of Candidate Configurations: To select the
candidate configurations, for each application Ai, under each
platform configuration 〈Mm, Bn〉, we compute the total
number of “cross-bridge” accesses (i.e., accesses across a
bridge) Ti,m,n, to the application’s relocatable data objects
Di. This is given by Ti,m,n =

∑M
j=1

∑
Pk

ni,j,k×BRGi,j,k,
where BRGi,j,k is the number of intermediate bridges
between component Pk, and data object di,j , and depends
on the platform configuration. Next, for each configuration

〈Mm, Bn〉, the total number of cross-bridge accesses Ti,m,n,
for each application Ai, are compared to the corresponding
number of cross-bridge accesses Ti,r,n, under all other
data placement configurations Mr, but for the same bus
configuration Bn. If there exists a configuration for which
Ti,r,n ≤ Ti,m,n for all applications, then the configuration
〈Mm, Bn〉 is discarded; otherwise, it is chosen as a candi-
date configuration. This is based on the hypothesis that for
a given bus configuration, data placements that result in a
larger number of cross-bridge accesses are inferior to those
that result in fewer cross-bridge accesses. Note that, we do
not prune configurations across different bus configurations
at this stage since it would require a detailed control flow
analysis of the applications, as the bus configuration affects
the system concurrency.

Characterization of Data Rate Space Achievable under
each Candidate Configuration: Next, we determine the
data rate space achievable under each candidate config-
uration (Figure 3). Exact characterization of this space
would require exhaustive performance analysis of the system
under all possible combinations of application data rate
requirements because it depends on the fine-grained control
flow and data access profile of the individual applications.
Clearly, this would be infeasible for most systems. However,
the objective of this step is to enable a good partitioning of
the overall application data rate space (step 5 in Figure 3),
for which even a coarse-grained approximation of the data
rate space under each candidate configuration is sufficient.
Therefore, we propose a technique to approximate this data
rate space based on a limited number of detailed simulations.

A1 Data Rate

C1×

A
2

D
at

a
R

at
e

C2

DRA1,C1

DRA2,C1 (DR’A1,C1, DR’A2,C1)

×

×

C3

C4

Fig. 4. Data rate space characterization and partitioning for two applica-
tions

To illustrate this, let us consider an example system exe-
cuting two applications A1 and A2. Figure 4 shows the exact
data rate space achieved under a candidate configuration C1

(the region between the dark dotted curve and the axes).
To approximate this curve, the platform is simulated under
configuration C1 using typical input stimuli for (i) each
application executing alone, resulting in points (DRA1,C1 ,0)
and (0,DRA2,C1), and (ii) with both applications executing
concurrently processing as fast as possible, resulting in point
(DR′

A1,C1
,DR′

A2,C1
) in Figure 4. Next, we use a quadratic

parametric spline curve fitted to these three points, resulting
in the dark solid curve for C1. For the points on the Y-
axis and X-axis, the parameter value is set to 0 and 1,
respectively, while for the third point it is set to dy/(dx+dy),
where dx and dy are the Euclidean distance of the third point

from the point on the X-axis and Y-axis, respectively. In our
experiments, we found that such curves can approximate
the actual data rate space well. Note that, more accurate
characterization can be performed using more simulations
of the platform, resulting in a larger number of points to
fit the curve. Other performance analysis techniques [8], [9]
can also be used in this step to speedup simulation.

The above procedure is repeated for all candidate config-
urations, to characterize their respective data rate spaces.

Partitioning of the Data Rate Space: Finally, the over-
all application data rate space is partitioned among the
candidate configurations, such that in each partition, the
associated platform configuration is best able to satisfy
the applications’ data rate requirements. To illustrate this,
we consider another candidate platform configuration C2,
for the above example system. Figure 4 shows the exact
(light dotted curve) and our approximated (light solid curve)
data rate space achieved under C2. The line joining the
intersection of the approximated curves for C1 and C2, and
the origin (dark solid line) partitions the data rate space, such
that for points that lie above this line, C1 is preferable, while
for those below this line, C2 is preferable. Figure 4 also
shows the ideal partitioning of the data rate space derived
based on the exact data rate curves (light solid line). The
shaded area in the figure indicates the data rate region that
cannot be achieved due to the inaccuracy introduced by our
approximation. The size of this region is system dependent.
In our experiments, this size was found to be quite small,
as shown in the results.

Figure 4 also shows the estimated data rate space under
two other candidate configurations C3 and C4 (dashed
curves). Redundant configurations such as C3 should be
pruned, since their data rate space is completely subsumed
by other configurations, while configurations such as C4

should not, as they can achieve a unique region of the
data rate space. Therefore, the methodology partitions the
data rate space only among configurations whose individual
data rate spaces form the envelope of the total achieved
data rate space (in this case, C1, C2 and C4). This is
performed as follows. We start with the candidate con-
figuration Ci, whose data rate curve intersects the Y-axis
at the highest point. The intersection points of this curve
with the curves under all other candidate configurations,
Ii = {(XCi,C1 , YCi,C1), (XCi,C2 , YCi,C2), ...}, are then
computed. The first chosen intersection point is one with
the highest Y value, say (XCi,Cj

, YCi,Cj
), and this forms

the first partition of the data rate space with the associated
configuration being Ci. Next, the intersection points of the
curve for Cj with those for the other configurations is
computed. The intersection point selected among them is
the one with the highest Y value less than YCi,Cj

, and
this forms the second partition with Cj as the associated
configuration. This process is continued until no more
intersection points can be selected. These partitions and the
associated configurations form the Platform Configuration
Table, which is used for run-time platform adaptation as
described in the next section.

Extension to an Arbitrary Number of Applications:
For each candidate configuration, the system is simulated
for all possible combinations of the applications executing
together, thus requiring C ∗ (2|N | − 1) simulations for N

applications and C candidate configurations. In practice,
we expect N to be fairly small. The data rate space under
each configuration is then approximated by fitting these data
rate points to an N-dimensional surface. The application
data rate space is then partitioned among the configurations
whose individual data rate spaces form the envelope, by
determining the intersection of their data rate spaces, as in
the two application case.

IV. RUN-TIME PLATFORM ADAPTATION

In this section, we first describe the hardware support re-
quired for enabling data relocation and bus reconfiguration,
and then describe how the platform is adapted at run-time.

A. Hardware Support

Relocation of data is performed using direct memory
access (DMA) and an optimized bus configuration. The
overhead of data relocation depends on the relocated data
size, memory access times, bus characteristics (e.g., burst
modes), and bus speeds. After relocating a data object, all
future references to it must find it at its new location. For
references from processors, this is ensured by changing the
virtual to physical address mapping of the relocated data
in the processor’s page table. For references from platform
hardware components, “base-plus-offset” addressing modes
must be used for each relocatable data object. On data relo-
cation, the corresponding base pointer values are updated
to point to the new base address. Since data relocation
is handled differently for processors and other hardware
components, an integral number of pages should be allocated
to relocatable data objects which are accessed by both.

To enable dynamic reconfiguration of the bus topology,
the inputs to the bridge’s master and slave interfaces are
routed to the outputs, using multiplexers to optionally by-
pass the bridge. When multiple bus segments are merged
together, only one bus master can be granted access to the
resulting shared bus at any given time. This is ensured by
using a distributed bus arbitration protocol, in which the
arbiters of the different bus segments co-operatively gener-
ate grants. A Bus Reconfiguration Unit is responsible for
generating the control signals to by-pass different bridges.
The exact penalty of bus reconfiguration depends on the
number of pending bus transactions, but has been previously
shown to be on the order of a few tens of bus cycles [17].

B. Platform Adaptation

The platform adaptation method is illustrated in Figure 5.
This functionality is implemented as low-level firmware
routines executing on the embedded processor(s) in the
platform. Applications communicate changes in their data
rate requirements through an API (application programming
interface). The run-time firmware searches the Platform
Configuration Table using the new and existing data rate
requirements to identify the current point in the data rate
space and the pre-computed optimized data placement and
bus configuration. Data is relocated by by-passing all the
necessary bridges, and then using DMA mode of transfer.
Next, the base pointer registers and processor page-tables are
updated. Finally, the Bus Reconfiguration Unit is instructed
to by-pass selected bridges according to the identified plat-
form configuration.

API

Change in application
data rate?

No

Yes

Search PC-table for
current point in

DR space

Data rates of
concurrent
applications

Platform
Configuration

Table

By-pass bridges
Transfer data by DMA

Current
configuration

Configure Bus
Architecture

System with relocated data

System with reconfigured bus
& relocated data

Platform
Configuration

Update base pointers
Update page table

Fig. 5. Run-time Platform Adaptation

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that eval-
uate the performance benefits of applying the proposed
methodology to the integrated Viterbi-Turbo decoder design.
A. Experimental Methodology

The integrated Viterbi-Turbo decoder design was imple-
mented using an instruction set model for the ARM proces-
sor, and programmable VERA bus-functional models [18]
for the Viterbi Unit, Turbo Unit, and the memories. The
configurable bus architecture with bridge by-pass was imple-
mented by enhancing a reference RT-level implementation
of the AMBA AHB bus [18], using the techniques described
in [17]. The design was operated at a frequency of 400 MHz.
Performance results were obtained through simulation with
ModelSim [19].
B. Application to the Viterbi-Turbo Decoder Design

TABLE III
CANDIDATE DATA PLACEMENT AND BUS CONFIGURATIONS

Y0,V , Y1,V , STableV ,
OUTV , OUTT

INV, OUTV, Y0,V, Z1,T, Z2,T,
Le1,T, L’e1,T, Le2,T, L’e2,T, OUTT

INV, OUTV, Y0,V, Y1,V, Z2,T,
Le1,T, L’e1,T, Le2,T, L’e2,T, OUTT

INV, OUTV, Y0,V, Y1,V,
STableV, OUTT

Data Placement Bus
Config.
Multiple

Bus

Multiple
Bus

Multiple
Bus

Multiple
Bus

any
Single
Shared

Bus

Config.

C1

C3

C4

C5

C6

MEM1 MEM2
INV, XT, X’T, Z1,T, Z2,T,
Le1,T, L’e1,T, Le2,T, L’e2,T

Y1,V , STableV , XT , X’T

STableV, XT , X’T , Z1,T

XT , X’T , Z1,T, Z2,T,
Le1,T, L’e1,T , Le2,T , L’e2,T

any

Y0,V , Y1,V ,
STableV , XT

Multiple
BusC2

INV, OUTV, X’T, Z1,T, Z2,T,
Le1,T , L’e1,T, Le2,T, L’e2,T, OUTT

The proposed methodology was applied to the integrated
Viterbi-Turbo decoder design. The total number of possible
platform configurations was 7422, which our methodology
pruned to only 6 candidate configurations (Table III). The
size of the data rate space that cannot be achieved due to the
inaccuracy introduced by our approximation was found to be
less than 2% of the total data rate space that can be achieved
(estimated using detailed simulation of all configurations).
Table IV shows the resulting Platform Configuration Table
for the design. The candidate configurations C2 and C5 were
redundant, and hence, do not appear in the table.

TABLE IV
PLATFORM CONFIGURATION TABLE

DRV ≥ 40.8 DRT
DRV < 21.46 DRT &
DRV ≥ 8.03 DRT

DRV < 8.03 DRT
Data Rate

Requirement
DRV < 40.8 DRT &
DRV ≥ 21.46 DRT

Configuration C1 C3 C4 C6

C. Platform Adaptation Overhead
The worst case overhead for data relocation (to copy data,

and update page tables and base pointers) was observed
while switching between configurations C1 and C4, and
was measured to be approximately 10 µs (using a DMA
unit, with single cycle memory access, and with the bridge
by-passed). The average bus reconfiguration overhead (to
enable or disable bridge by-pass) was measured to be
approximately 10 cycles. This shows that the platform adap-
tation overhead is negligible compared to the granularity at
which the data rate requirements are expected to change
(tens of milliseconds [20] or higher).

D. Impact of Platform Adaptation on Performance
Figure 6 shows the data rate space achieved under joint

data relocation and bus reconfiguration for the design (com-
plete shaded area). It also shows the platform configurations
selected for each data rate combination simulated (only
points on the outer edge of the complete shaded region). To
evaluate the performance improvements achieved through
our scheme we compared it to the performance achieved
under three other cases: (i) the best static configuration,
which is C4, as it can satisfy the largest space of data
rates among all candidate configurations; (ii) only dynamic
data relocation, while keeping the bus configuration fixed
as a multiple bus; (iii) only dynamic bus reconfiguration,
while keeping the data placement fixed as in the best static
configuration. From the figure, we observe that joint data
relocation and bus reconfiguration can satisfy a much larger
space of data rate requirements compared to a statically
configured design (e.g., up to 32% data rate improvements
when only Turbo decoding executes). We also observe that
by exploiting both data relocation and bus reconfiguration
together, the space of data rates achieved is much larger than
when they are individually configured.

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5
Turbo Data Rate (Mbps)

V
ite

rb
i D

at
a

R
at

e
(M

bp
s)

C1 C3 C4 C5 C6
Data rates achieved under:

Best Static Configuration

Only Dynamic Data Relocation

Only Dynamic Bus Reconfiguration

+ +

+ +

C1 C3 C4 C5 C6

Fig. 6. Data rate space achieved under different platform adaptation
schemes

VI. CONCLUSIONS

In this paper, we studied adaptive SoC platforms featur-
ing two different dynamic configurability options, namely,

data relocation and bus reconfiguration. We illustrated the
interdependence between these features, and presented a
methodology for their co-ordinated run-time adaptation. Ex-
periments on an integrated 802.11a Viterbi and UMTS Turbo
decoder design indicate that the proposed methodology
results in significant performance improvements compared
to conventional statically optimized platform architectures.

REFERENCES

[1] B. Xu and D. H. Albonesi, “Runtime reconfiguration techniques
for efficient general-purpose computation,” IEEE Design and Test of
Computers, vol. 17, pp. 42–52, Mar. 2000.

[2] K. Sekar, K. Lahiri, and S. Dey, “Dynamic platform management for
configurable platform based System-on-Chips,” in Proc. Int. Conf.
Computer-Aided Design, pp. 641–648, Nov. 2003.

[3] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, pp. 490–504, Apr. 2001.

[4] P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle,
E. Brockmeyer, C. Kulkarni, and E. D. Greef, “Data memory organi-
zation and optimization in application-specific systems,” IEEE Design
& Test Magazine, vol. 18, pp. 56–68, May 2001.

[5] K.Lahiri, A.Raghunathan, and S.Dey, “Design of high-performance
system-on-chips using communication architecture tuners,” IEEE
Trans. Computer-Aided Design, vol. 23, no. 6, pp. 919–932, 2004.

[6] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of
bus-based on-chip communication architectures,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, pp. 242–247,
Sept. 2004.

[7] R. Banakar, S. Steinke, B. S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: Design alternative for cache on-chip memory in
embedded systems,” in Proc. Int. Symp. on HW/SW Codesign, pp. 73–
78, May 2002.

[8] P. Grun, N. Dutt, and A. Nicolau, “Memory system connectivity
exploration,” in Proc. Design Automation & Test Europe (DATE)
Conf., pp. 894–901, Mar. 2002.

[9] A. Papanikolau, K. Koppenberger, M.Miranda, and F. Cathoor,
“Memory communication network exploration for distributed low
power memory organizations,” in Proc. IEEE Workshop Signal Pro-
cessing Systems, pp. 176–181, 2004.

[10] P. Knudsen and J. Madsen, “Integrating communication protocol
selection with hardware/software codesign,” IEEE Trans. Computer-
Aided Design, vol. 18, pp. 1077–1095, Aug. 1999.

[11] P. Marchal, F. Catthoor, D. Bruni, L. Benini, J. Gomez, and L. Pinuel,
“Integrated task scheduling and data assignment for SDRAMs in
dynamic applications,” IEEE Design & Test Magazine, vol. 21,
pp. 378–387, Sept. 2004.

[12] “Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications.” IEEE Std 802.11a-1999
http://standards.ieee.org/getieee802/download/
802.11a-1999.pdf.

[13] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications.
Kluwer Academic Publishers, Norwell, MA, 2000.

[14] “Universal Mobile Telecommunications Systems (UMTS); Multiplex-
ing and channel coding (FDD).” 3GPP TS 25.212 version 3.4.0 Re-
lease 1999 http://www.3gpp.org/ftp/Specs/archive/
25_series/25.212/25212-340.zip.

[15] “Philips debuts reference design for converged handsets.”
http://www.eet.com/news/latest/showArticle.
jhtml?articleID=159402638, Mar. 2005.

[16] “AMBA 2.0 specification.” http://www.arm.com/products/
solutions/AMBA_Spec.html.

[17] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS: A
high-performance system-on-chip communication architecture with
a dynamically configurable topology,” in Proc. Design Automation
Conf., pp. 571–574, June 2005.

[18] “Synopsys DesignWare Intellectual Property.” http://www.
synopsys.com/products/designware/designware.
html.

[19] “Modelsim 5.7e.” http://www.model.com.
[20] A. Aguiar and J. Klaue, “Bi-directional WLAN channel measure-

ments in different mobility scenarios,” in Proc. IEEE Vehicular
Technology Conf., pp. 64–68, May 2004.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

