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Abstract— Embedded multiprocessors pose new challenges in
the design and implementation of embedded software. This has
led to the need for programming interfaces that expose the
capabilities of the underlying hardware. In addition, for systems
that implement applications consisting of multiple concurrent
threads of computation, the optimized management of inter-
thread communication is crucial for realizing high-performance.

This paper presents the design of an application-adaptive
thread library that conforms to the IEEE POSIX 1003.1c
threading standard (Pthreads). The library adapts the placement
of both explicitly marked application data objects, as well as
implicitly created data objects, in a physically distributed on-
chip memory architecture, based on the application’s data access
characteristics.

I. INTRODUCTION

Advances in semiconductor process technology are enabling
integrated circuits consisting of multiple, loosely-coupled,
programmable devices, integrated along with a variety of other
components (e.g., on-chip memories, peripherals, domain-
specific processors), to implement a specific application, or set
of applications [1]. One challenge in the use of such embedded
multiprocessors is the dearth of appropriate programming in-
terfaces for effectively exploiting hardware-level concurrency.
Another emerging challenge is the increasing performance-
cost associated with on-chip data transfers, due to the com-
bination of rapidly escalating system complexity and poor
scaling trends associated with chip-level interconnects [2]. As
a result, for multi-threaded applications mapped to embedded
multiprocessors, optimizing inter-thread communication is a
critical requirement for achieving high performance. In this
paper, we illustrate the role of an application-adaptive thread
library in addressing these challenges. We provide an overview
of an IEEE POSIX 1003.1c [3] compliant thread library that
we designed, highlighting the optimizations that were built
in for efficient management of shared data objects in an
embedded multiprocessor.

II. ILLUSTRATIVE EXAMPLE

In this section we consider a multi-threaded implementation
of the IEEE 802.11 wireless LAN MAC layer (Figure 1).
For illustration, we focus on the sub-system enclosed by
the dashed box, which contains the WEP (Wired Equivalent
Privacy) encryption and the CRC (Cyclic Redundancy Check)
tasks. As shown in the figure, each task is implemented as a
thread that is mapped to a different processor. The memory
architecture consists of a distributed set of memories that are
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Fig. 1. A multi-threaded implementation of the IEEE 802.11 wireless
LAN MAC protocol, and it’s mapping to a multiprocessor based
architecture.

local to each processor, as well as a globally shared memory.
The threads comprising the illustrated sub-system share dif-
ferent data structures that may potentially be mapped to any
of the three processor-local memories within the considered
sub-system. We identified 36 data structures spanning two
categories: programmer-specified data structures, such as CRC
tables, encryption keys, and network packets, and library-
specific data structures that are created and maintained by the
thread library to facilitate communication and synchronization
between threads (e.g., mutexes, condition variables).

The application was simulated with actual MAC layer data
captured off a real wireless LAN. Based on an analysis of the
complete input trace, we calculated the best mapping of the
shared structures to the three processor-local memories, over
100 ms intervals. We observed that the optimum mapping
varied over time, with significant “phase” behavior for many
mappings (Figure 2). This motivates run-time adaptation of
the mapping of shared data structures to different physical
locations within the distributed memory architecture. In ad-
dition, to the extent possible, these optimizations should be
transparent to the application developer.

III. THREAD LIBRARY OVERVIEW

The proposed thread library implements the IEEE POSIX
1003.1c threading (Pthreads) interface, and takes advantage
of inter-thread communication characteristics to intelligently
manage the mapping of virtual addresses to physical locations
within a distributed on-chip memory architecture. For applica-
tions with time-varying characteristics, the library is capable
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Fig. 2. Optimum mapping of each of 36 data structures in the
multi-threaded implementation of WEP, over time, to one of three
processor-local memories. (Black: processor 2, dark gray: processor
1, light gray: processor 0)

of performing these optimizations at run time, using minimal
additional hardware support.

A. Application-Specific Data Management

To facilitate programmer-directed mapping, the library ex-
tends the Pthreads interface with a facility to enable programs
to register variables or data structures with the library, ei-
ther relinquishing control of where (which physical memory
location) it is to be allocated, or explicitly specifying in
which processor’s local memory the datum should reside. The
interface and its use are illustrated in Figure 3.

Fig. 3. An extension to the Pthreads interface.

The facilitator for both static and dynamic optimizations
is a structure referred to as the map table. The map table
contains entries for all data structures which are either ex-
plicitly registered with the library by a programmer (using
the pthread register interface), or implicitly so. Implicit
registration in the map table occurs when, as a result of
standard Pthreads interface functions, the library allocates a
data structure that is visible within multiple threads. Each
map table entry maintains information about the mapping to
physical local memory for a data structure. Static optimizations
involve generating this map table once. Dynamic optimizations
on the other hand, involve updating this map table at run time.

B. Hardware Support

Dynamic map table updates require a means of tracking
the number of accesses to fine-grained memory ranges (e.g., a

small data structure in memory), and being able to monitor the
accesses to these memory ranges across multiple processors.
This is achieved by means of a hardware device called a Map
Table Support Peripheral (MTSP) (Figure 4). When a thread
executes a pthread register library call, the library
creates an entry for the registered structure in the map table,
and also creates a corresponding entry in the MTSP. MTSP
updates occur on a per-processor basis each time a processor
generates an address on the system bus that matches an address
range associated with an already registered object. A dynamic
re-mapping mechanism (details omitted for brevity) that re-
maps data structures to optimized physical memory locations
is triggered every time a certain window of time goes by. The
window size is a parameter of the library implementation, and
can be appropriately specified to trade-off mapping optimality
for re-mapping overhead.
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Fig. 4. Architecture of a Map Table Support Peripheral (MTSP).

IV. EVALUATION

To evaluate the performance of our thread library, we used
cycle-accurate simulation of a multi-processor system based
on the Hitachi SH embedded processor [4]. The system in-
cludes the MTSP hardware, and timers that generate interrupts
for triggering dynamic map table updates. The thread library
was implemented using a combination of C and assembly
language for the target hardware. The benchmarks used were
the IEEE 802.11 MAC Layer sub-system described in Sec-
tion II, and a multi-threaded implementation of a Software
Radio (SDR) application, both of which were implemented
using the standard Pthreads interface.

In the case of the SDR application, the maximum sus-
tainable throughput was improved by 60% over a realistic
worst case, and 40% over a typical memory object placement.
For the IEEE 802.11 MAC Layer application, which exhibits
time-varying characteristics, the dynamic application-adaptive
techniques provided a further 6–8% improvement in maximum
throughput over static optimization approaches.
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