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Abstract

This paper we proposes compiler-based leakage op-
timization strategy for on-chip scratch-pad memories
(SPMs). The idea is to keep only a small set of SPM re-
gions active at a given time and pre-activate SPM re-
gions based on the compiler-extracted data access pat-
tern. Our strategy, called activity clustering, increases the
length of the idle periods of SPM regions by clustering ac-
cesses to a small set of regions at a time. It thus allows an
SPM to take better advantage of the underlying leakage op-
timization mechanism.

1. Introduction

One of the problems with ever-scaling process technol-
ogy is leakage consumption. Leakage consumption of on-
chip memory components (e.g., caches) is particularly prob-
lematic since these components typically occupy a signifi-
cant portion of die area. Prior research that addresses leak-
age consumption of on-chip memory components have ex-
clusively focused on caches. However, recent trends in em-
bedded computing systems indicate that software-managed
scratch-pad memories (SPMs) are being increasingly em-
ployed in embedded devices.(e.g., [1, 2]) accommodate
SPMs. This paper tries proposes a compiler-based solution
for reducing leakage energy consumption of SPMs. The
proposed solution employs a code analysis and restructur-
ing framework that clusters the SPM accesses into a small
set of SPM regions (unit of leakage control) at a given time.
This strategy, called activity clustering, tends to increase the
length of the idle periods of the SPM regions and thus al-
lows them to take better advantage of the underlying leak-
age optimization mechanism employed such as [5] and [4].
While different implementations of activity clustering idea
are certainly possible, in this paper, we focus on an Omega
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Figure 1. Mapping of three different arrays onto an
SPM with nine regions.

Library based implementation, a polyhedral tool from the
University of Maryland [3].

2. Omega-Based Data Access Clustering

Let us assume that S represents the set of array ele-
ments assigned to the SPM at a given time, and that the
SPM can hold at most s elements, which can be listed as
S(1),S(2),S(3), · · · ,S(s − 1),S(s). Therefore, any up-
date of the SPM can be envisioned as loading new values
to one or more elements of S. We divide SPM into R re-
gions of equal size (s/R) and Ri is used to represent the el-
ements in the ith region. In other words, Ri contains the el-
ements S((i − 1)s/R + 1) through S(is/R), as shown in
Figure 1. We further assume that the underlying hardware
leakage control mechanism operates at a region granular-
ity. When a region is idle for a certain period of time, it
is placed into the low-leakage mode (also called the low-
power mode). While in the low-power mode, a region con-
sumes much less leakage energy than the active (fully op-
erational) mode and it also preserves the contents of the re-
gion. A region in the low-power mode will be reactivated
upon its next access, which incurs both performance and en-
ergy overheads. Our goal is to maximize the length of the
idle periods of regions. Therefore, we would like to restruc-
ture the application code such that the accesses (iterations)
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that touch the same SPM region are clustered to the greatest
extent possible, allowed by the intrinsic data dependences
in the code.

For each loop iteration, we associate an R-bit tag, which
captures the SPM regions accessed by that iteration. For ex-
ample, if we have eight regions (i.e., R = 8) and a particu-
lar loop iteration accesses only the first and last regions, the
corresponding tag is 10000001. As another example, under
the same region partitioning, if a loop iteration accesses all
the regions except the last one, its tag is 11111110. Assum-
ing that each loop iteration makes at least one SPM access,
we have a total of 2R − 1 possible tags.

Figure 2 shows the sketch of our approach. We traverse
the set of possible tags one-by-one starting with 000· · ·001
and ending with 111· · ·111. In visiting a tag, we schedule
all loop iterations (from all nests) that has this tag, to the ex-
tent allowed by data dependences and then move to the next
tag and schedule the loop iterations associated with it and
so on. It is important to note that, based on the dependences
in the code being restructured, a tag may need to be vis-
ited more than once. There are two energy benefits of this
approach. First, since we cluster together the iterations that
have the same tag, these iterations access the same set of re-
gions and the remaining (unaccessed) regions can be put
in the low-leakage mode. Second, when we need to move
to a new tag, we select the one that has minimum Ham-
ming Distance from the last tile processed. This obviously
tends to minimize the state changes (active or low-leakage
status) of the regions and helps further increase energy sav-
ings.

We cluster loop iterations using loop splitting, a com-
piler transformation that divides a loop into multiple loops.
Specifically, for a given loop nest L and a region R1, we
split L into two loop nests, L1 and L2, such that all the it-
erations of L1 accesses array elements in R1, while none of
the iterations of L2 accesses any array element in R1. Af-
ter that, we further split the resulting loop nests, L1 and L2,
with respect to another region R2. We repeat this procedure
until all the regions have been considered. Finally, we get a
set of loop nests, each of which accesses a certain set of re-
gions. We tag these loop nests based on the regions they
access. The procedure for splitting loop nest L can be ex-
plained as follows. Let us assume a loop nest contains the
following n array accesses:

X1[f1(�I)],X2[f1(�I)], ...,Xn[fn(�I)],

where �I is the iteration vector of loop nest L, and function
fi maps iteration vector �I to the subscribe of array Xi. Let
us further assume that region R contains the following ar-
ray elements:

X1[�V1, �U1],X2[�V2, �U2], ...,Xn[�Vn, �Un],

where Xi[�Vi, �Ui] is the set of elements of array Xi whose
subscribe �S is within range [�Vi, �Ui], i.e., �Vi ≤ �S ≤ �Ui,

T = “00....0” // initially, all regions are turned off
for each loop nest L in program P {

// clustering iterations of L
S = {L}; t[L] = empty string;
for each region R {

S′ = φ
for each loop nest N ∈ S {

split N into two loop nests, N1 and N2
such that all the iterations of N1 access region R and
none of the iterations of N2 accesses region ;

t[N1] = t[N ]+ “1”; t[N2] = t[N ]+ “0”;
S′ = S′ ∪ {N1, N2}

}
S = S′;

}
// schedule the clustered loop iterations
while S �= φ {

select loop nest N from S such that
the Hamming Distance between t[N ] and T is minimized;

S = S − {N};
schedule N ;
T = t[N ];

}
}

Figure 2. Sketch of our approach.

where “≤” is defined as:

(u1, u2, ..., uk)T ≤ (v1, v2, ..., vk)T ⇐⇒ ui ≤ vi(i = 1, 2, ..., k).

The set of loop iterations that access region R can be ex-
pressed as:

P =
n⋃

i=1

{�I | �Vi ≤ fi(�I) ≤ �Ui}.

On the other hand, the set of loop iterations that do not ac-
cess region R can be expressed as:

Q =
n⋂

i=1

{�I | fi(�I) < �Vi or fi(�I) > �Ui}.

We assume that all fi are affine functions1; therefore, we
can use the Omega Library [3] to generate the loop nests
whose iteration spaces are P and Q.
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