

Performance Optimization for Energy-Aware Adaptive Checkpointing in

Embedded Real-Time Systems
*

Zhongwen Li, Hong Chen, Shui Yu

Information Science and

 Information Science and

School of Information

Technology College, Technology College, Technology,

Xiamen University, China Xiamen University, China Deakin University, Australia
lizw@xmu.edu.cn chenhon103@hotmail.com syu@deakin.edu.au

Abstract

Using additional store-checkpoinsts (SCPs) and

compare-checkpoints (CCPs), we present an adaptive

checkpointing for double modular redundancy (DMR) in

this paper. The proposed approach can dynamically ad-

just the checkpoint intervals. We also design methods to

calculate the optimal numbers of checkpoints, which can

minimize the average execution time of tasks. Further, the

adaptive checkpointing is combined with the DVS (dy-

namic voltage scaling) scheme to achieve energy reduc-

tion. Simulation results show that, compared with the

previous methods, the proposed approach significantly

increases the likelihood of timely task completion and

reduces energy consumption in the presence of faults.

1. Introduction

Checkpointing is an important method for

fault-tolerance in real-time systems in the condition of

harsh environment. The following three types of check-

points are well known: CSCP, SCP and CCP
 [1-3]

. CCPs are

used to compare the states of the processors without stor-

ing them, while, the processors store their states without

comparison in SCPs. If the two operations are used to-

gether in the same checkpoint, we call it CSCP. Using

CCP and SCP, Ziv and Bruck have shown numerically that

the task execution time is significantly reduced
[1,4]
. Using

additional CCPs and SCPs, Nakagawa and Fukumoto have

used a triple modular redundancy and double modular

redundancy to analyze the optimal checkpoint intervals

that can minimize a task execution time, respectively
[5]
.

In addition, many real-time systems are often en-

 * This work is supported in part of Fujian natural science grant
(A0410004), Fujian young science & technology innovation grant

(2003J020), NCETXMU 2004 program, Program of 985 Innovation on

Information in Xiamen Univ.(2004-2007) and Xiamen Univ. research

grant (0630-E23011).

ergy-constrained since system lifetime is determined to a

large extent by the battery lifetime
[2]
. For example,

autonomous airborne and sea-borne systems working on

limited battery supply, space systems working on a limited

combination of solar and battery power supply,

time-sensitive systems deployed in remote locations where

a steady power supply is not available
[3,6]
. DVS has

emerged as a popular solution to the problem of reducing

power consumption during system operations. The DVS

become possible on the availability of embedded proces-

sors that can dynamically scale the frequency by adjusting

the operation voltage
[2,3]
. Many embedded processors

have the ability to dynamically scale the operation voltage

currently. Such as, the mobile processors from Intel with

its SpeedStep
[7]
 technology. In the realm of real-time sys-

tems, the DVS techniques focuse on minimizing energy

consumption of the system under the condition of meeting

the deadlines. The DVS and fault tolerance for real-time

systems have been studied as separate problems. It is only

recently that an attempt has been made to combine fault

tolerance with the DVS
 [3]
.

The combination of DVS, CSCPs (CCPs or SCPs)

can be used to satisfy system’s DVS requirement and im-

prove the performance of real-time systems. However,

none of the mentioned papers addressed these issues in

terms of conjunction. Using additional SCPs and CCPs,

we modify the methods of [3] in the double modular re-

dundancy (DMR) in this paper. Different from the existing

methods, our approach is to tune the scheme to the spe-

cific system which it is implemented on, and use both the

comparison and storage operations efficiently, the per-

formance of checkpoint schemes is improved.

Some notations used in our paper are listed below:

ts: the time to store the states of processors.

tcp: the time to compare processors’ states.

tr: the time to roll back the processors to a consistent

state.

tR : remaining execution time.

dR : time left before the deadline.

3-9810801-0-6/DATE06 © 2006 EDAA

fR : upper boundary on the remaining number of

faults that can be tolerated by the system.

2 Adaptive checkpointing scheme

Assume task τ has a period T , a deadline D , a
worst-case computation time N when there are no fault in

the system. An upper boundary k represents the number of

fault occurrences that have to be tolerated. C is the over-

head of a checkpoint. Faults arrive as a Poisson process

with parameter λ , the average execution time for the task
is minimum, if a constant checkpoint interval of 2 /C λ is
used

 [8]
. We refer to this as the Poisson-arrival approach. If

the Poisson-arrival scheme is used, the effective task exe-

cution time in the absence of faults must be less than the

deadline D. Assume the fault-free execution time for a task

is N, the worst-case execution time for up to k faults is

minimum, if the constant checkpoint interval is set

to kNC /
[9]
. This is the k-fault-tolerant approach.

In addition, we assume that task τ is divided equally
into n intervals of length N

T
n

 =   
, and at the end of each

interval, CSCP is always placed.

2.1 Additional SCPs

Each CSCP interval is divided equally into m inter-

vals of length 





=
m

T
T
1

(figure 1). The SCPs are placed

between the CSCPs, the states of two processors are

stored at iT1 and jT (i=1,2,…, m-1). If two states do not

get an agreement at time jT, then, we need to find the most

recent SCP with identical states and roll back to it. As

shown in figure 1, two processors are rolled back to

(i-1)T1 because some errors have occurred during ((i-1)T1,

iT1), and repeat the execution from (i-1)T1. The average

execution time R1(m) for a CSCP interval ((j-1)T, jT) is

given by a renewal-equation
[4, 10]

:

Therefore, the average execution time of a task

RSCP(n)=nR1(m).

Replace
1

/m T T= , we have

121
1 1

1 1 1 1

()
() [()](1)......(1)

2

T

s cp s cp

T TT T T
R T T t t T t t e

T T T T

λ+
= + + + + + −

If
1 0T +→ , then R1(T1)= +∞ . Let T1=T, we

have 2

1 1() () T

s cpR T T t t e λ= + + . Thus, there exists a fi-

nite (]jTTjT ,)1(
~
1 −∈ which minimizes R1(T1). Differentiat-

ing equation (1) with respect to T1 and setting it equal to

zero, we get
1T
� . Procedure num_SCP(T) for calculating

m� which minimize)~(1 mR is described in Figure 2.

The adaptive checkpointing with SCPs, adapchp-SCP

(D,E,C,k, λ), is described in Figure 3. A check is per-

formed to see if the task has been completed in line 4, and

line 5 checks for the deadline constraint. The length of

SCP and CSCP interval is set in line 6 and line 7, respec-

tively. In line 9, a check is performed to see if fault is de-

tected. If there is no fault, then continue to run task, oth-

erwise, roll back to previous SCP with identical states and

continues execution, which are described from line 12 to

Fig. 2 Procedure for calculating the m�

Procedure num_SCP(T){

1. Find 1

~
T which minimizes R1(m);

2. if (1

~
T <T) {

3. m=  1~/TT ;

4. if (R1(m)≤ R1(m+1)) then
5. ;~ mm =

6. else ;1~ += mm

7. } else ;1~ =m

8. return ;~m }

Fig. 3 Adaptive checkpointing with SCPs

Procedure adapchp-SCP (D, N, C, k, λ){

1. Rt=N; Rd=D; Rf=k;

2. Itv=interval(Rd, Rt, C, Rf, λ);

3. m=num_SCP(Itv);  mItvitv /= ;

4. while (Rt>0) do {

5. if (Rt> Rd) break with task failure;

6. Insert SCP with interval length itv;

7. Insert CSCP with interval length Itv;

8. Update Rt, Rd;

9. if (no error has been detected at CSCP)

10. Resume execution;

11. else{

12. Rollback to the most recent SCP with identical

states;

13. Rf= Rf-1;

14. Itv=interval(Rd, Rt, C, Rf, λ);

15. m=num_SCP(Itv);  mItvitv /= ;

16. Resume execution;}}

)1)](())(1(
2

1
[

)1())]1(([

)()(

1

1

1

1

2
11

1
)1(

2
11

2
11

−+++++++=

−−−+++++

++=

∑∫
=

−

−

−

T
rcpscps

m

i

iT

Ti

t
rcps

mT
cps

ettmtTmmtmtmT

edimRttmtmT

etmtmTmR

λ

λ

λ

Fig. 1 Task execution with SCPs

(j-1)T

error SCP CSCP

T 1T1 (i-1)T1 (m-1)T1 jT iT1

Rollback point Error detection

T1

line 16. In line 2 and 14, we use procedure interval (Rd, Rt,

C, Rf, λ)
[3]
 (figure 4)

to calculate the checkpoint interval.

 In figure 4,
1
(,) 2 /I C Cλ λ= is the checkpoint

interval of the Poisson-arrival approach,

kNCCkNI /),,(2 = is the checkpoint interval of the

k-fault-tolerant approach. In addition, [3] defined some

quations:

(, ,) () /(1 / 2)d dTh R C R C Cλ λ λ= + +

2(, ,) 2 2 () ()
d f d f f d f

Th R R C R C R C R C R C R C= + + − + +

)/(2),,(3 NCDNCCDNI −+=

Line 1 of figure 4 calculates the number of faults

Exp-fault that are expected to occur in the remaining time

Rt. If Exp-fault is less than or equal to Rf, the

k-fault-tolerant requirement is deemed to be more strin-

gent than the Poisson-arrival criterion. In line 3, a check is

performed to see if Rt exceeds the threshold

(, ,)dTh R Cλ λ . If this condition is satisfied, the checkpoint

interval is set to I3(Rt, Rd,C). In line5, a check is per-

formed to see if Rt exceeds threshold Th(Rd, Rf,C) but is

below (, ,)dTh R Cλ λ . If this condition is satisfied, the

checkpointing interval is set to I2(Rt, Exp-fault,C). If the

k-fault-tolerant threshold is met, the checkpoint interval is

set to I2(Rt, Rf,C) in line 7. Line 8-10 handle the case when

the k-fault-tolerant requirement is deemed to be less strin-

gent than the Poisson-arrival criterion.

2.2 Additional CCPs

Each CSCP interval is divided equally into m inter-

vals of length 





=
m

T
T
2

. The CCPs are placed between

CSCPs, and the states of the two processors are compared

at iT2 and jT (i=1,2,…, m-1). If two states do not reach to

an agreement at iT2 and jT, that means some errors have

occurred during this interval, the two processors will be

rolled back to (j-1)T (Figure 5).

The average execution time R2(m) for an interval

((j-1)T, jT) is given by a renewal-equation:

Therefore, the average execution time RCCP(n)=nR2(m).

Replacing 2/m T T= , we have:

0 2 0

0 2

22 2

2 2 2
() (1) (2)

1

cpT T

s T

T t
R T t e e

e

λ λ
λ−

+
= + −

−

If
2 0T +→ , then R2(T2)= +∞ . If T2=T,

then 2

2 2() () T

s cpR T T t t e λ= + + . Therefore, there exists a

finite (]jTTjT ,)1(
~
2 −∈ , which minimizes R2(T2). Differen-

tiating equation (2) with respect to T2 and setting it to zero,

we can get
2T
� . We can use the similar approach de-

scribed in figure 2 to calculatem� which minimize
2 ()R m� .

3 Adaptive checkpointing with DVS

With additional SCPs and CCPs, we show how adap-

tive checkpointing scheme can be combined with the DVS

to obtain fault tolerance and power savings in real-time

systems. In the one hand, our approach is to maximize the

probability that the task meets its deadline in the presence

of faults. In another hand, our approach is to reduce en-

ergy consumption through the DVS.

Assume that task τ has a fixed quantity of computa-
tion cycles N in the fault-free condition. Because the vari-

able voltage CPUs are available, the time to execute task

τ depends on the processor speed. We therefore charac-
terizeτ by a fixed quantity N, namely, its worst-case num-
ber of CPU cycles, needed to execute the task at the

minimum processor speed. For the rest of this paper, we

normalize the units of N such that the minimum processor

speed is 1. That is, if the minimum processor speed is S

cycles per second, then we express the number of cycles in

units of S cycles and thus normalize the minimum proces-

sor speed to Smin=1. Of course, period T and deadline D

are expressed in terms of the number of CPU cycles at the

Fig. 4 Calculating checkpointing interval

Procedure interval(Rd, Rt, C, Rf, λ){

1 .exp_error= λ Rt;

2. if (exp_error≤ Rf) {
3. if (Rt>Thλ(Rd, λ ,C)) then

4. chk_interval=I3(Rt, Rd, C);

5. else if (Rt>Th(Rd, Rf, C)) then

6. chk_interval= I2(Rt, exp_error,C);

7. else chk_interval= I2(Rt, Rf ,C);}

8. else{ if(Rt> Thλ(Rd, λ ,C)) then

9. chk_interval= I3(Rt, Rd, C);

10. else chk_interval=I1(C, λ);}

11. return chk_interval; }

()

2

2

2

2

2

2 2

2

2

2 2

2

2 2
1

1

2

(1)

22 2

2

() ()

[()] (1)

(1)

(1)
1

mT

cp s

m iT
t

cp r
i T

i

mT
t

s
m T

cpT mT

s T

R m mT mt t e

iT it t R m d e

t d e

T t
t e e

e

λ

λ

λ

λ λ
λ

−

−

−
=

−

−

= + +

+ + + + −

+ −

+
= + −

−

∑ ∫

∫

(j-1)T

error CCP CSCP

Fig. 5 Task execution with lCCPs

1T2 (i-1)T2 (m-1) T2 jT iT2

Error detection Rollback

T2

minimum processor speed.

To simplify the analysis and to allow for the deriva-

tion of analytical formulas, we would like to assume that a

single processor with two speeds f1 and f2, and f1 is the

minimum processor speed, namely, f1= Smin=1. Moreover,

the processor can switch its speed in a negligible amount

of time.

Additional notations we use is below:

Rc : the number of instructions of the task that remain

to be executed at the time of the voltage scaling decision.

c : the numbe of clock cycles that a single checkpoint

takes.

test: an estimate of the time that the task has to exe-

cute in the presence of faults and with checkpointing. The

expected number of faults for the duration test is esttλ .

The checkpointing cost C at frequency f is given by

C=c/f.

To ensure esttλ fault tolerance during task execution,

the checkpointing interval must be set to

/() / /()est estt C t C c fλ λ λ= = . In addition, we have

(1 /)

(1 /)

c

e s t

R c f
t

f c f

λ

λ

+
=

−

[3]
.

We consider the voltage scaling to be feasible if

est dt R≤ . This forms the basis of the energy-aware adap-

tive checkpointing that are described in procedure

adapchp_dvs_SCPs and adapchp_dvs_CCPs (Figure 6 and

Figure 7).

1 1 2

Procedure adapchp_dvs_SCP(, , , ,){

1. ; ; ;

2. if ((,)) ; else ;

3. interval(, / , / , ,);

4. num_SCP(); / ;

5. while((/)

c d f

est c d

d c f

t c

D N c k

R N R D R k

t R f R f f f f

Itv R R f c f R

m Itv itv Itv m

R R f

λ

λ

= = =

≤ = =

=

= =

= 0)do{

6. if () break with task failure;

7. Insert SCP with interval length ;

8. Insert CSCP with interval length ;

9. Update , according to speed ;

10. if(no error has been detected at CSCP

t d

c d

R R

itv

Itv

R R f

>

>

1 1 2

)

11. Resume execution;

12. else{

13. Roll back to the most recent SCP/CSCP with identical states;

14. -1;

15. if ((,)) ; else ;

16. interval(, / , / , ,);

17. n

f f

est c d

d c f

R R

t R f R f f f f

Itv R R f c f R

m

λ

=

≤ = =

=

= um_SCP(); / ;

18. Resume execution;}

}}

Itv itv Itv m=

Fig. 6 adapchp_dvs_SCPs

1 1 2

Procedure adapchp_dvs_CCP(){

1.

2. if() ; else ;

3. interval(, / , / , ,);

4. num_CCP(); / ;

5. while((/

t d f

est c d

d c f

t c

D, E, C, k,

R = E; R = D; R = k;

t (R , f) R f = f f = f

Itv R R f c f R

m Itv itv Itv m

R R f

λ

λ

≤

=

= =

=) > 0)do{

6. if() break with task failure;

7. Insert CCP with interval length ;

8. Insert CSCP with interval length ;

9. Update , according to speed ;

10. if(no error has been detected at CC

t d

c d

R R

itv

Itv

R R f

>

1 1 2

P/CSCP)

11. Resume execution;

12. else{

13. Roll back to the last CSCP;

14. -1;

15. if((,)) ; else ;

16. interval(, / , / , ,);

17. num_CCP(); / ;

18

f f

est c d

d c f

R R

t R f R f f f f

Itv R R f c f R

m Itv itv Itv m

λ

=

≤ = =

=

= =

. Resume execution;}

}}

Fig. 7 adapchp_dvs_CCPs

4 Simulation results

We carried out a set of simulation experiments to

evaluate our adaptive checkpointing schemes

adapchp_dvs_CCPs and adapchp_dvs_SCPs (referred to

as A_D_C and A_D_S) and to compare it with the Pois-

son-arrival (referred to as Poisson), the k-fault-tolerant

(referred to as k-f-t) checkpointing schemes and

ADT_DVS
[3]
(referred to as A_D). Faults are injected into

system using a Poisson process with various values for the

arrival rate λ . Due to the stochastic nature of the fault
arrival process, the experiment is repeated 10,000 times

for the same task and the results are averaged over these

runs. We are interested here in the probability that the task

completes on time, and the energy consumption. Energy

consumption is measured by summing the product of the

square of the voltage and the number of computation cy-

cles over all the segments of the task
[3]
. As in [3], we use

the term task utilization U to refer to the ratio N/D. In or-

der to compare with results of ADT_DVS scheme, we let

tr=0 and f2=2f1. Moreover, let P and E represent the prob-

ability of timely completion of tasks and energy consump-

tion, respectively.

4.1 Additional SCPs

As mentioned previously, additional SCPs scheme fits

systems, in which time overhead is determined mainly by

the time to compare processor’s states. Therefore, the pa-

rameters are as following: D=10000, ts=2, tcp=20, c=22.

First, we let the Poisson-arrival and the

k-fault-tolerant schemes use the lower speed f1. The task

utilization U in this case is N/(f1D). Our experimental re-

sults are shown in table 1. In table 1(a), for 0 .001λ >

and 0.7<U<0.9(high fault arrival rate and relatively high

task utilization), the experimental results show that

adapchp-dvs-SCPs scheme clearly outperforms the

ADT_DVS scheme. Although Poisson-arrival and the

k-fault-tolerant schemes have lower energy consumption,

their probability of timely completion of the task are lower

that 0.2. In table 1(b), for 0 .001λ < and

0 .9 1U< ≤ (low fault arrival rate and high task utilization),

we draw the similar conclusions described above.

We assume that both Poisson-arrival and the

k-fault-tolerant schemes use the higher speed f2. Then the

task utilization U in this case is N/(f2D). Our experimental

results are shown in table 2. We also can draw a conclu-

sion that our scheme outperforms the other three schemes.

Tab. 1 The comparison between

adapchp-dvs-SCPs and other algorithms, both

the Poisson-arrival and the k-fault-tolerant

schemes use the lower speed
1f .

P

E

U

2(10)

λ
−×

Poisson k-f-t A_D A_D_S

0.14

0.1185

39015

0.1115

38940

0.9991

57564

0.9999

52863

0.76

0.16

0.0489

39183

0.0466

39153

0.9992

59765

0.9999

54176

0.14

0.0504

39358

0.0496

39350

0.9990

60441

0.9999

55520

0.78

0.16 0.0181

39443

0.0182

39396

0.9993

62687

0.9999

56814

0.14 0.0091

38951

0.0204

39507

0.9993

63039

0.9999

58079

0.80

0.16 0.0021

39217

0.0062

39684

0.9990

65233

0.9998

59344

0.14 0.0013

39161

0.0018

39122

0.9995

65778

1.0000

60731

0.82

0.16 0.0005

39290

0.0003

39200

0.9990

67987

0.9999

62091

(a) 5k =

P

E

U

4(10)

λ
−×

Poisson k-f-t A_D A_D_S

1.0 0.3914

38032

0.3965

38665

0.9229

74193

0.9549

72862

0.92

2.0 0.1650

38623

0.1628

38681

0.9793

76444

0.9985

72566

1.0 0.3851

39316

0.3852

39844

0.9188

77097

0.9516

75743

0.95

2.0 0.1520

39844

0.1510

39844

0.9462

80414

0.9944

76841

1.0 0.0000

NaN

0.0000

NaN

0.9146

81572

0.9557

81047

1.00

2.0 0.0000

NaN

0.0000

NaN

0.9204

84371

0.9892

82499

(b) 1k =

Tab. 2 The comparison between

adapchp-dvs-SCPs and other algorithms, both

the Poisson-arrival and the k-fault-tolerant

schemes use the higher speed
2f .

P

E

U

2(10)

λ
−×

Poisson k-f-t A_D A_D_S

0.14 0.6159

149458

0.6121

149682

0.6486

149599

0.9462

146097

0.76

0.16 0.5369

151339

0.4258

150911

0.5451

151264

0.9006

147873

0.14 0.4659

151964

0.3593

150851

0.4699

151935

0.8385

149415

0.78

0.16 0.3007

152371

0.2055

151581

0.3227

152552

0.7389

150742

0.14 0.2355

152698

0.2305

152918

0.2672

153124

0.6491

151905

0.80

0.16 0.1264

153007

0.1207

153495

0.1617

153695

0.4864

152742

0.14 0.0921

153077

0.0838

153103

0.0992

153320

0.3843

153562

0.82

0.16 0.0285

153494

0.0271

153619

0.0388

154288

0.2242

154279

(a) 5k =

P

E

U

4(10)

λ
−×

Poisson k-f-t A_D A_D_S

1.0 0.7609

151255

0.7638

151722

0.7640

150583

0.7776

150583

0.92

2.0 0.4365

152453

0.4384

152554

0.4737

152444

0.5334

152452

1.0 0.3847

152589

0.3924

154140

0.3799

149117

0.3941

150259

0.95

2.0 0.1498

153946

0.1498

154167

0.2816

155147

0.2842

155612

(b) 1k =

4.2 Additional CCPs

Additional CCPs scheme fits systems which overhead

time is determined mainly by the time to store processor’

states. Therefore, the parameters is as following: D=10000,

ts=20, tcp=2, c=22.

Tab. 3 The comparison between

adapchp-dvs-CCPs and other algorithms, both

the Poisson-arrival and the k-fault-tolerant

schemes use the lower speed
1f .

P

E

U

2(10)

λ
−×

Poisson k-f-t A_D A_D_S

0.14 0.1104

38942

0.1070

38953

0.9990

57662

1.0000

52862

0.76

0.16 0.0505

39141

0.0479

39128

0.9989

59736

0.9999

54036

0.14 0.0530

39374

0.0534

39345

0.9989

60435

1.0000

55520

0.78

0.16 0.0190

39422

0.0210

39362

0.9989

62477

0.9998

56719

0.14 0.0085

39030

0.0209

39500

0.9989

63040

1.0000

58042

0.80

0.16 0.0022

39103

0.0057

39530

0.9992

65230

1.0000

59274

0.14 0.0021

39266

0.0020

39031

0.9990

65731

1.0000

60573

0.82

0.16 0.0005

39658

0.0005

39350

0.9989

68038

1.0000

61935

(a) 5k =

P

E

U

4(10)

λ
−×

Poisson k-f-t A_D A_D_S

1.0 0.3887

38032

0.3984

38667

0.9241

74350

0.9800

73547

0.92

2.0 0.1634

38619

0.1635

38685

0.9783

77021

0.9994

72669

1.0 0.3775

39316

0.3772

39844

0.9116

77266

0.9812

76756

0.95

2.0 0.1498

39844

0.1480

39844

0.9519

80540

0.9978

76614

1.0 0.0000

NaN

0.0000

NaN

0.9074

81397

0.9831

81675

1.00

2.0 0.0000

NaN

0.0000

NaN

0.9202

84379

0.9959

82254

(b) 1k =

Tab. 4 The comparison between

adapchp-dvs-CCPs and other algorithms, both

the Poisson-arrival and the k-fault-tolerant

schemes use the higher speed
2f .

P

E

U

2(10)

λ
−×

Poisson k-f-t A_D A_D_S

0.14

0.6130

149575

0.6063

149738

0.6456

149694

0.9544

146237

0.76

0.16 0.5252

151286

0.4147

150869

0.5336

151206

0.9104

148058

0.14

0.4731

151926

0.3641

150860

0.4804

151917

0.8519

149493

0.78

0.16 0.3016

152389

0.2061

151610

0.3277

152618

0.7546

150926

0.14

0.2356

152662

0.2283

152988

0.2664

153111

0.6540

152034

0.80

0.16 0.1279

153171

0.1195

153558

0.1629

153834

0.4942

152927

0.14

0.0873

153081

0.0849

153118

0.0950

153365

0.3758

153731

0.82

0.16 0.0321

153207

0.0319

153394

0.0418

153946

0.2115

154400

(a) 5k =

P

E

U

4(10)

λ
−×

Poisson k-f-t A_D A_D_S

1.0 0.7559

151220

0.7570

151703

0.7583

150564

0.7657

150564

0.92

2.0 0.4409

152537

0.4398

152623

0.4715

152479

0.5327

152546

1.0 0.3946

152591

0.3984

154155

0.3878

149117

0.3995

150239

0.95

2.0 0.1479

153946

0.1488

154171

0.2775

155132

0.2850

155597

(b) 1k =

Our experimental results are shown in table 3 and

table 4. Similar to section 4.1, simulation results show

that compared to ADT_DVS scheme, the proposed

scheme significantly increases the likelihood of timely

task completion and reduces power consumption in the

present of faults.

5. Conclusion

In this paper, we presented an adaptive checkpoint-

ing, using a DMR with two processors, and tuning the

scheme to the specific system which it is implemented on.

The proposed scheme is done by inserting two types of

checkpoints (CCP and SCP) between CSCP. Separating

the comparison and store operations enables choosing the

optimal interval for each operation, without concerning

about the other. We also discussed the optimal numbers of

checkpoints that minimize the average times. Based on

that, we combined the adaptive checkpoiting with the

DVS schemes to achieve energy reduction. We presented

simulation results which showed the advantages of our

scheme. We will extend the proposed scheme to other task

duplication systems with security needs as a future work.

References

[1] Ziv A. Analysis of checkpointing schemes with task dupli-

cation, IEEE Trans. Computers, 1998,47(2):222-227

[2] Ying Z, Crishnendu C. Task feasibility analysis and dy-

namic voltage scaling in fault-tolerant real-time embedded

systems, Proc. Of the design, automation and test in Europe

conference and exhibition (DATE’04)

[3] Ying Z, Crishnendu C. Energy-Aware Adaptive Check-

pointing in Embedded Real-Time Systems, Proc. of the de-

sign, automation and test in Europe conference and exhibi-

tion (DATE’03), 2003

[4] Ziv A, Bruck J. Performance Optimization of Checkpoint-

ing Schemes with Task Duplication IEEE Transactions on

Computers, 1997, 46(2):1381-1386

[5] Sayori N, Satoshi F, Naohiro I. Optimal Checkpointing

Intervals of Three Error Detection Schemes by a Double

Modular Redundancy, Mathematical and Computer Model-

ling, 2003,38:1357-1363

[6] Melhem R, Mosse D, Elnozahy E. The interplay of power

management and fault recovery in real-time systems, IEEE

Tran. On computers, 2004, 53(2):217-231

[7] Intel Corp, speedstep,

http://developer.inte.com/mobile/pentiumIII, 2003

[8] Duda A. The effects of checkpointing on program execution

time, Information Processing Letters, 1983 (16):221-229

[9] Lee H, Shin H, Min S. Worst case timing requirement of

real-time tasks with time redundancy, Processing Real-Time

computing systems and Applications, 1999: 410-414

[10] Osaki S. Applied stochastic system modeling,

Springer-Verlag, 1992

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

