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Abstract
     

 

Using additional store-checkpoinsts (SCPs) and 

compare-checkpoints (CCPs), we present an adaptive 

checkpointing for double modular redundancy (DMR) in 

this paper. The proposed approach can dynamically ad-

just the checkpoint intervals. We also design methods to 

calculate the optimal numbers of checkpoints, which can 

minimize the average execution time of tasks. Further, the 

adaptive checkpointing is combined with the DVS (dy-

namic voltage scaling) scheme to achieve energy reduc-

tion. Simulation results show that, compared with the 

previous methods, the proposed approach significantly 

increases the likelihood of timely task completion and 

reduces energy consumption in the presence of faults. 

 

 

1. Introduction 
 

Checkpointing is an important method for 

fault-tolerance in real-time systems in the condition of 

harsh environment. The following three types of check-

points are well known: CSCP, SCP and CCP
 [1-3]

. CCPs are 

used to compare the states of the processors without stor-

ing them, while, the processors store their states without 

comparison in SCPs. If the two operations are used to-

gether in the same checkpoint, we call it CSCP. Using 

CCP and SCP, Ziv and Bruck have shown numerically that 

the task execution time is significantly reduced 
[1,4]
. Using 

additional CCPs and SCPs, Nakagawa and Fukumoto have 

used a triple modular redundancy and double modular 

redundancy to analyze the optimal checkpoint intervals 

that can minimize a task execution time, respectively 
[5]
.  

In addition, many real-time systems are often en-
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ergy-constrained since system lifetime is determined to a 

large extent by the battery lifetime 
[2]
. For example, 

autonomous airborne and sea-borne systems working on 

limited battery supply, space systems working on a limited 

combination of solar and battery power supply, 

time-sensitive systems deployed in remote locations where 

a steady power supply is not available 
[3,6]
. DVS has 

emerged as a popular solution to the problem of reducing 

power consumption during system operations. The DVS 

become possible on the availability of embedded proces-

sors that can dynamically scale the frequency by adjusting 

the operation voltage 
[2,3]
. Many embedded processors 

have the ability to dynamically scale the operation voltage 

currently. Such as, the mobile processors from Intel with 

its SpeedStep 
[7]
 technology. In the realm of real-time sys-

tems, the DVS techniques focuse on minimizing energy 

consumption of the system under the condition of meeting 

the deadlines. The DVS and fault tolerance for real-time 

systems have been studied as separate problems. It is only 

recently that an attempt has been made to combine fault 

tolerance with the DVS
 [3]
.  

The combination of DVS, CSCPs (CCPs or SCPs) 

can be used to satisfy system’s DVS requirement and im-

prove the performance of real-time systems. However, 

none of the mentioned papers addressed these issues in 

terms of conjunction. Using additional SCPs and CCPs, 

we modify the methods of [3] in the double modular re-

dundancy (DMR) in this paper. Different from the existing 

methods, our approach is to tune the scheme to the spe-

cific system which it is implemented on, and use both the 

comparison and storage operations efficiently, the per-

formance of checkpoint schemes is improved.  

Some notations used in our paper are listed below: 

ts: the time to store the states of processors. 

tcp: the time to compare processors’ states. 

tr: the time to roll back the processors to a consistent 

state. 

tR : remaining execution time. 

dR : time left before the deadline.  
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fR : upper boundary on the remaining number of 

faults that can be tolerated by the system. 

 

2  Adaptive checkpointing scheme 
 

Assume task τ  has a period T , a deadline D , a 
worst-case computation time N when there are no fault in 

the system. An upper boundary k represents the number of 

fault occurrences that have to be tolerated. C is the over-

head of a checkpoint. Faults arrive as a Poisson process 

with parameter λ , the average execution time for the task 
is minimum, if a constant checkpoint interval of 2 /C λ is 
used

 [8]
. We refer to this as the Poisson-arrival approach. If 

the Poisson-arrival scheme is used, the effective task exe-

cution time in the absence of faults must be less than the 

deadline D. Assume the fault-free execution time for a task 

is N, the worst-case execution time for up to k faults is 

minimum, if the constant checkpoint interval is set 

to kNC /  
[9]
. This is the k-fault-tolerant approach. 

In addition, we assume that task τ is divided equally 
into n intervals of length N

T
n

 =   
, and at the end of each 

interval, CSCP is always placed. 

 

2.1  Additional SCPs 
 

Each CSCP interval is divided equally into m inter-

vals of length 





=
m

T
T
1

( figure 1). The SCPs are placed 

between the CSCPs, the states of two processors are 

stored at iT1 and jT (i=1,2,…, m-1). If two states do not 

get an agreement at time jT, then, we need to find the most 

recent SCP with identical states and roll back to it. As 

shown in figure 1, two processors are rolled back to 

(i-1)T1 because some errors have occurred during ((i-1)T1, 

iT1), and repeat the execution from (i-1)T1. The average 

execution time R1(m) for a CSCP interval ((j-1)T, jT) is 

given by a renewal-equation
[4, 10]

: 

Therefore, the average execution time of a task  

RSCP(n)=nR1(m). 

Replace
1

/m T T= , we have 

121
1 1

1 1 1 1

( )
( ) [( ) ]( 1)......(1)

2

T

s cp s cp

T TT T T
R T T t t T t t e

T T T T

λ+
= + + + + + −     

If
1 0T +→ , then R1(T1)= +∞ . Let T1=T, we 

have 2

1 1( ) ( ) T

s cpR T T t t e λ= + + . Thus, there exists a fi-

nite ( ]jTTjT ,)1(
~
1 −∈ which minimizes R1(T1). Differentiat-

ing equation (1) with respect to T1 and setting it equal to 

zero, we get
1T
� . Procedure num_SCP(T) for calculating 

m� which minimize )~(1 mR is described in Figure 2.  

The adaptive checkpointing with SCPs, adapchp-SCP 

(D,E,C,k, λ ), is described in Figure 3. A check is per-

formed to see if the task has been completed in line 4, and 

line 5 checks for the deadline constraint. The length of 

SCP and CSCP interval is set in line 6 and line 7, respec-

tively. In line 9, a check is performed to see if fault is de-

tected. If there is no fault, then continue to run task, oth-

erwise, roll back to previous SCP with identical states and 

continues execution, which are described from line 12 to 

Fig. 2  Procedure for calculating the m�  

Procedure num_SCP(T){ 

1.  Find 1

~
T  which minimizes R1(m); 

2.  if ( 1

~
T <T) { 

3.    m=  1~/TT ; 

4.   if (R1(m)≤ R1(m+1)) then 
5.      ;~ mm =  

6.      else ;1~ += mm  

7.  } else ;1~ =m  

8. return ;~m } 

Fig. 3  Adaptive checkpointing with SCPs 

Procedure adapchp-SCP (D, N, C, k, λ ){ 

1. Rt=N; Rd=D; Rf=k; 

2. Itv=interval(Rd, Rt, C, Rf, λ ); 

3. m=num_SCP(Itv);  mItvitv /= ; 

4. while (Rt>0) do { 

5.   if (Rt> Rd) break with task failure; 

6.   Insert SCP with interval length itv; 

7.   Insert CSCP with interval length Itv; 

8.   Update Rt, Rd; 

9.   if (no error has been detected at CSCP) 

10.    Resume execution; 

11. else{ 

12.    Rollback to the most recent SCP with identical 

states; 

13.    Rf= Rf-1; 

14.    Itv=interval(Rd, Rt, C, Rf, λ ); 

15.    m=num_SCP(Itv);  mItvitv /= ; 

16.    Resume execution;}} 
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line 16. In line 2 and 14, we use procedure interval (Rd, Rt, 

C, Rf, λ ) 
[3]
 ( figure 4)

 
to calculate the checkpoint interval. 

 In figure 4, 
1
( , ) 2 /I C Cλ λ=  is the checkpoint 

interval of the Poisson-arrival approach, 

kNCCkNI /),,(2 = is the checkpoint interval of the 

k-fault-tolerant approach. In addition, [3] defined some 

quations:  

( , , ) ( ) /(1 / 2 )d dTh R C R C Cλ λ λ= + +  

2( , , ) 2 2 ( ) ( )
d f d f f d f

Th R R C R C R C R C R C R C= + + − + +  

)/(2),,(3 NCDNCCDNI −+=  

Line 1 of figure 4 calculates the number of faults 

Exp-fault that are expected to occur in the remaining time 

Rt. If Exp-fault is less than or equal to Rf, the 

k-fault-tolerant requirement is deemed to be more strin-

gent than the Poisson-arrival criterion. In line 3, a check is 

performed to see if Rt exceeds the threshold  

( , , )dTh R Cλ λ . If this condition is satisfied, the checkpoint 

interval is set to I3(Rt, Rd,C). In line5, a check is per-

formed to see if Rt exceeds threshold Th(Rd, Rf,C) but is 

below ( , , )dTh R Cλ λ . If this condition is satisfied, the 

checkpointing interval is set to I2(Rt, Exp-fault,C). If the 

k-fault-tolerant threshold is met, the checkpoint interval is 

set to I2(Rt, Rf,C) in line 7. Line 8-10 handle the case when 

the k-fault-tolerant requirement is deemed to be less strin-

gent than the Poisson-arrival criterion.  

 

2.2  Additional CCPs 
 

Each CSCP interval is divided equally into m inter-

vals of length 





=
m

T
T
2

. The CCPs are placed between 

CSCPs, and the states of the two processors are compared 

at iT2 and jT (i=1,2,…, m-1). If two states do not reach to 

an agreement at iT2 and jT, that means some errors have 

occurred during this interval, the two processors will be 

rolled back to (j-1)T ( Figure 5).  

The average execution time R2(m) for an interval 

((j-1)T, jT) is given by a renewal-equation: 

Therefore, the average execution time RCCP(n)=nR2(m). 

Replacing 2/m T T= , we have: 

0 2 0

0 2

22 2

2 2 2
( ) ( 1) .. .. .. ( 2 )

1

cpT T

s T

T t
R T t e e

e

λ λ
λ−

+
= + −

−
 

If
2 0T +→ , then R2(T2)= +∞ . If T2=T, 

then 2

2 2( ) ( ) T

s cpR T T t t e λ= + + . Therefore, there exists a 

finite ( ]jTTjT ,)1(
~
2 −∈ , which minimizes R2(T2). Differen-

tiating equation (2) with respect to T2 and setting it to zero, 

we can get 
2T
� . We can use the similar approach de-

scribed in figure 2 to calculatem� which minimize
2 ( )R m� . 

 

3  Adaptive checkpointing with DVS 

 
With additional SCPs and CCPs, we show how adap-

tive checkpointing scheme can be combined with the DVS 

to obtain fault tolerance and power savings in real-time 

systems. In the one hand, our approach is to maximize the 

probability that the task meets its deadline in the presence 

of faults. In another hand, our approach is to reduce en-

ergy consumption through the DVS. 

Assume that task τ has a fixed quantity of computa-
tion cycles N in the fault-free condition. Because the vari-

able voltage CPUs are available, the time to execute task 

τ depends on the processor speed. We therefore charac-
terizeτ by a fixed quantity N, namely, its worst-case num-
ber of CPU cycles, needed to execute the task at the 

minimum processor speed. For the rest of this paper, we 

normalize the units of N such that the minimum processor 

speed is 1. That is, if the minimum processor speed is S 

cycles per second, then we express the number of cycles in 

units of S cycles and thus normalize the minimum proces-

sor speed to Smin=1. Of course, period T and deadline D  

are expressed in terms of the number of CPU cycles at the 

Fig. 4  Calculating checkpointing interval  

Procedure interval(Rd, Rt, C, Rf, λ ){ 

1  .exp_error= λ Rt; 

2.   if (exp_error≤ Rf) { 
3.   if (Rt>Thλ(Rd, λ ,C)) then 

4.      chk_interval=I3(Rt, Rd, C); 

5.   else if (Rt>Th(Rd, Rf, C)) then 

6.        chk_interval= I2(Rt, exp_error,C); 

7.      else chk_interval= I2(Rt, Rf ,C);} 

8.   else{ if(Rt> Thλ(Rd, λ ,C)) then 

9.      chk_interval= I3(Rt, Rd, C); 

10.      else chk_interval=I1(C, λ );} 

11. return chk_interval; } 
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minimum processor speed.  

To simplify the analysis and to allow for the deriva-

tion of analytical formulas, we would like to assume that a 

single processor with two speeds f1 and f2, and f1 is the 

minimum processor speed, namely, f1= Smin=1. Moreover, 

the processor can switch its speed in a negligible amount 

of time.  

Additional notations we use is below:  

Rc : the number of instructions of the task that remain 

to be executed at the time of the voltage scaling decision.  

c : the numbe of clock cycles that a single checkpoint 

takes. 

test: an estimate of the time that the task has to exe-

cute in the presence of faults and with checkpointing. The 

expected number of faults for the duration test is esttλ . 

The checkpointing cost C at frequency f is given by 

C=c/f. 

To ensure esttλ fault tolerance during task execution, 

the checkpointing interval must be set to 

/( ) / /( )est estt C t C c fλ λ λ= = . In addition, we have 

(1 / )

(1 / )

c

e s t

R c f
t

f c f

λ

λ

+
=

−

[3]
. 

We consider the voltage scaling to be feasible if 

est dt R≤ . This forms the basis of the energy-aware adap-

tive checkpointing that are described in procedure 

adapchp_dvs_SCPs and adapchp_dvs_CCPs (Figure 6 and 

Figure 7).  

 

1 1 2

Procedure adapchp_dvs_SCP( , , , , ){

1.   ;    ;    ;

2. if ( ( ,  )   )   ;  else   ;

3.  interval( ,  / ,  / ,  ,  );

4.   num_SCP( );    / ;

5. while( ( / ) 

c d f

est c d

d c f

t c

D N c k

R N R D R k

t R f R f f f f

Itv R R f c f R

m Itv itv Itv m

R R f

λ

λ

= = =

≤ = =

=

= =

=  0 )do{

6. if (   ) break with task failure;

7. Insert SCP with interval length ;

8. Insert CSCP with interval length ;

9. Update ,   according to speed ;

10. if(no error has been detected at CSCP

t d

c d

R R

itv

Itv

R R f

>

>

1 1 2

)

11. Resume execution;

12. else{

13. Roll back to the most recent SCP/CSCP with identical states;

14.   -1;

15. if ( ( ,  )   )   ;  else   ;

16.   interval( ,  / ,  / ,  ,  );

17.   n

f f

est c d

d c f

R R

t R f R f f f f

Itv R R f c f R

m

λ

=

≤ = =

=

= um_SCP( );    / ;

18. Resume execution;}

}}

Itv itv Itv m=

 

Fig. 6  adapchp_dvs_SCPs 
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Procedure adapchp_dvs_CCP( ){

1.

2. if(    ) ; else ;

3. interval( , / , / , ,  );

4.   num_CCP( );    / ;

5. while( ( /

t d f

est c d

d c f

t c

D, E, C, k, 

R  = E; R  = D; R  = k;

t (R , f ) R f  = f f  = f

Itv  R  R f  c f  R

m Itv itv Itv m

R R f

λ

λ

≤

=

= =

= ) > 0 )do{

6. if(   ) break with task failure;

7. Insert CCP with interval length ;

8. Insert CSCP with interval length ;

9. Update ,   according to speed ;

10. if(no error has been detected at CC

t d

c d

R R

itv

Itv

R R  f

>

1 1 2

P/CSCP)

11. Resume execution;

12. else{

13. Roll back to the last CSCP;

14.   -1;

15. if( ( ,  )   )   ; else   ;

16.   interval( ,  / ,  / ,  ,  );

17.   num_CCP( );    / ;

18

f f

est c d

d c f

R R

t R f R f f f f

Itv R R f c f R

m Itv itv Itv m

λ

=

≤ = =

=

= =

. Resume execution;}

}}

 

Fig. 7  adapchp_dvs_CCPs 

 

4  Simulation results 
 

We carried out a set of simulation experiments to 

evaluate our adaptive checkpointing schemes 

adapchp_dvs_CCPs and adapchp_dvs_SCPs (referred to 

as A_D_C and A_D_S) and to compare it with the Pois-

son-arrival (referred to as Poisson), the k-fault-tolerant 

(referred to as k-f-t) checkpointing schemes and 

ADT_DVS
[3] 
(referred to as A_D). Faults are injected into 

system using a Poisson process with various values for the 

arrival rate λ . Due to the stochastic nature of the fault 
arrival process, the experiment is repeated 10,000 times 

for the same task and the results are averaged over these 

runs. We are interested here in the probability that the task 

completes on time, and the energy consumption. Energy 

consumption is measured by summing the product of the 

square of the voltage and the number of computation cy-

cles over all the segments of the task 
[3]
. As in [3], we use 

the term task utilization U to refer to the ratio N/D. In or-

der to compare with results of ADT_DVS scheme, we let 

tr=0 and f2=2f1. Moreover, let P and E represent the prob-

ability of timely completion of tasks and energy consump-

tion, respectively. 

 

4.1  Additional SCPs  

 
As mentioned previously, additional SCPs scheme fits 

systems, in which time overhead is determined mainly by 

the time to compare processor’s states. Therefore, the pa-

rameters are as following: D=10000, ts=2, tcp=20, c=22.  

First, we let the Poisson-arrival and the 

k-fault-tolerant schemes use the lower speed f1. The task 



 

utilization U in this case is N/(f1D). Our experimental re-

sults are shown in table 1. In table 1(a), for 0 .001λ >  

and 0.7<U<0.9(high fault arrival rate and relatively high 

task utilization), the experimental results show that 

adapchp-dvs-SCPs scheme clearly outperforms the 

ADT_DVS scheme. Although Poisson-arrival and the 

k-fault-tolerant schemes have lower energy consumption, 

their probability of timely completion of the task are lower 

that 0.2. In table 1(b), for 0 .001λ <  and 

0 .9 1U< ≤ (low fault arrival rate and high task utilization), 

we draw the similar conclusions described above.  

We assume that both Poisson-arrival and the 

k-fault-tolerant schemes use the higher speed f2. Then the 

task utilization U in this case is N/(f2D). Our experimental 

results are shown in table 2. We also can draw a conclu-

sion that our scheme outperforms the other three schemes. 

 

Tab. 1 The comparison between 

adapchp-dvs-SCPs and other algorithms, both 

the Poisson-arrival and the k-fault-tolerant 

schemes use the lower speed 
1f . 

P 

E 

 

U 

 

2( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

0.14 

 

0.1185 

39015 

0.1115 

38940 

0.9991 

57564 

0.9999 

52863 

0.76 

0.16 

 

0.0489 

39183 

0.0466 

39153 

0.9992 

59765 

0.9999 

54176 

0.14 

 

0.0504 

39358 

0.0496 

39350 

0.9990 

60441 

0.9999 

55520 

0.78 

0.16 0.0181 

39443 

0.0182 

39396 

0.9993 

62687 

0.9999 

56814 

0.14 0.0091 

38951 

0.0204 

39507 

0.9993 

63039 

0.9999 

58079 

0.80 

0.16 0.0021 

39217 

0.0062 

39684 

0.9990 

65233 

0.9998 

59344 

0.14 0.0013 

39161 

0.0018 

39122 

0.9995 

65778 

1.0000 

60731 

0.82 

0.16 0.0005 

39290 

0.0003 

39200 

0.9990 

67987 

0.9999 

62091 

(a) 5k =  

P 

E 

 

U 

 

4( 10 )

λ
−×

 
Poisson k-f-t  A_D A_D_S 

1.0 0.3914 

38032 

0.3965 

38665 

0.9229 

74193 

0.9549 

72862 

0.92 

2.0 0.1650 

38623 

0.1628 

38681 

0.9793 

76444 

0.9985 

72566 

1.0 0.3851 

39316 

0.3852 

39844 

0.9188 

77097 

0.9516 

75743 

0.95 

2.0 0.1520 

39844 

0.1510 

39844 

0.9462 

80414 

0.9944 

76841 

1.0 0.0000 

NaN 

0.0000 

NaN 

0.9146 

81572 

0.9557 

81047 

1.00 

2.0 0.0000 

NaN 

0.0000 

NaN 

0.9204 

84371 

0.9892 

82499 

(b) 1k =  

 

 

Tab. 2 The comparison between 

adapchp-dvs-SCPs and other algorithms, both 

the Poisson-arrival and the k-fault-tolerant 

schemes use the higher speed 
2f . 

P 

E 

 

U 

 

2( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

0.14 0.6159 

149458 

0.6121 

149682 

0.6486 

149599 

0.9462 

146097 

0.76 

0.16 0.5369 

151339 

0.4258 

150911 

0.5451 

151264 

0.9006 

147873 

0.14 0.4659 

151964 

0.3593 

150851 

0.4699 

151935 

0.8385 

149415 

0.78 

0.16 0.3007 

152371 

0.2055 

151581 

0.3227 

152552 

0.7389 

150742 

0.14 0.2355 

152698 

0.2305 

152918 

0.2672 

153124 

0.6491 

151905 

0.80 

0.16 0.1264 

153007 

0.1207 

153495 

0.1617 

153695 

0.4864 

152742 

0.14 0.0921 

153077 

0.0838 

153103 

0.0992 

153320 

0.3843 

153562 

0.82 

0.16 0.0285 

153494 

0.0271 

153619 

0.0388 

154288 

0.2242 

154279 

(a) 5k =  

P 

E 

 

U 

 

4( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

1.0 0.7609 

151255 

0.7638 

151722 

0.7640 

150583 

0.7776 

150583 

0.92 

2.0 0.4365 

152453 

0.4384 

152554 

0.4737 

152444 

0.5334 

152452 

1.0 0.3847 

152589 

0.3924 

154140 

0.3799 

149117 

0.3941 

150259 

0.95 

2.0 0.1498 

153946 

0.1498 

154167 

0.2816 

155147 

0.2842 

155612 

(b) 1k =  

 
  

4.2  Additional CCPs  
 

Additional CCPs scheme fits systems which overhead 

time is determined mainly by the time to store processor’ 

states. Therefore, the parameters is as following: D=10000, 

ts=20, tcp=2, c=22.  

Tab. 3 The comparison between 

adapchp-dvs-CCPs and other algorithms, both 

the Poisson-arrival and the k-fault-tolerant 

schemes use the lower speed 
1f . 

P 

E 

 

U 

 

2( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

0.14 0.1104 

38942 

0.1070 

38953 

0.9990 

57662 

1.0000 

52862 

0.76 

0.16 0.0505 

39141 

0.0479 

39128 

0.9989 

59736 

0.9999 

54036 

0.14 0.0530 

39374 

0.0534 

39345 

0.9989 

60435 

1.0000 

55520 

0.78 

0.16 0.0190 

39422 

0.0210 

39362 

0.9989 

62477 

0.9998 

56719 



 

0.14 0.0085 

39030 

0.0209 

39500 

0.9989 

63040 

1.0000 

58042 

0.80 

0.16 0.0022 

39103 

0.0057 

39530 

0.9992 

65230 

1.0000 

59274 

0.14 0.0021 

39266 

0.0020 

39031 

0.9990 

65731 

1.0000 

60573 

0.82 

0.16 0.0005 

39658 

0.0005 

39350 

0.9989 

68038 

1.0000 

61935 

(a) 5k =  

P 

E 

 

U 

 

4( 10 )

λ
−×

 
Poisson k-f-t  A_D A_D_S 

1.0 0.3887 

38032 

0.3984 

38667 

0.9241 

74350 

0.9800 

73547 

0.92 

2.0 0.1634 

38619 

0.1635 

38685 

0.9783 

77021 

0.9994 

72669 

1.0 0.3775 

39316 

0.3772 

39844 

0.9116 

77266 

0.9812 

76756 

0.95 

2.0 0.1498 

39844 

0.1480 

39844 

0.9519 

80540 

0.9978 

76614 

1.0 0.0000 

NaN 

0.0000 

NaN 

0.9074 

81397 

0.9831 

81675 

1.00 

2.0 0.0000 

NaN 

0.0000 

NaN 

0.9202 

84379 

0.9959 

82254 

(b) 1k =  

Tab. 4 The comparison between 

adapchp-dvs-CCPs and other algorithms, both 

the Poisson-arrival and the k-fault-tolerant 

schemes use the higher speed 
2f . 

P 

E 

 

U 

 

2( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

0.14 

 

0.6130 

149575 

0.6063 

149738 

0.6456 

149694 

0.9544 

146237 

0.76 

0.16 0.5252 

151286 

0.4147 

150869 

0.5336 

151206 

0.9104 

148058 

0.14 

 

0.4731 

151926 

0.3641 

150860 

0.4804 

151917 

0.8519 

149493 

0.78 

0.16 0.3016 

152389 

0.2061 

151610 

0.3277 

152618 

0.7546 

150926 

0.14 

 

0.2356 

152662 

0.2283 

152988 

0.2664 

153111 

0.6540 

152034 

0.80 

0.16 0.1279 

153171 

0.1195 

153558 

0.1629 

153834 

0.4942 

152927 

0.14 

 

0.0873 

153081 

0.0849 

153118 

0.0950 

153365 

0.3758 

153731 

0.82 

0.16 0.0321 

153207 

0.0319 

153394 

0.0418 

153946 

0.2115 

154400 

(a) 5k =  

P 

E 

 

U 

 

4( 10 )

λ
−×

 
Poisson k-f-t A_D A_D_S 

1.0 0.7559 

151220 

0.7570 

151703 

0.7583 

150564 

0.7657 

150564 

0.92 

2.0 0.4409 

152537 

0.4398 

152623 

0.4715 

152479 

0.5327 

152546 

1.0 0.3946 

152591 

0.3984 

154155 

0.3878 

149117 

0.3995 

150239 

0.95 

2.0 0.1479 

153946 

0.1488 

154171 

0.2775 

155132 

0.2850 

155597 

(b) 1k =  

Our experimental results are shown in table 3 and 

table 4. Similar to section 4.1, simulation results show 

that compared to ADT_DVS scheme, the proposed 

scheme significantly increases the likelihood of timely 

task completion and reduces power consumption in the 

present of faults. 

 

5. Conclusion 
 

In this paper, we presented an adaptive checkpoint-

ing, using a DMR with two processors, and tuning the 

scheme to the specific system which it is implemented on. 

The proposed scheme is done by inserting two types of 

checkpoints (CCP and SCP) between CSCP. Separating 

the comparison and store operations enables choosing the 

optimal interval for each operation, without concerning 

about the other. We also discussed the optimal numbers of 

checkpoints that minimize the average times. Based on 

that, we combined the adaptive checkpoiting with the 

DVS schemes to achieve energy reduction. We presented 

simulation results which showed the advantages of our 

scheme. We will extend the proposed scheme to other task 

duplication systems with security needs as a future work. 
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