
Battery-aware Code Partitioning for a Text to Speech System

 Anirban Lahiri, Anupam Basu, Monojit Choudhury, Srobona Mitra

Abstract

The advent of multi-core embedded processors has
brought along new challenges for embedded system
design. This paper presents an efficient, battery aware,
code partitioning technique for a text to speech system,
which is executed on a multi-core embedded processor.
The system achieves significant performance
improvements both in terms of execution time as well as
battery lifetimes. The mentioned technique provides a new
paradigm for battery aware embedded system design
which can be easily extended to other applications.

1. Introduction

Applications, which were traditionally run on desktop
computers, now need to be ported on low power handheld
devices. The porting of such an application to a handheld
embedded device is primarily hinged on two major factors.
First is the execution speed of the application. Almost all
applications on handheld devices need to satisfy certain
hard timing constraints and if these are not met then the
system is assumed to have failed. A tight upper bound on
the response time of an application is one such important
timing constraint. In order to meet the performance
requirements dictated by these applications, modern
embedded processors incorporate a number of application
specific processor cores within a single package like the
OMAP from Texas Instruments [12] and Nomadik from
ST Microelectronics [11]. These processors enable the
application code to be executed in parallel on multiple
cores, and thereby producing significant performance
gains. However, such an approach must take into
consideration the various problems associated with the
scheduling and synchronization of the various tasks of the
application.

The second important factor of an application ported on
a mobile embedded system is its power consumption. It is
desirable that the application maintains a low power

profile when executed on the embedded device. However,
such mobile handheld systems typically depend on
rechargeable batteries for their power. This implies that
the usefulness of the device is limited by the system
battery life. Recent work suggests that a low discharge
profile alone does not produce an optimal battery life [4,
7]. Thus the battery life of the system provides a more
accurate figure of merit than the peak value of the
corresponding power profile in this case. In order to arrive
at an optimal battery lifetime the various parameters of
the system battery must be taken into consideration. In
order to facilitate this, a number of battery models have
been developed in the recent past. Such a battery model
tries to emulate the working of real-life batteries E.g. [2,
9]. Many approaches found in literature have been used to
accurately estimate the system battery life using a battery
model [10].

Previous work has shown the advantages of functional
partitioning of embedded systems for achieving both
higher performances as well as reducing the system power
consumption [3, 13]. However, none of these consider the
effect of functional partitioning on the battery life of the
system which, as mentioned previously, is becoming
increasingly important. This paper describes the design
flow for an Indian language text-to-speech system which
first uses a functional partitioning approach and then a
battery aware scheduling technique in an iterative way to
arrive at an optimal design. The system serves as a
paradigmatic example of a new design scheme that
considers the battery lifetime as an important parameter
for partitioning.

2. Motivation

It was empirically found that when a concatenative
text-to-speech (TTS) engine like Shruti [8] was executed
only on an embedded ARM processor, it produced
unacceptable response time, especially for long sentences.
Profiling the application using the Valgrind toolset [14]
revealed that the TTS engine consisted of two broad

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, INDIA 721302

alahiri, anupam, monojit @cse.iitkgp.ernet.in

3-9810801-0-6/DATE06 © 2006 EDAA

Figure 1: Call graph for the text to speech engine

categories of tasks, namely NLP (natural language
processing) and DSP (digital Signal Processing) tasks, as
shown in figure 1. The call graph of the application along
with the percentage CPU time consumed by each task is
illustrated in figure 1. It can also be observed from figure
1 that the DSP tasks taken together consume more than
half of the CPU time. In order to address this issue a dual
core embedded processor – TI OMAP was selected for the
purpose. The architecture of the said processor and its
relevance will be discussed in the following sections.

However, it was noted that a parallelized
implementation of the speech application may severely
compromise the battery life of the system. This indicated
the need for a battery aware code partitioning scheme.
The mentioned code partitioning technique has been
explained in detail in subsequent sections of the paper.
Another important aspect of the mentioned TTS is the
memory usage of the application. The memory usage is
also closely linked to the execution speed and the system
battery life, hence a trade off must be reached in terms of
these parameters. In order to achieve the mentioned
objectives, functional partitioning, battery-aware
scheduling and system performance evaluation is
performed iteratively as shown in figure 2 until an
optimal design is reached.

3. Partitioning for Speedup

3.1 Processor Overview

The design and development of the TTS is based on the
TI OMAP5910 / OMAP1510. Both these processors are
code compatible and have identical architectures. The
OMAP5910 / 1510 has two processor cores – an ARM9
[1] core and a TMS320C55x DSP core. The two cores run
independently while using mailboxes and shared memory
for interprocessor communication and synchronization
respectively.

3.2 Functional Code Partitioning

A variant of a low power functional partitioning

technique [3] has been used for the purpose of code
partitioning. The output of the functional partitioning is
subjected to a battery aware scheduler [4] before the
performance of the system is evaluated as shown in figure
2. A heuristic algorithm has been used for functional
partitioning in this case. The cost function chosen for the
algorithm includes the battery costs of the system using
the expression suggested by [4]. For a large number of
tasks a genetic algorithm is preferable as suggested by [3]
for obtaining the functional partitioning. The result of
the functional partitioning for the TTS system has been
shown in figure 3. The DSP tasks are scheduled on the
TMS320C55x core while the NLP tasks are executed on
the ARM9 processor.

Figure 2: The system design flow

3.2 Interprocessor Communication

Primarily two interprocessor communication
techniques have been employed in the design of the code
partitioned TTS. A set of special purpose mailbox
registers are used to pass data from one processor to
another. When a processor writes some data to these
mailboxes an interrupt to the other processor is
automatically generated. This facilitates synchronization
between the two processors. However, this mechanism is
not suitable for transferring large amounts of data
between the processors. A shared memory has been used
to transfer bulk data between the processors. A block of
data is transferred from one processor to another by first
writing the data into the shared memory and then passing
its address (in the shared memory), to the other processor,
through the mailbox registers.

Figure 3: Functional block diagram of the TTS
showing code-partitioning

3.3 Memory Access Conflicts

Memory access conflicts between the two processors

have been greatly reduced by exploiting certain features
of the OMAP architecture. The resources used by NLP
tasks of the TTS (Eg. exception lists, lexicon), which are
executed on the ARM9 core, are stored in the internal
SRAM shown by the shaded rectangle in figure 4. On the
other hand the relatively large (3.5MB) speech dictionary,
which is accessed by the DSP processor, is stored in the
external memory and is accessed through the external
memory interface labeled as EMIFF in figure 4. The
architecture of the memory interface traffic controller
allows both these memory accesses to take place

simultaneously without any conflicts, thus resulting in a
greater speedup.

Figure 4: Relevant portions of the OMAP
architecture (courtesy Texas Instruments)

4. Battery Life Optimization

4.1 Battery Basics

Rechargeable batteries are the primary source of power
for mobile embedded devices. These batteries can be of
various types Eg. Nickel Cadmium, Nickel Metal-Hydride,
Lithium Ion, Reusable Alkaline, Lithium Polymer.
However, all these batteries have some common
characteristics. These include:
(a) rate capacity effect – a higher rate of discharge leads

to lower battery efficiency
(b) relaxation / recovery effect – given idle periods of

time the battery voltage may recover to some extent
of its original voltage

These effects have been taken into consideration by
number of battery models which try to emulate behavior
of practical batteries [2, 9]. Such battery models can be
used to accurately estimate the battery life under specific
load conditions. For the purpose of the current work, a
simulation framework was developed. This framework
uses a modified Kinetic Battery Model [9] in order to
perform battery life estimation in a cycle accurate manner.
Hence it useful for evaluating various schedules obtained
from the battery-aware scheduler.

4.2 Code Partitioning and Battery-aware Scheduling

A number of scheduling techniques exist for exploiting
the above mentioned battery characteristics so as to
maximize the battery life. It may be mentioned that these
scheduling techniques are different from power aware
scheduling techniques like [6]. Power aware scheduling
techniques are primarily concerned with decreasing the
peak power consumption of the system. Conversely, for
battery aware schedulers the primary goal is to increase
the system battery life. This is done by considering the
various battery characteristics.

Scheduling algorithms considering recovery effect
suggest that the system battery lifetime depends not only
on the peak power consumption but also on the power
discharge profile [4, 7]. A recovery based static
scheduling approach specified in [4] has been used for
scheduling the TTS tasks. This leads to a significant
increase in the battery life of mobile handheld devices
using the TTS.

It is apparent from figure 3, that the DSP tasks are data
dependent on the NLP tasks. As previously mentioned,
the system has severe limitations on memory usage and
response time. Due to these reasons the TTS needs to be
executed on the dual core processor in a pipelined fashion.
This means that the entire input string of words is not
processed as a single unit, rather it is broken up into sets
of words. These clusters of words are then treated as units
for processing. Thus a sequence of tasks is generated from
the input character string. This stream or sequence of
tasks then forms the input to the battery aware scheduler.
The pipelined execution of the TTS is effective in
reducing the response time or delay of the system since
the speech corresponding to the first cluster of words can
be sent to the audio output device while the remaining
word clusters are still being processed.

The mentioned sequence of tasks are partitioned and
scheduled on the two processors using a functional
partitioning approach as mentioned previously. Thus the
DSP tasks are scheduled on the DSP processor while the
NLP tasks are scheduled on the more generic ARM
processor. It is imperative that the special hardware
accelerators on the DSP processor help in speeding up the
DSP tasks, hence improving the system efficiency.
Splitting the input character string into groups of words
and then processing them also lowers the memory
requirement of the system. The size of the word groups
greatly influences the memory requirements and also the
battery lifetime of the system.

Investigations have shown that sudden transitions in
the battery discharge profile are detrimental to the battery
lifetime [4]. Such unwanted transitions in a power
discharge profile have been shown by thick lines in figure
5(a) given below.

Figure 5: Power aware Gantt charts showing

schedule for (a) five word (b) ten word clusters

Figure 5 shows the power aware Gantt charts
corresponding to the discharge profiles for different word
cluster lengths. It may be considered that in the second
schedule the NLP and DSP tasks of adjacent five word
clusters have been paired together. Each rectangle
represents the maximum power consumption for a
particular task when executed on a certain processor core.
The other elements of system power consumption like
those for memory, buses, etc. are assumed to be
proportional to the power consumption of the processor
which is using them. When not in use these system
components are assumed to consume some constant
power. Thus the corresponding Gantt chart will either be
shifted in the y-axis or it will be suitably scaled. The exact
power consumption of these components therefore need
not be considered for the purpose of scheduling. It has
been observed that although in the second schedule (Fig.
5(b)) the peak power consumption remains the same as
that in the first one (Fig 5(a)) it achieves a significantly
longer battery lifetime. It has been empirically found that
in this case doubling the word group size can increase the
battery lifetime by up to 6%. This is attributed to certain
characteristics of battery recovery effect [4, 9] and is
suitably exploited by battery-aware scheduling techniques
which remove unwanted level transitions in the power
discharge profile mentioned previously. The resulting
schedule in this case also provides large gaps in the DSP

(a)

(b)

activity. This is allows for using dynamic voltage scaling
(DVS) and dynamic power management (DPM)
techniques on the OMAP processor for further improving
battery life [12].

However, the length of the word clusters cannot be
increased arbitrarily. Since each word cluster is treated as
a single unit, tasks manipulating them would require more
memory space. Also the speech data generated from the
word cluster needs to be stored in the memory before it is
played on the speaker. Additional buffering requirements
also add to the system memory overhead. Thus the length
of the word clusters is limited by memory availability of
the system.

5. Results

A number of experiments were carried out with the
TTS design. The primary tools used for the purpose
include the Code Composer Studio and the Innovator Kit
from Texas Instruments. A cycle accurate framework was
also developed for the purpose of battery life estimation.
The mentioned framework uses a modified kinetic battery
model [9] for estimating the life of the battery when
subjected to a particular discharge profile. For simplicity,
battery is assumed to have a theoretical capacity of
2000mAh at 3.7V and the only the maximum discharge
currents corresponding to the processors have been
considered in the said experiments. A large number of
simulations were carried out using this framework in
order to verify the effectiveness of the recovery based
scheduling algorithm [4] with respect to the current
application. The findings of the mentioned experiments
have been summarized in the following paragraphs.
 The mentioned system achieves an average reduction
of 39.36% in execution time over the corresponding
non-partitioned implementation. Figure 6 shows the
relative performances of the code-partitioned TTS,
executed on the OMAP processor, versus the
non-partitioned implementation executing on the ARM
processor. It may be noted that a maximum speedup of up
to 1.86 is achievable through this technique.

As previously mentioned a trade off must be reached
between the memory usage of the application and the
system battery life. The dependence of these two
parameters on the word cluster size is illustrated by
figures 7 and 8.

0

10

20

30

40

50

60

70

5 20 35 50 65 80 95

#Words

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Non-partitioned
Partitioned

Figure 6: Comparison of non-partitioned and

partitioned TTS execution times

0

1

2

3

4

5

6

7

8

5 15 25 35 45 55 65 75 85 95

Words

M
em

or
y

Us
ag

e
(in

 M
By

te
s)

Figure 7: Graph showing the rise in memory
usage with increase in word cluster lengths

The memory usage of the system shows almost a linear
rise with the size of the word clusters, whereas the
increase in the battery lifetime tends to saturate after a
certain word cluster length. Further increase in word
cluster length is not warranted as only minor
improvements in battery lifetime are achieved at the cost
of increased memory usage. Also it is nearly impossible to
utilize the entire theoretical capacity of the battery. Thus
performance of the TTS can be optimized by judiciously
increasing the word cluster length. In case of highly
intonated TTS engines all word cluster lengths may not be
applicable; in that case, it may be necessary to consider
phrases instead of just words.

94
96
98
100
102
104
106
108
110
112
114

5 15 25 35 45 55 65 75 85 95

Words

B
at

te
ry

 L
ife

tim
e

(in
 H

ou
rs

)

Figure 8: Graph showing increase in battery
lifetime with increasing word cluster length

5. Conclusions and Future Work

A battery aware code partitioning scheme for an Indian
language text-to-speech (TTS) system has been presented
in this paper. The mentioned scheme achieves up to 40%
reduction in the average execution time. It also extends
the battery life of the system by up to 11%. The system
can be further improved using DVS (Dynamic Voltage
Scaling) and DPM (Dynamic Power Management)
techniques. The paradigm provided by the text to speech
system can be easily extended to other applications for
low power, mobile embedded systems.

6. Acknowledgements

This work has been supported in part by Media Lab Asia.
The authors owe special thanks to Prof. Bhargab B.
Bhattacharya for providing immense help and motivation
towards the work. The authors would also like to thank Mr.
Arijit Mukhopadhyay, Mr. Soumyajit Dey and Tirthankar
Dasgupta for helping with application profiling as well as
their valuable suggestions.

7. References

[1] ARM Corp. http://www.arm.com
[2] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncio,

R.Scarsi, “A Discrete-Time for High-Level Power
Estimation”, Proc. Design automation and test in Europe,
pp. 35-41, 2000

[3] Yunsi Fei and Niraj K. Jha, “Functional partitioning for
low power distributed Systems of Systems-on-a-chip”,
Proc. Intl. Conf. on VLSI Design, 2002

[4] Anirban Lahiri, Bhargab B. Bhattacharya, Anupam Basu,
“Recovery-based Real-Time Static Scheduling for Battery
Life Optimization”, communicated to the Intl. Conf. on
VLSI Design, 2006

[5] Kanishka Lahiri, Anand Raghunathan, Sujit Dey,
Debashish Panigrahi, “Battery-Driven System Design: A
new frontier in low power design”, in Proc. Conf. Asia
South Pacific DAC, 2002

[6] Jiong Luo and Niraj Jha, “Power-concious joint scheduling
of periodic task graphs and aperiodic tasks in distributed
real-time embedded systems”, Proc. Intl. Conf. on
Computer-Aided Desgin, pp. 357-364, 2000

[7] Jiong Luo and Niraj Jha, “Battery-Aware static scheduling
for distributed real-time embedded systems”, in Proc.
Design Automation Conference, pp. 444-449, June 18-22,
2001

[8] Mukhopadhyay A., Chakraborty S., Choudhury M., Lahiri
A., Dey S. and Basu A.(2005). “Shruti - An Embedded
Text-to-Speech System for Indian Languages”. To be
published in IEE Proceedings on Software Engineering

[9] Venkat Rao, Gaurav Singhal, Anshul Kumar, Nicholas
Navet, “Battery model for embedded systems”, Intl. Conf.
VLSI Design, Jan, 2005

[10] Tajana Simunic, Luca Benini and Giovanni De Micheli,
“Energy-Efficient Design of Battery-Powered Embedded
Systems”, In Proc. ISPLED ’99

[11] ST Microelectronics. http://www.st.com
[12] Texas Instuments. http://www.ti.com
[13] Frank Vahid, Thuy Dm Le, Yu-chi Hsu, “A Comparison of

Functional and Structural Partitioning”, Proc. Intl.
Symposium on System Synthesis, 1996

[14] http://valgrind.org/

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

