
 

 

 

 

 

 

 

 

 

 

Abstract 

Pseudorandom test techniques are widely used for 
measuring the impulse response (IR) for linear devices and 
Volterra kernels for nonlinear devices, especially in the 
acoustics domain. This paper studies the application of 
pseudorandom functional test techniques to linear and 
nonlinear MEMS Built-In-Self-Test (BIST). We will first 
present the classical pseudorandom BIST technique for Linear 
Time Invariant (LTI) systems which is based on the evaluation 
of the IR of the Device Under Test (DUT) stimulated by a 
Maximal Length Sequence (MLS). Then we will introduce a 
new type of pseudorandom stimuli called the Inverse-Repeat 
Sequence (IRS) that proves better immunity to noise and 
distortion than MLS. Next, we will illustrate the application of 
these techniques for weakly nonlinear, purely nonlinear and 
strongly nonlinear devices. 

  

1. Introduction 

Functional testing of analogue circuits is almost always 
preferred to structural testing approaches largely used for 
digital circuits. There are several reasons for this. A structural 
test can fail a circuit for an element value being out of its 
interval of tolerance, even if it does not cause a performance to 
fail a specification. This kind of test errors can significantly 
reduce yield and can only be avoided by functional testing. 
Another reason is the complexity of fault modeling and fault 
list prediction in the presence of infinite combinations of 
parametric defects that can cause faults. For CMOS VLSI 
circuits, the primary functional elements are transistors (PMOS 
and NMOS) and their interconnections (metal, polysilicon or 
diffusion layers). From a simulation point of view, some faults 
are fortunately much more probable than others. As a result, it 
has been shown that the infinite combination of parametric 
faults can in some cases be truncated to simplify fault 
simulation and fault list prediction necessary for parametric 
structural testing [1].  

For MEMS, only functional testing is today considered 
during production. Structural testing for MEMS is also being 
investigated, but it may be even harder to apply than for 
electrical analog circuits. This is because the large variety of 
primary functional elements (e.g. cantilever beams, moving 
and/or twisting plates, gears, hinges, etc.).  

Several authors have considered self-test techniques for 
MEMS, in particular for accelerometers [2,3,4]. Dedicated 
mechanical beams are used to generate an electrostatic force 
that mimics an external acceleration. The same idea was 
introduced in commercial accelerometers [5]. Alternative 
methods of self-test stimuli generation have been considered 
(e.g. electrothermal stimuli [3,6] and electromechanical [7]). 

All these approaches apply electrical test pulses to stimulate 
the device. The transducer response is next analyzed off-chip. 
The work in [2] suggests computer-controlled verification and 
calibration when a Digital Signal Processor (DSP) is available 
on chip. The differential BIST presented in [8] addresses some 
limitations of previous self-test approaches but is only 
applicable for structural testing of differential sensors. A 
similar approach is presented in [9]. In both cases, functional 
testing is not considered. 

For the above mentioned reasons, we will consider in this 
paper functional testing of MEMS. Since most MEMS can be 
stimulated using electrical test pulses, the pseudorandom 
approach is especially well suited. Pseudorandom testing of 
mixed-signal circuits has been introduced in [10]. An earlier 
work based on pulse-like excitation and subsequent analysis of 
the transient response of a mixed signal circuit is presented in 
[11]. However, none of these works includes a study on the 
circuit implementation of the BIST technique and a 
comparison between different IR measurement methods taking 
into consideration noise and nonlinear distortions. In addition, 
none of these previous works consider the extension to 
nonlinear systems. This paper will address all these issues for 
the case of MEMS devices. 

The IR of a LTI DUT provides enough information about 
the system functional evaluation. Several techniques have been 
proposed to measure the IR response using signal processing. 
These can be classified into four classes: 

 
� White Noise technique, in which the stimulus is a white 

noise and the IR is calculated by finding the DUT 
input/output crosscorrelation. 

� Time-delay Spectrometry (TDS) [16], like the logarithmic 
sine sweep [17] and the linear sine sweep. In the linear sine 
sweep the IR is usually calculated by the inverse Fourier 
transform of the output signal. In the logarithmic sine 
sweep it is usually calculated by the deconvolution of the 
output with respect to the input using an inverse filter. 

� Pulse Excitation (PE) technique, in which a single short 
duration pulse excitation signal is applied and the IR is 
directly obtained at the output of the DUT.   

� Pseudo Random (PR) technique, in which the test stimulus 
is a pseudo random white noise (like the MLS and the IRS) 
and the IR is found using the input/output crosscorrelation.  
 
Among the above four techniques the PE and the PR are 

the most suitable for BIST implementation. In PR, the test 
signal (MLS or IRS) generator and the input/output correlation 
can be simply implemented as shown in Section 2. However, 
this is not the case of the white noise technique where the 
input/output crosscorrelation needs hardware to carry out 
multiplication operations, and is thus less suitable for BIST. 
TDS techniques require also extensive hardware for the sine 
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sweep generator, for the inverse Fourier transform calculator 
[16] or for the inverse filter needed to perform the 
deconvolution of the output signal with respect to the input 
[17]. 

In this paper, only the most suitable IR measurement 
techniques, PE and PR, are applied to a commercial MEMS 
accelerometer in the presence of weak nonlinearities. They are 
then evaluated according to their immunity to nonlinear and 
noise distortions. The pseudorandom test methods will prove 
high suitability for BIST implementation, and good immunity 
to noise and nonlinear distortion. This is in particular true for 
the IRS technique that is used here for the first time in analog 
testing.  

Next, the pseudorandom method is applied for the case of 
pure nonlinear systems. Here, a microbeam with electro-
thermal excitation and piezoresistive detection is used as a case 
study. Finally, the pseudorandom method will be generalized 
for testing nonlinear systems using a multilevel pseudorandom 
stimulus. For nonlinear systems, the pseudorandom method is 
used for the extraction of the Volterra kernel coefficients [12], 
typically used to model nonlinear systems, although this will 
require in general an on chip DSP. 

 

2. Overview of the pseudorandom test method 
 

In [13] the authors have presented a MEMS pseudorandom 
test technique. The architecture of the BIST approach is shown 
in Figure 1. An m-order LFSR (Linear Feedback Shift 
Register) generates a periodic two-level deterministic MLS 
stimulus of length L = 2

m
 - 1. The analog output of the DUT is 

then digitized via a self testable 16-bit ADC [20], and 
correlated with the MLS stimulus to evaluate some IR samples. 
In [14], the authors map test specifications from the transfer 
function space to the impulse response space using Monte 
Carlo simulations, providing a tolerance range in this second 
space. A sensitivity analysis is performed to choose the IR 
samples with highest sensitivity to faults, thus, forming the 
signature that permits the best fault coverage. During testing, 
the signature from the selected samples is compared with the 
expected tolerance range in the comparator block of Figure 1.  

m m-1 nn+1 1

z-1z-1z-1z-1z-1

A/D

SCC0 SCCm-1

DUT

SCC1

h0 h1 hm-1
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Figure 1. Block diagram of the test approach 

The discrete output is y(k)=x(k)*h(k). The input/output 
cross-correlation φxy can be written in terms of the convolution.  

 ( )

(k) y(k) * x( k)xy

h(k) * x(k) * x( k)

h(k) * (k)xx
h(k) if : (k) (k)xx

φ = −

= −

= φ

≅ φ ≅ δ

   (1) 

An important property of an MLS is that its autocorrelation 

function xxφ is, except for a small DC error, an impulse 

that can be represented by the Dirac delta function. Thus, as 

shown in Equation 1, crosscorrelating the system input and 

output sequences gives the IR. The cross-correlation is 

defined by: 
L 1

xy
j 0

1
x( j k)y( j)

L

−

=

φ = −∑                       (2) 

Since the elements of x(k) are all ±1, only additions and 
subtractions are required to perform the multiplication in the 
above correlation function. To obtain the k

th
 component h(k) of 

the IR, the circuit of Figure 2 implements Equation 2. 

   
Figure 2. Simplified Correlation Cell (SCC) 

Each sample of the output sequence y(j) is multiplied by 1 
or –1 by means of the multiplexer unit (MUX) controlled by 
the input sequence x(j-k), and the result is added L times to the 
sum stored in the accumulator. The value obtained at the end 
of the calculation loop is divided by L using a shifter. The 
output is the k

th
 sample h(k) of the IR of the DUT, knowing 

that k is equal to the number of delay samples of the MLS 
stimulus x (j-k) at the input of the SCC.  

3. Weakly nonlinear systems 
 

There are always some sources of nonlinear distortion in 
ideally linear systems. The term “weakly nonlinear system” is 
used in this context. The sources of nonlinear distortion can be 
due to MEMS non-idealities, to harmonic and intermodulation 
distortions of the ADC, and to measurement distortions of any 
analog signal conditioning circuits. Different IR measurement 
techniques are more or less affected by distortion depending on 
the test signal and signal processing used to calculate the IR. 

Any weakly nonlinear system can be modeled by the 
nonlinear model used by [19] and shown in Figure 3. 
 

 
 

 A memoryless r–order nonlinearity d{.} can be written 
as: 
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where Ad sets the amplitude of the nonlinearity. 
The distortion immunity Id of the impulse measurement 

can be derived as the ratio of the linear IR energy to the 

nonlinear error energy [19] as follows: 
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Distortion immunity is an important performance 
parameter for evaluating an IR measurement technique. But 
measurement environments suffer both nonlinear distortion 
and noise. So immunity to noise must be considered as well. In 
Section 3.2 the distortion and noise immunities for each 
method are evaluated. First, the pseudorandom IRS technique 
is introduced.  

 

3.1. Inverse-Repeat Sequence technique  
 

Consider a periodic binary signal x(k) suitable for impulse 
response measurement, where the second half of the sequence 
is the exact inverse of the first half, that is: 

x(k L) x(k)+ = −                  (5) 

The period of 2L of such a sequence will always contain an 
even number of samples. It is proved in [19] that all even-order 
autocorrelations (r even) are exactly zero. Such a sequence 
therefore possesses complete immunity to even-order 
nonlinearity after cross correlation. Due to the anti symmetry 
in x(k) the first order autocorrelation will also possess anti 
symmetry about L, that is, 1φ (k) = - 1φ (n + L). A signal that 
satisfies these conditions is the so-called Inverse-Repeat 
Sequence (IRS), obtained from two periods of MLS s(k) such 
that the next period is inverted. 

x(k) s(k) n even, 0 n 2L

s(k) n odd, 0 n 2L (6)

= ≤ <

= − ≤ <
 

where L is the period of the generating MLS (note that the IRS 
period is 2L which doubles the test time). The first-order 
autocorrelation of an IRS IRS1φ  is related to the corresponding 
signal for the generating MLS by the following expression: 
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clearly showing anti-symmetry about L.  
By exciting a linear system with an IRS, it is possible to 

obtain the impulse response of the system like in the case of an 
MLS excitation. The IRS is generated using an LFSR, and 
since it is a 2-level sequence the input/output crosscorrelation 
can be done using the SCC blocks. So the same BIST as the 
MLS can be used for the IRS technique. 

 

3.2. Comparison between PE and PR techniques 
 

For each of the PE, MLS and IRS techniques we have used 
the model of Figure 3 to calculate the nonlinear error signal 
enl(k) according to the equations defined in [19]. Once enl(k) is 
found, the distortion immunity Id can be calculated. Table 1 
shows distortion immunities of each of the three techniques for 
distortion orders from 2 to 5. The amplitude of the excitation 
signal is 20 dBm and that of distortion is Ad = -20dBm. The 
commercial MEMS accelerometer ADXL105 from Analog 
Devices is taken as a DUT.  

Table 1 shows that IRS has a very high immunity 
advantage over MLS (235.6 dB at the second-order 
nonlinearity and 79.3 dB at the fourth-order nonlinearity). 
However only approximately 3 dB of immunity advantage can 
be offered by the IRS for the case of odd-order nonlinearity. 
So, the IRS appears more interesting when testing a DUT with 

even-order nonlinearities. However, in the presence of just 
odd-order nonlinearity, choosing the MLS is better because it 
is simpler, and the 3 dB of immunity advantage offered by the 
IRS can be compensated by a single averaging of the output 
sequence in the case of an MLS input. The presence of only 
odd-order nonlinearities is typical of the systems that have odd 
symmetry, such as “differential” or “balanced” systems. 

4. Purely nonlinear systems 
 

In general, purely nonlinear systems can be modeled by the 
Hammerstein model shown in Figure 4. The term “purely 
nonlinear” stands for the absence of any linear behavior. This 
is caused by the nonlinear function at the input of the dynamic 
linear block.  

 

Figure 4. Hammerstein model 
 

As a case study of a purely nonlinear system, a cantilever 
with electrothermal stimulation and piezoresistive detection 
has been considered. Figure 5 shows the image of a chip 
containing 3 microbeams fabricated in a 0.8 µm CMOS bulk 
micromachining technology. The surface of each cantilever is 
covered with heating resistors made of polysilicon. The 
heating of the cantilever causes it to bend and the actual 
deflection is measured by means of piezoresistors placed at the 
anchor side of the cantilevers. For each cantilever, a 
Wheatstone bridge is used for measurement. 

  

Figure 5. Image of a fabricated microstructure 
 

The average temperature Tm of the MEMS structure 
depends on the injected thermal power Pth that is a function of 
the voltage Vi applied on the heating resistance Rh according 
to: 

2

i
th

h

V
P

R
=      (8) 

Table 1. Evaluation of PE, MLS and IRS test techniques 

Distortion immunity (dB) 

Noise and 

distortion 

immunity 

advantage of Distortion 

order r 

Id(PE) Id(MLS) Id(IRS) 

MLS 

over 

PE 

IRS 

over 

MLS 

2 41.4 16.1 248.7 7.7 235.6 

3 63.9 22.1 23.3 12.1 3.6 

4 86.4 22.6 251.7 11.84 79.3 

5 109.7 25.1 28.1 11.9 3.7  

x(k) Static 

nonlinear 

Dynamic 

Linear: h(k) 

w(k) y(k) 

(7) 



In this application the presence of an electrothermal 
coupling makes the circuit purely nonlinear. The nonlinearity 
is thus static and of 2

nd
 order. According to the Hammerstein 

model, the dynamic linear part is the linear IR of the suspended 
microbeam, and the static nonlinear part corresponds to the 
squaring function induced by electrothermal excitation. The 
pseudorandom test introduced in Section 2 is not applicable for 
a purely 2

nd
 order nonlinear system. For example, if the 

microbeam is stimulated by an MLS with 1 and -1 levels, 
MLS(1,-1), the sequence will be squared by the electrothermal 
excitation resulting in a DC signal at the input of the linear 
part. Of course, a DC signal is not sufficient to stimulate a 
linear system with memory. 

To avoid this effect, a modified binary MLS with 0 and 1 
levels, MLS(0,1), can be used. Its autocorrelation can be 
deduced from that of MLS(1,-1) according to the following: 

[ ](0,1) (1, 1)

(1, 1)

(0,1)

MLS (k) (MLS (k) 1) / 2 for k 0,L 1

(k) L k (k) L k
(k) (9)

4 4L 4 4L
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= + = −
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For x = MLS(0,1) and k = [0, L-1], substituting Equation 9 in 
Equation 1 leads to: 

k k
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Equation 10 shows how h(k) can be extracted out of φxy(k) 
when an MLS(0,1) is used. This also means that φxy(k) and h(k) 
are highly correlated which permits to form the signature in the 
crosscorrelation space rather than the impulse response space. 

This modification can be generalized. According to the 
Hammerstein model in Figure 4, once x(k) is chosen such that 
x(k) = w(k), the crosscorrelation of x(k) and y(k) can be 
derived as function of h(k) as in Equation 10. 

In the case of the case-study microbeam, h(k) is the IR of 
the linear part of the model, which corresponds to the 
microbeam without considering an electrothermal excitation. 
Figure 6 shows the calculated impulse response h(k) of the 
microbeam using Equation 10. Notice the resemblance 
between h(k) and the diagonal of the 2

nd
 Volterra kernel in 

Figure 7. Volterra kernels are functions used to model 
nonlinear systems as discussed in Section 5. 

 
Figure 6. (a) IR of the microbeam 

Therefore, for MEMS that can be modeled by the 
Hammerstein model, there is no need of sophisticated 

nonlinear modeling since the same results can be obtained with 
a simple modification of the test signal in the proposed BIST. 

 

Figure 7. 2
nd

 Volterra kernels of the microbeam 
 

According to [14], a signature of only five samples of the 
IR of the microbeam is necessary to be compared with the 
tolerance range in the IR space. The choice of this signature 
was done according to the sensitivity analysis explained in 
[14]. For the case of the microbeam, Table 2 shows test quality 
parameters corresponding to different LFSR lengths and ADC 
bit precision in the BIST of Figure 1. The values in bold 
correspond to the case of unacceptable test quality parameters 
(test escapes > 100 ppm).  

Table 2. Test quality results 

LFSR 

length 

Bit precision 

(bits) 

Probability of 

false acceptance 

Probability of 

false  rejection 

% of test 

escapes 

16 0.00005 0.00183 0.000967 
15 0.001 0.00284 0.002 
14 0.0041 0.0098 0.00827 

 

14 
13 0.1565 0.0095 0.32 
16 0.00326 0.00567 0.00326 

15 0.016 0.009 0.016 13 
14 0.089 0.0104 0.09 

12 16 0.01 0.0257 0.0175 

According to Table 2 more than 12 bits in the LFSR are 
necessary to carry out the test with a small percentage of test 
escapes. Increasing the length of the LFSR results in a lower 
percentage of test escapes at the expense of longer testing 
times. It is also possible to derive the minimum number of 
ADC bits for different lengths of the LFSR. For a 12-bit LFSR, 
more than 16 bits would be required. For a 13-bit LFSR, the 
minimum number of ADC bits is 16. As a compromise 
between complexity, test quality and test time, a 14-bit LFSR 
with 15 precision bits has been chosen for our design. Notice 
that the number of precision bits in the signature analyzer must 
be lower than that of the self testable ADC [20]. 

5. Strongly nonlinear systems 
 

We consider next nonlinear systems that cannot be 
modeled according to the simple Hammerstein model used for 
purely nonlinear systems. In this work we make use of the 
Volterra modeling technique to test strongly nonlinear devices. 
Any time-invariant nonlinear system with fading memory can 
be approximated by a finite Volterra series given by: 

N rM 1 M 1

r r1 jo r 1 m 0 m 0 j 1r1

y(k) h ... h (m ,...,m ) x(k m )
− −

= = = =
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where x and y are respectively the input and output of the 
system, N is the nonlinearity order, M is the memory of the 
system, and hr(m1,…,mr) represents a coefficient of the r

th
 

order Volterra kernel hr. The kernel hr carries information 
about the r-order nonlinear behavior of the system. 

The physical meaning of Volterra kernels are illustrated 
with the block models shown in Figure 8. Figure 9 shows the 
1

st
 and 2

nd
 kernels of each of these models, calculated by the 

algorithm that is explained below. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) linear system, (b) & (c) 2
nd

 order nonlinear 
systems 

The first two kernels of the linear system in Figure 8(a) are 
shown in Figure 9(a) and Figure 9(b) respectively. Notice how 
the 1

st
 kernel represents the linear impulse response and the 2

nd
 

kernel is equal to zero since the system is linear. The first two 
kernels of the nonlinear system of Figure 8(b) are shown in 
Figure 9(a) and Figure 9(c) where the 2

nd
 kernel is not equal to 

zero anymore. The 1
st
 kernel is always the same because the 

linear part of the systems in Figure 8(a) and Figure 8(b) is the 
same. Similarly, the system of Figure 8(c) has the same 1

st
 

kernel and the 2
nd

 kernel is shown in Figure 9(d). 
After finding the Volterra kernels, it is possible to extract 

design properties out of these kernels and prove that they 
correspond to the functional system. For example, the 
1

st
 kernel in Figure 9(a) is nothing but the impulse response of 

the FIR Filter I which plays the role of the linear part in the 
systems of Figure 8. This proves the correctness of the 1

st
 

kernel. The nonlinearity of the system in Figure 8(c) is 
represented by squaring each input sample. Thus, there is no 
multiplication between different input samples at different 
delays, which means that all the 2

nd
 kernel coefficients at 

1 2n  n≠ are zero. That is why Figure 9(d) has values only 
through the diagonal 1 2(n = n ) . Moreover, the values through 
the diagonal correspond to the impulse response of the FIR 
Filter II since it is in cascade with the squaring function. 

The aim of the test approach is to calculate the kernel 
coefficients of a nonlinear DUT and to compare them with the 
typical values to test the device. Existing methods for the 
identification of Volterra kernels have proved computationally 
burdensome. In [12] the authors have proposed an efficient 

method to determine the Volterra kernels, where they make use 
of the general Wiener model shown in Figure 10.  

 
Figure 9. Volterra kernels of the systems in Figure 8. (a) 
1

st
 kernel for all systems, (b), (c) and (d) 2

nd
 kernels for 

the systems in Figure 8(a), 10(b) and 10(c) 

According to this method, the system is stimulated by a 

multilevel MLS (Figure 11) to extract the Wiener coefficients 

from the values of the sampled output response. The advantage 

of this method is that the multilevel MLS stimulus can be 

easily generated on-chip. The Volterra kernels are then 

obtained from the Wiener model using an on chip calculation 

[12] by means of a DSP. 
It can be proved that applying the pseudorandom test 

method results in: 
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where each term is an r-dimensional convolution of a Volterra 
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kernel hr(kl, k2.... kr) with the r-dimensional autocorrelation 

function  of   the  input   sequence rφ  (kl, k2.... kr ).  The   first  

term,
L 1

1 1
i 0

h (i) (k i)
−

=
φ −∑ , equals  h1(k)  for  the case  of  an  MLS, 

which means that xy (k)Φ  is directly related to h1(k), the 
linear behavior of the system. Physically, when a fault 
exists it always harms both the linear behavior h1(k) which 
is highly correlated with xy (k)Φ , and the nonlinear one. 
Therefore, the presence of a fault will have an influence on 
the value of xy (k)Φ which means that the pseudorandom 
test method is valid for nonlinear systems. 

 

 

 

Figure 11. Multilevel MLS stimulus 

An illustration of the use of multilevel sequences for 

nonlinear MEMS testing is the subject of future work.  
 

6. Conclusions and further work 
 

This article has presented an evaluation of different IR 
measurement methods suitable for MEMS BIST. These 
techniques have been applied to a commercial MEMS 
accelerometer. As a result, the IRS is the most suitable when 
even-order nonlinearities exist. We have proved that it has a 
very high total immunity against even-order nonlinearities. 
Such nonlinearities vanish for differential systems where the 
MLS can give the same results as the IRS.  

The pseudorandom test method has been modified and 
applied to a purely nonlinear microbeam with electrothermal 
excitation. The resulting input/output crosscorrelation samples 
are the Volterra kernel coefficients needed for modeling, 

which means that the technique is equally applicable for purely 
nonlinear MEMS. Finally, the validity of pseudorandom 
methods for nonlinear circuits has been discussed and work is 
under way to demonstrate it for a MEMS device.  

For the purpose of testing, we will be interested in finding 
a test signature composed of only several Volterra coefficients 
that are highly sensitive to faults. A similar signature analysis 
to that of linear MEMS [14] can be applied. Finally the 
signature is compared with the tolerance range to decide 
whether the nonlinear MEMS functions correctly or not.  

The MEMS pseudorandom BIST techniques have been 
modeled and applied to the MEMS accelerometer and the 
microbeam via Labview and a National Instruments data 
acquisition card. Work is on the way to fabricate a MEMS 
device embedding this type of BIST capability. 
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Figure 10. Wiener model with orthonormal basis 
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